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Abstract Phase-field modeling of brittle fracture in elastic
solids is a well-established framework that overcomes the
limitations of the classical Griffith theory in the prediction
of crack nucleation and in the identification of complicated
crack paths including branching and merging. We propose a
novel phase-field model for ductile fracture of elasto-plastic
solids in the quasi-static kinematically linear regime. The for-
mulation is shown to capture the entire range of behavior of a
ductile material exhibiting J2-plasticity, encompassing plas-
ticization, crack initiation, propagation and failure. Several
examples demonstrate the ability of the model to reproduce
some important phenomenological features of ductile frac-
ture as reported in the experimental literature.

Keywords Phase-field model · Elastic–plastic solids ·
Fracture · Finite element

1 Introduction

In the past two decades, the ability to accurately predict frac-
ture in ductile materials has gained increasing importance
in several industrial fields, including e.g. the automotive,
aerospace and marine sectors, due to the constant quest for
optimal design and weight reduction of new components.
The availability of computational predictive tools allows for
substantial savings in the cost of experiments, especially in
cases where these are extremely complex (such as e.g. for
gas pipelines, aircraft fuselages, or nuclear vessels), as well
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as for design optimization. A computational model for duc-
tile fracture is expected to predict a number of behavioral
features, including state of stress, damage patterns, the sta-
bility of possibly existing cracks, crack propagation paths
and corresponding load-carrying capacity.

Since the late sixties, several modeling approaches have
been proposed for ductile fracture, see [1] for a comprehen-
sive review. Following the classification in [1] but with a
slight modification of the terminology, we will here distin-
guish between global and field approaches. In the former, one
or a few parameters are assumed to completely characterize
the crack tip conditions. Within this category, the classical
choice is Rice’s J-integral which presents a number of impor-
tant drawbacks [1]: i. it can assess the stability of pre-existing
crack-like flaws but cannot predict crack initiation and prop-
agation from a notch or other stress concentrators; ii. the
critical value of the J integral is not a material property as it
strongly depends on the specimen geometry [2,3], which led
to the proposal of the two-parameters J–Q approach [4]; iii.
the method is not applicable to arbitrarily complex geome-
tries. Subsequently developed alternatives using the so-called
critical crack tip opening displacement or crack tip opening
angle share the same limitations [5–7].Global approaches are
either adopted within analytical models or implemented with
the finite element (FE) method (FEM), where crack propa-
gation is typically dealt with using remeshing algorithms,
which adapt the mesh topology to the crack geometry [8].

Field approaches [9,10], rather than relying on global
parameters, base the prediction of fracture on a detailed
description of the damage phenomena in the process zone.
In turn, within field approaches we can distinguish between
continuum and discrete formulations, both typically imple-
mented with the FEM. Continuum approaches refer the
description of damage to the volume of the material bulk and
consist in the use of constitutive equations coupling plastic-
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ity and damage at the material point level. A large number of
models have been proposed in this framework, see [1] for a
review. Here we just mention the micro-mechanically moti-
vated model by Gurson [11], where the plastic yield surface
depends on a damage variable associated to the void volume
fraction (or porosity); its improved version known as the
Gurson–Tvergaard–Needleman (GTN) model [12], which
incorporates additional parameters to better describe the
void growth kinetics; and the phenomenological (i.e. macro-
scopic), thermodynamically consistent damage mechanics
modeling framework developed by Lemaitre [13,14]. In all
these models, the constitutive equations lead to a strong soft-
ening behavior as the damage level increases, which leads to
strain and damage localization. This in turn determines the
loss of ellipticity of the governing differential equations and,
in a numerical discretized setting, a strong mesh sensitivity
of the computational results. A few different solutions to this
issue have been proposed, most notably the incorporation of
a material length scale through non-local or gradient dam-
age approaches [15,16]. Being endowed with a length scale,
these approaches are additionally capable of predicting size
effects, which is not possible with local models. Non-local
or gradient versions of the Gurson and of the GTN models
have been proposed in [17,18], respectively.

Continuum formulations are typically unable to describe
the surface decohesion and crack propagation phase sub-
sequent to the softening and damage localization phase.
Conversely, this phase is naturally handled by the discrete
formulations, which involve a surface description. In an FE
framework the proper modelling of discrete cracks of arbi-
trary geometry requires either remeshing [8] or embedding
techniques such as the extended FEM (XFEM) [19], both
allowing for the (respectively explicit and implicit) track-
ing of discontinuities within an existing mesh. In both cases,
additional assumptions are needed for the crack initiation
and propagation criteria, as well as for crack growth direc-
tion criteria. Moreover, both approaches present significant
implementational difficulties, such as the need for suitable
transfer of the state variables in the case of remeshing [20]
as well as integration, conditioning and data handling issues
for the XFEM, most notably in the 3D setting. A widely
used alternative is the so-called cohesive zone modeling
approach, implemented through interface or generalized con-
tact elements [21–23]. This approach describes explicitly
the discrete fracture process and is straightforward for crack
paths known a priori [24–26]. Its extension to unknown crack
paths entails the insertion of cohesive elements between each
pair of continuum elements in an FE mesh, which may lead
to strongmesh dependency and over-estimated cracked areas
[27]. XFEM and cohesive zone modeling can be possibly
coupled [28]. All discrete approaches cannot describe diffuse
ductile damage, which in metals typically precedes the local-
ization of damage within a thin band, and their applications

are currently largely limited to brittle fracture or small-scale
yielding conditions.

Very recently, there have been attempts to combine the
continuum and the discrete approaches to capture the tran-
sition between damage, localization, crack initiation and
propagation. These attempts involved e.g. the combination
of a Lemaitre-based non-local or gradient damage model
[29,30] or of the GTN model [31] with the XFEM. Obvi-
ously, the crack propagation phase inherits the difficulties of
the XFEM framework, moreover additional complications
arise from the need for a consistent and seamless transition
between continuum and discrete descriptions in subsequent
behavioral stages.

Phase-field modeling, which shares many features with
continuum approaches, has recently emerged as a competitive
alternative to discrete methods for the description of brittle
fracture phenomena. In general, the phase-field approach to
model systemswith sharp interfaces consists in incorporating
a continuous field variable—the so-called order parameter—
which differentiates betweenmultiple physical phaseswithin
a given system through a smooth transition. In the context
of fracture, such order parameter (the crack phase field)
describes the smooth transition between the fully broken and
intact material phases, thus approximating the sharp crack
discontinuity. The evolution of the crack phase field as a
result of the external loading conditions models the fracture
process.Whatmakes the approachparticularly attractive is its
ability to elegantly simulate complicated fracture processes,
including crack initiation, propagation, merging, and branch-
ing, in general situations and for 3D geometries, without the
need for additional ad-hoc criteria. Propagating cracks are
tracked automatically by the evolution of the smooth crack
field on a fixed mesh. This leads to a significant advantage
over the discrete fracture description methods outlined ear-
lier. On the other hand, as mentioned earlier the approach
shares several features with gradient-enhanced local contin-
uum damage models. Therefore, it is the perfect candidate
to enable a seamless transition between the description of
continuum damage and discrete crack propagation phases.

Phase-field modeling of brittle fracture has been a topic
of very intense research in the past few years and has already
attained impressive results [32–39]. The currently available
formulations encompass static and dynamic approaches to
brittle fracture. The extension to ductile fracture has been
the subject of very limited attempts. In [40,41], fracture of
ductile elastic–plastic solids was investigated under dynamic
loading conditions. The focus was placed on reproducing the
experimentally observed ductile to brittle failure mode tran-
sition with increasing loading speed. In these works, the total
(free) energy functional is taken as the sum of elastic, plas-
tic and fracture contributions. The elastic contribution takes
the classical form, the fracture contribution contains only the
component of the classical form involving the gradient of the
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phase-field, and the plastic contribution is a chosen function
of the phase field and of the hardening variable. Recently,
Duda et al. [42] proposed a phase field model for quasi-static
brittle fracture in elasto-plastic solids, a phenomenon typi-
cal of metals below the ductile–brittle transition temperature.
In this case, limited plastic deformation is assumed to take
place in the vicinity of the notch root or crack tip. Also in this
case the total energy is the sum of elastic, plastic and fracture
contributions. The elastic and fracture contributions take the
classical form used in available brittle fracture formulations,
whereas the plastic contribution is a chosen function of the
accumulated plastic strain including as parameters the elastic
modulus, the yield stress and the strain hardening exponent.

Objective of this paper is to propose a new phase-field
formulation of ductile fracture in elasto-plastic solids, in the
quasi-static kinematically linear regime. The distinct fea-
ture of the proposed model is the introduction of a coupling
between the degradation function applied to the tensile por-
tion of the elastic energy and the plastic strain state. This
coupling is shown to play a fundamental role for the cor-
rect prediction of some phenomenological aspects of ductile
fracture evidenced from available experimental results, and
is proved to be thermodynamically consistent. The paper is
structured as follows. Section 2 revisits the main features of
phase-field models of brittle fracture for elastic solids, which
serves as a basis for the subsequent extension to the ductile
regime. Section 3 illustrates the proposedmodel, whose algo-
rithmic aspects are developed in Sect. 4. Section 5 presents
several numerical examples to test the predictive ability of
the model with respect to some effects evidenced by experi-
mental tests in the literature. Finally, conclusions are drawn
in Sect. 6.

2 Point of departure: phase-field models of brittle
fracture of elastic solids revisited

Phase-field approaches to brittle fracture of elastic solids
have been independently developed and investigated in the
physics and mechanics communities starting from the late
’90s and the literature on the subject is wide. Our previous
paper [39] provides an overview of the existing quasi-static
and dynamic phase-field fracture formulations accepted in
both communities. Herein, we focus on quasi-static fracture.

As follows, we recall particularly the phase-field mod-
els of brittle fracture which originate from the variational
formulation of brittle fracture by Francfort and Marigo [43]
and the related regularized formulation of Bourdin et al. [32].
All these formulations have been applied to linearly elastic
materials in the small deformation framework.

In [43], the entire (quasi-static) process of crack initiation,
propagation and branching is governed by a minimization
problem of the free energy functional

E(u, �) =
∫

�

�e(ε(u))dx + Gc

∫
�

ds, (1)

where �e is the elastic energy density function defined as
�e := 1

2ε : C : ε = 1
2λtr

2(ε) + μtr(ε2), with ε as the
second order infinitesimal strain tensor,C as the fourth-order
elasticity tensor, λ and μ as the Lamé constants, and Gc as
thematerial fracture toughness. The solution is an admissible
crack set� ⊂ � and adisplacement field u : � → R

n ,which
is discontinuous across �. The shortcomings of the classical
Griffith theory of brittle fracture are proven to be overcome
by formulation (1), see [43] and also [44] for further details
and a comprehensive overview.

To enable an efficient numerical treatment of (1), its reg-
ularized formulation was devised by Bourdin et al. [32]:

E�(u, s) =
∫

�

g(s)�e(ε(u))dx

+Gc

∫
�

(
1

4�
(1 − s)2 + �|∇s|2

)
dx, (2)

with a field variable s which indicates the crack (the crack
field parameter) and which varies smoothly from 1 (undam-
aged material) to 0 (totally broken). The transition zone of s
is controlled by the parameter � > 0 with the dimension of
a length. Function g(s) := s2 + η couples s with the elas-
tic field and typically satisfies g(s) > 0 for 0 < s ≤ 1. The
small dimensionless parameter ηmodels an artificial residual
stiffness of a totally broken phase (s = 0) and is essentially
needed to prevent numerical difficulties.

With � → 0, the formulation (2) approximates (1) in the
sense of �-convergence, thus establishing the link between
regularized and free-discontinuity fracture energies. This
implies that the zero set of the crack field s indeed recov-
ers the crack set �.

Using variational principles, theminimization problem (2)
can be reformulated as the system of the stress equilibrium
equation div σ (u, s) = 0,withσ as the second-orderCauchy
stress tensor

σ (u, s) := g(s)
∂�e(ε)

∂ε
= g(s)C : ε, (3)

and the evolution equation for s:

2�	s + 1 − s

2�
= g′(s)

Gc
�e(ε), (4)

see e.g. [33,34].
The formulation (2) does not distinguish between frac-

ture behavior in tension and compression. Already in [32]
examples of unrealistic crack patterns in compression were
reported. To avoid such situations, and, additionally, to
prevent the interpenetration of the crack faces under com-
pression, a modified regularized formulation of (1) was

123



1020 Comput Mech (2015) 55:1017–1040

proposed in Amor et al. [35] and Miehe et al. [36,37],

E�(u, s) =
∫

�

[
g(s)�+

e (ε) + �−
e (ε)

]
dx

+ Gc

∫
�

(
1

4�
(1 − s)2 + �|∇s|2

)
dx, (5)

using a specific additive decomposition �e = �+
e + �−

e of
the elastic energy density �e. In contrast to (2), the degra-
dation of only the positive energy part is allowed herein,
whereas the negative part remains undegraded.

Two options for decomposition of �e can be found in the
literature, namely, the split into volumetric and deviatoric
contributions, see [35],

�+
e (ε) := 1

2
Kn〈tr(ε)〉2+ + μ(εdev : εdev),

�−
e (ε) := 1

2
Kn〈tr(ε)〉2−, (6)

where Kn = λ + 2μ
n , 〈a〉± := 1

2 (a ± |a|) and εdev :=
ε− 1

3 tr(ε)I , as well as the split based on the spectral decom-

position of the strain tensor ε = ∑3
I=1〈εI 〉nI ⊗ nI , where

{εI }3I=1 and {nI }3I=1 are the principal strains and princi-
pal strain directions, respectively, see [36,37]. In this case,
ε± := ∑3

I=1〈εI 〉±nI ⊗ nI and, eventually,

�±
e (ε) := 1

2
λ〈tr(ε)〉2± + μtr(ε2±). (7)

The system of Euler–Lagrange equations of the functional
E� in (5) involves the stress–strain relation and the evolution
equation of the crack phase field reading as

σ (u, s) := g(s)
∂�+

e (ε)

∂ε
+ ∂�−

e (ε)

∂ε
, (8)

and

2�	s + 1 − s

2�
= g′(s)

Gc
�+

e (ε), (9)

respectively. By coupling s with�+
e in E�, the evolution of s

in (9) is driven only by the dilatational part of the volumetric
strain, thus providing cracking in tension. On the other hand,
the absence of �−

e in (9) prevents crack evolution in the
(highly) compressed parts of a solid, inwhich�−

e is expected
to dominate�+

e . Also, since the�−
e part remains undegraded

in E�, resulting in the presence of ∂�−
e /∂ε in the relation (8),

it can be expected that in case of crack closure the crack lips
interpenetration is also prevented. It can be noticed finally
that regardless of the type of split used in (5), the constitutive
relation (8) is non-linear which is in contrast to (3).

The results on �-convergence for the functional E� in (5)
are not available. That is, strictly speaking, it is not clear

what kind of functional (and hence what kind of ’physical’
process) is to be recovered when � → 0 in this case. The
formulation (5) using different kinds of split of �e, however,
has been shown to provide adequate simulation results for
brittle fracture processes in elastic bodies, see e.g. [35–37].

To enhance the efficiency of phase-field computations, the
so-calledhigher-order andhybrid formulationswere recently
proposed in [38] and [39], respectively. Extension of the
quasi-static formulations (2) and (5) to the dynamic set-
ting has been presented in numerous contributions, see e.g.
[45–50].

3 Phase-field model of ductile fracture

3.1 The conceptual background

To illustrate the prime difficulties in deriving the phase-field
model for elasto-plastic ductile fracture, we first summarize
the conceptual scheme underlying the phase-field framework
for brittle fracture in Fig. 1. The process 1© (i.e. the pure
linearly elastic regime) and the related (classical) formulation
E(u) → min, where

E(u) :=
∫

�

�e(ε(u))dx, (10)

can naturally be viewed as an embedded part of the process 2©
(linear elasticity, followed by fracture) and of the correspond-
ing variational formulation E(u, �) → min,with E(u, �) as
in (1). In the figure,we use the sign�⇒ to indicate the ’exten-
sion’ of case (10) to (1) both in terms of the process and of the
formulation. The relation between the ’sharp crack’ and the
’phase-field’/’diffusive crack’ formulations—the latter being
given by (2) or, more generally, by (5)—is indicated by the
symbol �. In practice, with a reasonably small � in (2) and
(5), the computed σ -ε response in this case recovers the one
from the process 2©. Note that all functionals involved in the
considered logical scheme

E(u) �⇒ E(u, �) � E�(u, s) (11)

are available.
Using Fig. 1 as a conceptual layout, one difficulty in con-

structing the phase-field model for the ductile case becomes
clear, see Fig. 2. The contents of the left plot in this figure—
the process 1© and the related energy description—are
well-established: we may take e.g. the J2-plasticity frame-
work as a starting point, i.e.

E(εe, εp, α) :=
∫

�

[
�e(ε

e) + �p(α)
]
dx, (12)
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Fig. 1 From linear elasticity
towards phase-field modeling of
brittle fracture via the
variational formulation

Fig. 2 From plasticity towards
phase-field modeling of ductile
fracture: the corresponding
variational formulation is a
missing link

where

�p(α) := σyα + 1

2
hα2, (13)

is the plastic energy density function assuming linear
isotropic hardening, with yield stress σy, hardening vari-
able α and hardening modulus h > 0. In (12), εe and εp

are respectively the elastic and the plastic strain tensors,
which are assumed to additively contribute to the total strain,
ε = εe +εp. The plastic strain εp and the hardening variable
α are treated as internal (state) variables, for which appro-
priate evolution equations are established, see e.g. Simo and
Hughes [51] or Owen [52].

Unfortunately, and in contrast to the previous case, we do
not have here a variational theory that describes the ductile
fracture process (the dashed line of the process 2© in Fig. 2)

in the way it was done in the brittle case. That is, within the
logical scheme

E(εe, εp, α) �⇒ E(εe, εp, α, �) � E�(ε
e, εp, α, s),

(14)

which formally mimics (11), the functional E(εe, εp, α, �)

is not available. Therefore, we cannot derive its regularized
counterpart E�(ε

e, εp, α, s) to be treated as the correspond-
ing phase-field formulation.

To overcome this difficulty the following option may be
considered: taking the elasto-plastic formulation (12)—as the
one that is already capable of reproducing the process 1© in
Fig. 2—and ’enriching’ it by mimicking the regularization
formalism (2) or (5). This implies introducing an appropri-
ate coupling function g into E(εe, εp, α) in (12), as well as
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adding the (original or modified) surface energy functional
from (2) and (5). The resulting formulation should then be
able to reproduce the process 2©, most importantly, including
its fracturing (dashed) part.

One of the first attempts in this direction can be found
in [42]. The formulation proposed therein relies on the free
energy functional

E�(ε
e, εp, α, s) :=

∫
�

[
g(s)�+

e (εe)+�−
e (εe)+�p(α)

]
dx

+ Gc

∫
�

(
1

4�
(1 − s)2 + �|∇s|2

)
dx,

(15)

with g(s) = s2 + η and �p(α) slightly different from the
one in (13). The formulation is termed by the authors a
phase-field/gradient damage model for brittle fracture in
elasto-plastic solids. To our understanding, the reference to
brittle fracture is due to the choice of g, which corresponds
to the original brittle model in elastic solids (2) and (5). As
may be guessed, the fracture mechanism (i.e. the evolution
of the phase-field) in this case will be driven primarily by the
elastic strains, thus the contribution of the plastic strains will
be minor. This will be illustrated by some of the numerical
examples in Sect. 5.

From the above observation, it becomes clear that a cor-
nerstone of the ductile phase-field model derivation is the
appropriate choice of the function g and, particularly, that
this function should depend not only on the phase-field vari-
able s but also on a certain measure of the plastic strain state.

3.2 The proposed model

In this contribution, we propose the following free energy
functional

E�(ε
e, εp, α, s)

:=
∫

�

[
g(s, p)�+

e (εe) + �−
e (εe) + �p(α)

]
dx

+ Gc

∫
�

(
1

4�
(1 − s)2 + �|∇s|2

)
dx, (16)

where we define

g(s, p) := s2p + η, (17)

with

p := ε
p
eq

ε
p
eq,crit

, ε
p
eq(t) :=

√
2

3

∫ t

0

√
ε̇p : ε̇p dτ, (18)

and ε
p
eq,crit as a threshold value. ε

p
eq is often referred to as the

von Mises equivalent plastic strain.

s=0

s=1

s ,t( )x

u

(b)

u

(a)

p( )x,t

p p) p p)

p( )x,t

t t--

--

Fig. 3 The conceptual backbone of the proposed model: a the plas-
tic strain accumulation and localization zone within � and the related
p = p(εp(x, t)); t stands for the pseudo-time; b the phase-field s(x, t)
triggered by p and occurring in the plastic strain localization zone

The variable p accounts for accumulation and localization
of plastic strains, and our idea of devising (17), i.e. incorpora-
tion of p into the coupling function g, is to make s dependent
on p, thereby assuming that the fracture process is the result
of the accumulation of the ductile damage.

As shown in the following, due to (17) p enters the evo-
lution equation for s, thus already providing their implicit
relation. The explicit interaction between s and p (or rather
the influence of p upon s) is clarified in Appendix 1, using
an asymptotic (perturbation) analysis, and is shown to obey

s ∼ 1 − 4�

Gc
p�+

e (εe). (19)

The latter particularly means that, owing to (17)–(18), the
contribution of the plastic strains to the phase-field develop-
ment should be, at least, competitive with the contribution
of the elastic strains. In the numerical examples in Sect. 5,
we will observe that p takes even a dominating role over
�+

e , thus ’delaying’ the brittle-like fracture development and
enabling the desired plasticity-driven fracture initiation and
propagation mechanism, as depicted in Fig. 3.

The variational derivative of E� with respect to εe leads
to the equilibrium equation div σ = 0, where the stress takes
the form

σ (εe, s, p) := g(s, p)
∂�+

e (εe)

∂εe
+ ∂�−

e (εe)

∂εe
. (20)

For the current formulation, we assume the material obeys
J2-plasticity with linear isotropic hardening, thus Eq. (13)
holds. Moreover, the yielding function is defined as

f (σ , α, s, p) = √
3J2(σ dev) + tα ≤ 0, (21)

where J2(σ dev) is the second invariant of the deviatoric stress
tensor σ dev := σ − 1

3 tr(σ )I and tα is the hardening thermo-
dynamical force obtained from (16) and (13) as

tα := −∂E�

∂α
= −(σy + hα). (22)
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Assuming associative plasticity, the evolution equation for
the plastic strain εp and the internal hardening variable α are

ε̇p(σ , s, p) = λ̇
∂ f

∂σ
,

α̇ = λ̇
∂ f

∂tα
, (23)

where λ̇ is the plastic consistency factor. Note that these evo-
lution equations are the same of classical J2-plasticity, where
they automatically ensure satisfaction of the second law of
thermodynamics. The fact that the same evolution equations
can be used in the present model while still guaranteeing
thermodynamic consistency is demonstrated in Appendix
2. Loading and unloading conditions are governed by the
Kuhn–Tucker relations

λ̇ ≥ 0, f ≤ 0, λ̇ f = 0. (24)

The evolution equation for the crack phase-field reads

2�	s + 1 − s

2�
= g,s(s, p)

Gc
�+

e (εe),

where g,s = ∂g
∂s and with g as in (17) it turns into

2�	s + 1 − s

2�
= 2s2p−1

Gc
p�+

e (εe). (25)

As was already mentioned and as it can now be seen from
(25), the phase-field s is not only driven by the tensile part
of the elastic energy but it also depends on the introduced
plastic variable p. The explicit relation between s and p is
given by (19), see Appendix 1 for the derivation details.

The irreversibility of the crack phase-field during load-
ing/unloading is ensured by the introduction of the following
local history variable into (25)

He(x, t) := max
τ∈[0,t] �

+
e (εe(x, τ )), (26)

This represents themaximumpositive elastic energyobtained
in a loading process and stems from the work of Miehe and
co-workers on brittle fracture models [37]. Note that the
introduction of (26) also enables algorithmic decoupling of
the governing system of equations and the application of a
staggered approach,which is extremely robust for computing
phase-field models.

The systemof governing equations of the proposed elasto-
plastic ductile fracture model is summarized in Table 1.

The following Neumann and Dirichlet boundary condi-
tions apply

Table 1 Governing equations of the proposed elasto-plastic ductile
fracture model

div σ = 0 (a)

σ := (s2p + η)
∂�+

e (εe)

∂εe
+ ∂�−

e (εe)

∂εe
(b)

f = √
3J2(σ dev) − (σy + hα) ≤ 0 (c)

ε̇p = λ̇

√
3

2

σ dev

‖σ dev‖ , α̇ = λ̇ (d)

λ̇ ≥ 0, f ≤ 0, λ̇ f = 0 (e)

p := ε
p
eq

ε
p
eq,crit

(f)

2�	s + 1 − s

2�
= 2s2p−1

Gc
pHe (g)

Table 2 Governing equations of the elasto-plastic brittle fracturemodel

div σ = 0 (a)

σ := (s2 + η)
∂�+

e (εe)

∂εe
+ ∂�−

e (εe)

∂εe
(b)

f = √
3J2(σ dev) − (σy + hα) ≤ 0 (c)

ε̇p = λ̇

√
3

2

σ dev

‖σ dev‖ , α̇ = λ̇ (d)

λ̇ ≥ 0, f ≤ 0, λ̇ f = 0 (e)

2�	s + 1 − s

2�
= 2s

Gc
He (f)

u = ū on ∂�ū,

σ · n = t̄ on ∂�t̄ ,

∇s · n = 0 on ∂�,

(27)

where ū and t̄ are prescribed on ∂�ū and ∂�t̄ , respectively,
∂� = ∂�ū ∪ ∂�t̄ and ∂�ū ∩ ∂�t̄ = ∅. Finally, n is the
outward normal unit vector to the boundary.

Remark 1 Setting formally p ≡ 1 in (16) one recovers a
formulation similar to the one in [42], which we will term
elasto-plastic brittle fracture model. The corresponding gov-
erning system of equations is summarized in Table 2. The
boundary conditions (27) apply in this case as well.

Note that the evolution equation (f) is the same as (9),
which is valid for brittle fracture of elastic solids, where s is
driven only by the tensile part of the elastic stored energy. It
has no interaction with the plastic flow mechanism and thus
does not account for the plastic strain localization.

3.3 Generalization of the coupling function

The coupling function g(s, p) = s2p + η introduced above
can be generalized as follows

g(s, p) := s2p
m + η, (28)
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p
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p3

p
eq,crit

X0
p

X

X

eq

Fig. 4 The plastic variable pm for m = 1, 2, 3 as a function of the
equivalent plastic strain ε

p
eq

where m ∈ {1, 2, 3, ...}. The purpose of introducing an
additional parameter in g is to enable a greater flexibility
in controlling the ’speed’ of a ductile fracture mechanism.

Indeed, the increase of the order of p = ε
p
eq

ε
p
eq,crit

is expected to

slow down the accumulation of damage before reaching the
threshold value ε

p
eq,crit , that is when p < 1, see Fig. 4, and

to accelerate it when the threshold is exceeded (p > 1). The
effect of m is studied in some of the examples in Sect. 5.

4 Algorithmic aspects

4.1 Staggered solution strategy

Following the ideas of algorithmic decoupling by Miehe et
al. [37], we solve the weak formulations of equations (a) and
(g) from Table 1, as well as of (a) and (f) from Table 2, using
a staggered strategy. The strategy adopted for the proposed
model is slightly different from the one of brittle fracture
implementations, and is therefore illustrated in Figure 5.

At each pseudo-time/loading step, wemust solve theweak
counterparts of the momentum equation (a) and evolution
equation (g). Both equations involve the variables u, s, as
well as the internal plastic variables εp, α and the additional
variable p.We group these variables in two sets, set A includ-
ing u, εp (from which ε and εe can be computed) and α, and
set B including s and p.

First, the momentum equation (a) is solved for frozen set
B, to determine the new set A. Along with equation (a),
the evolution equations (d) are also solved while ensuring
conditions (c) and (e), using the return mapping algorithm
presented in Sect. 4.2. Using the updated elastic and plas-
tic strains, the variable p is computed and the phase-field
evolution equation (g) is solved for frozen A.

Note that there are different possible ways to group the
governing variables in the two sets A and B. The chosen one,

Load step   = 1 : Nstepl

Load step end

Staggered iter.    = 1 : Niteri

Staggered
iter.

converged?
TolE ,i

NO

YES

e p, ,

p, s

Newton–Raphson method
solve for i+1A

fr zeno : iB

Newton–Raphson method
solve for i+1B

fr zeno : i+1A

Fig. 5 Staggered solution strategy adopted for the proposed model

where p and εp are included in different sets, might appear
counter-intuitive but greatly simplifies the return mapping
algorithm presented in Sect. 4.2. We use the same imple-
mentation strategy for the model in Table 2, with the only
difference that, in this case, p is not present as additional
variable.

Finally, we comment on the convergence and the stop-
ping criterion of the staggered iterative process in Fig. 5.
We control the (monotonically decreasing) sequence of
energies {E�,i }, i = 1, 2, ...x and the iterative process is
stopped when the user-prescribed tolerance for the quantity
γ (E�,i ), i = 1, 2, ... is achieved. Herein, γ represents the
normalized energy- and number-of-iterations-related scales.
We refer to our recent paper [39] for further details.

4.2 Time integration

The time integration algorithm for the elasto-plastic consti-
tutive equations for the models of Tables 1 and 2 is briefly
presented as follows. The evolution equations of the plastic
variables in Tables 1(d) and 2(d) can be integrated with the
backward Euler scheme, obtaining

ε
p
n+1 = ε

p
n + 	λ

√
3

2
nn+1, αn+1 = αn + 	λ, (29)

with n = σ dev,n+1‖σ dev,n+1‖ and 	λ > 0 as the incremental plastic

multiplier. The subscripts (·)n and (·)n+1 define the values of
(·) at tn and tn+1, respectively. The discrete versions of the
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yielding and of the Kuhn-Tucker conditions read

f (σ n+1, αn+1) =
√
3J2

(
σ dev,n+1

) − (σy + hαn+1) ≤ 0

	λ ≥ 0, f (σ n+1, αn+1) ≤ 0, 	λ f (σ n+1, αn+1) = 0.

(30)

In order to solve (29) while satisfying (30), we adopt the clas-
sical elastic predictor and plastic corrector (return-mapping)
algorithm outlined in [52]. Given the elastic strain, plastic
strain and internal variables εen, ε

p
n and αn at the beginning

of the pseudo-time interval [tn, tn+1] and with the prescribed
incremental strain	ε for this interval, we consider an elastic
trial state obtained by freezing plastic flow (	λ = 0). For the
J2-plasticity model with linear isotropic hardening, the trial
deviatoric stress and the trial yielding condition are given by

σ tr
dev,n+1 = ĝ2με

e,tr
dev,n+1

f trn+1 =
√
3J2

(
σ tr
dev,n+1

)
− (σy + hαn) ≤ 0

where (·)tr denotes a trial quantity and ĝ = g(ŝ, p̂) (model in
Table 1) or ĝ = g(ŝ) (model in Table 2)with ŝ and p̂ as frozen
variables of the current staggered iteration. If f trn+1 ≤ 0 then
the process is purely elastic and the elastic trial state is the
solution. If, on the other hand, f trn+1 > 0, the trial stress
is not admissible, the process is elasto-plastic and a plastic
corrector step is needed. For the present case, the incremental
plastic multiplier can be obtained from the following scalar
equation having 	λ > 0 as the only unknown

√
3J2

(
σ tr
dev,n+1

)
− (σy + hαn) − h	λ − ĝ3μ	λ = 0.

With the solution 	λ at hand, the state variables are updated
as follows

ε
p
n+1 = ε

p
n + 	λ

√
3

2
ntrn+1, αn+1 = αn + 	λ,

where

ntrn+1 = σ tr
dev,n+1∥∥∥σ tr
dev,n+1

∥∥∥
,

and the final stress state σ dev,n+1 is the projection of the trial
stress onto the yield surface as

σ dev,n+1 = σ tr
dev,n+1 − 	λĝ2μ

√
3

2
ntrn+1.

The above return mapping closely resembles the standard
return mapping of J2-plasticity with linear isotropic harden-
ing from which it only differs for the presence of ĝ in some

of the equations. The same equations are obtained for the
models in Table 1 and Table 2, the only difference being in
the definition of ĝ. However, for the model of Table 1, the
above results are valid within a staggered implementation
where s and p are frozen while solving the momentum equa-
tion. Should we let p evolve with εp (i.e. should p belong
to group A in Figure 5), the return mapping would assume a
more complicated non-linear form, for which a local numer-
ical iterative solution would be needed.

5 Numerical examples

We now investigate through several examples the ability
of the proposed approach to capture representative aspects
of the fracture processes in ductile materials. In the first
two examples (an I-shaped specimen and an asymmetrically
notched specimen), we aim at illustrating the effect on the
numerical predictions of the proposed coupling between the
phase field and the equivalent plastic strain. Moreover, we
also assess the role of the critical equivalent plastic strain.
In the third example we investigate notched specimens with
two different notch radii, and test the ability of the model to
predict the experimentally observed influence of the notch
radius on the fracture pattern. In the subsequent single edge
tension/shear test we focus on the effect of the loading angle
on results. Finally, we illustrate for completeness two addi-
tional problems, namely a double notched specimen and a
compact tension specimen.

All numerical computations are performed within the
finite element framework using fully integrated 4-node
quadrilateral elements and assuming plain strain conditions,
with the material properties shown in Table 3. Displacement
controlled conditions are always assumed.We adopt the stag-
gered solution strategy presented in Sect. 4.1.

5.1 I-shaped specimen

To gain the first insight into the performance of themodel, we
analyze a tensile test on an I-shaped specimen, with the geo-
metric properties and boundary conditions shown in Fig. 6.
A vertical displacement is applied to the top edge, which

Table 3 Material parameters used in the numerical simulations [20]

Properties Material I Material II

Shear modulous 27,280 MPa 70,300 MPa

Bulk modulus 71,660 MPa 1,36,500 MPa

Yield stress 345 MPa 443 MPa

Hardening modulus 250 MPa 300 MPa

Fracture toughness 9.31 MPa mm 20.9 MPa mm
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is restrained horizontally, whereas the bottom edge is com-
pletely fixed. The material parameters are those of Material I
in Table 3, moreover we assume �=0.2mm and ε

p
eq,crit=10%.

Auniformmeshwith 8847 quadrilateral elements is first used
in order to eliminate anymesh-related effects. For specimens

140

60

40

r=10

u

20

Fig. 6 I-shaped specimen. Geometry and boundary conditions [31].
Dimensions in mm

in plane strain conditions, the experimental evidence shows
that the crack forms in the middle of the specimen with an
inclination of about±450 with respect to the major principal
stress direction [54].

First, we compare the predictions of the proposed model
with those of its uncoupled counterpart. For both models,
Fig. 7a shows the equivalent plastic strain field at incipient
cracking, whereas Fig. 7b–e illustrate the evolution of the
crack phase field from incipient cracking to complete fail-
ure. The stages indicated in the diagram correspond to the
points labeled accordingly in the load–displacement curves
of Fig. 8.With the uncoupledmodel, the first crack appears at
one of the notches, i.e. at the location of the elastic stress con-
centration, and then gradually propagates towards the center.
Conversely, according to the proposedmodel the evolution of
the crack phase field is driven by the plastic strain localization
which takes place in the middle of the specimen. Therefore,
this is also the location of the first crack. As the localized
damage band bifurcates into two inclined branches, the crack
propagates by following one of the two directions with a con-
sequent loss of symmetry. Failure occurs when the boundary
of the specimen is reached. Unlike those of the uncoupled
model, predictions of the proposed model correctly repro-
duce the experimental evidence described in [54].

Next, we assess the effect of the critical equivalent plastic
strain on the model predictions. Here we refine the mesh in
the central region of the specimen where crack propagation

Fig. 7 I-shaped specimen. a
Equivalent plastic strain field at
the onset of cracking and b–e
crack phase field at various
fracture stages (see labels in Fig.
8). Red corresponds to damaged
and blue to undamaged material.
(Color figure online)
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Fig. 8 I-shaped specimen. Load–displacement curves

is expected, so that the mesh now contains 10,499 quadrilat-
eral elements. The effect of ε

p
eq,crit on the crack path and on

the load–displacement curve is shown respectively in Figs.
9 and 10. It can be observed that a change in ε

p
eq,crit does

not affect the fracture process in terms of crack path but
influences the load bearing capacity. Finally, the influence
of the length scale parameter � on crack path and load–
displacement behavior is shown respectively in Figs. 11 and
12 for ε

p
eq,crit=10 %.

5.2 Asymmetrically notched specimen

Wenow examine the asymmetrically notched specimen illus-
trated in Fig. 13. The top edge is restrained horizontally
and displaced vertically, whereas the bottom edge is fixed.
The material parameters are those of Material I in Table 3,

Fig. 9 I-shaped specimen.
Effect of ε

p
eq,crit on the fracture

process. a–d Crack phase field
at various fracture stages (see
labels in Fig. 10) and e
equivalent plastic strain field at
the final stage
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Fig. 10 I-shaped specimen. Effect of εpeq,crit on the load–displacement
curve
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0.08
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(b1) (b2)(a1) (a2)

= 0.25

p
eq

= 0.225

= 0.2

Fig. 11 I-shaped specimen. Effect of � (mm) on the fracture process.
a1–c2 Crack phase field at the initial and final fracture stages and d
equivalent plastic strain field at the final stage

in addition to �=0.08 mm and ε
p
eq,crit=10 %. The spatial

discretization of the model comprises 10,800 quadrilateral
elements, with refinement in the central region between the
notches where the crack is expected to form.

The evolution of the equivalent plastic strain and crack
phase fields is provided in Fig. 14 for both the uncoupled
and the proposed models. As expected, the equivalent plas-
tic strain is maximum at both notch roots and localization
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= 0.2

= 0.25
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Fig. 12 I-shaped specimen. Effect of � (mm) on the load–displacement
curve

Fig. 13 Asymmetrically
notched specimen. Geometry
and boundary conditions.
Dimensions in mm
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Fig. 14 Asymmetrically notched specimen. a1–c1 Equivalent plastic
strain field and a2–c2 crack phase field at various fracture stages

branches form between the notches at an angle of about 45◦
dictated by the specific geometry. Both models are able to
predict crack initiation at the notches. However, during the
subsequent stages, the standard model predicts the initial
cracks to propagate sub-horizontally towards the center of
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Fig. 15 Asymmetrically notched specimen. Effect of ε
p
eq,crit on the

fracture process. a1–c1 Equivalent plastic strain field and a2–c2 crack
phase field at various fracture stages (see labels in Fig. 16)
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Fig. 16 Asymmetrically notched specimen. Effect of ε
p
eq,crit on the

load–displacement curve

the specimen, leading to a final crack pattern which deviates
from the regionof plastic strain localization.Conversely,with
the proposed model the initial cracks propagate within the
plastic strain localization band and eventually merge leading
to complete failure.

The effect of the critical equivalent plastic strain on
results in terms of crack path and load–displacement curve
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Fig. 17 Asymmetrically notched specimen. Effect of the order m on
the fracture process. a1–c1 Equivalent plastic strain field and a2–c2
crack phase field at various fracture stages (see labels in Fig. 18)
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Fig. 18 Asymmetrically notched specimen. Effect of the order m on
the load–displacement curve

is evaluated respectively in Figs. 15 and 16. As for the pre-
vious example, the crack path is not appreciably influenced,
whereas the fracture branch of the load–displacement curve
corresponds to increasing values of displacement for increas-
ing ε

p
eq,crit . Additionally, the role played by the exponentm in
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Fig. 19 Asymmetrically
notched specimen. Effect of the
mesh size (5459, 10,800 and
15,394 elements) on the fracture
process. (a-c)(1-2) Crack phase
field at the initial and final
fracture stages (see labels
in Fig. 20)
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Fig. 20 Asymmetrically notched specimen. Effect of the mesh size
(5459, 10,800 and 15,394 elements) on the load–displacement curve
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Fig. 21 Notched specimens. Dimensions in mm

the coupling term pm is investigated in Figs. 17 and 18 with
ε
p
eq,crit=12 %. As the order m increases, the inclination of
the incipient crack pattern increasingly follows the direction
of the plastic strain localization band, whereas the fracture
branch of the load–displacement curve becomesmore abrupt.
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Fig. 22 Notched specimens. Effect of the notch radius on the fracture
process. a1–c1 Equivalent plastic strain field and a2–c2 crack phase
field at various fracture stages (see labels in Fig. 23)
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Fig. 23 Notched specimens. Effect of the notch radius on the load–
displacement curves
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Results for m = 2 and m = 3 are however quite similar.
Finally, Fig. 19 focuses on the effect of the mesh size on the
fracture pattern, with the corresponding load–displacement
curves reported in Fig. 20. For all discretizations the model
delivers similar initial and final crack shapes, however the
finest mesh resolves the crack profile most accurately. As
visible in Fig. 20, the decreasing branch appears smoother
for the finest discretizations. Convergence of the results as
the mesh is refined is also evident.

5.3 Notched specimens

In this example, we aim at reproducing the experimental evi-
dence that, in tensile tests on notched specimens, the crack
initiates at the notch root or in the middle of the specimen

5 5

5

5

u

Fig. 24 Single-edge notched tension/shear test. Geometry and bound-
ary conditions [53]. Dimensions in mm

depending on the notch radius [56]. We thus examine two
notched specimens with different notch radii and investigate
the failure mechanisms predicted by the model. The geome-
try and boundary conditions of the problem are illustrated in
Fig. 21, whereas the material parameters are those of Mate-
rial I in Table 3, as well as �=0.08 mm and ε

p
eq,crit=10 %.

A discretization with 10,713 (specimen with notch radius of
5 mm) and 10,142 (specimen with notch radius of 2.5 mm)
elements is used with local mesh refinement between the
notches.

Figure 22 reports the evolution of the equivalent plas-
tic strain field and of the crack phase field at three loading
stages whereas the load–deflection curves are given in Fig.
23. For a notch radius of 5 mm, the model predicts crack
initiation at the center of the specimen, followed by forma-
tion of two shear bands at an angle of about ±45◦ to the
loading direction and by crack propagation along one of the
two directions. Conversely, for the specimen with the small-
est notch radius the crack initiates at the notch roots, where
the largest plastic strain occurs. Subsequently, we observe
an unsymmetric crack propagation from the notches inward,
and at the same time the initiation of an additional inclined
crack slightly offset from the middle of the specimen. Merg-
ing of all these cracks leads to final failure. Interestingly, the
different crack pattern for the two notch radii is associated
to a significantly different load–displacement behavior, the
specimen with the larger notch radius failing more abruptly
than the other one.

5.4 Single-edge notched tension/shear test

In [20,53,57,58] the single-edge notched test is investigated
in detail, both experimentally and numerically, for different

Fig. 25 Single-edge notched
tension/shear test. β = 900. a–c
Equivalent plastic strain field
and crack phase field at various
fracture stages (see labels in
Fig. 28)
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Fig. 26 Single-edge notched
tension/shear test. β = 00. a–c
Equivalent plastic strain field
and crack phase field at various
fracture stages (see labels in
Fig. 28)
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Fig. 27 Single-edge notched
tension/shear test. β = 450. a–c
Equivalent plastic strain field
and crack phase field at various
fracture stages (see labels in
Fig. 28)
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values of the loading angle β (Fig. 24). Experiments [57] and
numerical simulations [53] agree in predicting mode-I crack
growth for β = 30◦ ≤ β ≤ 90◦ and mode-II for β = 15◦
and β = 0◦.

Here we perform the same investigation to compare
predictions of the proposed phase-field model with the
aforementioned results. The geometric properties and bound-
ary conditions of the specimen are shown in Fig. 24.
The material parameters are those of Material II in Table
3, moreover �=0.05 mm and ε

p
eq,crit=10 %. Loading is

applied at three different angles (namely, 90◦, 0◦ and 45◦)
to obtain different modes of fracture. The spatial dis-
cretization contains 10,600 (β = 90◦), 10,262 (β = 0◦)

and 19,256 (β = 45◦) quadrilateral elements with a
refinement in the region where the crack is expected to
form.

Figures 25, 26 and 27depict the evolution of the equivalent
plastic strain field and of the corresponding crack phase field
at several stages of loading. In pure mode I (β = 90◦) as well
as in mode-II (β = 0◦) the crack propagates horizontally. A
bending upwards of the crack from the initial tip occurs for
a loading angle β = 450. A phenomenon that is observed in
these simulations is that the plastic strain localization takes
place mainly in front of the crack tip which results in a stable
crack propagation. The load–displacement curves are given
in Fig. 28 for all loading angles.
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Fig. 28 Single-edge notched tension/shear test. Effect of the loading
angle on the load–displacement curve
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Fig. 29 Double notched specimen.Geometry and boundary conditions
[20]. Dimensions in mm
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Fig. 30 Double notched specimen. a–d Equivalent plastic strain field and crack phase field at various fracture stages (see labels in Fig. 31)
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Fig. 31 Double notched specimen. Effect of p on the load–
displacement curve
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Fig. 32 CT specimen. Geometry and loading conditions [55]. Dimen-
sions in mm

5.5 Double notched specimen

In this example, we model a double notched specimen with a
vertical displacement imposed to the top edge and left edge.

These edges are both restrained horizontally, whereas the
bottom and right edges are fixed, as illustrated in Fig. 29. In
the context of ductile fracture, the same problem has been
addressed in [20] using a non-local damage model for the
initial continuum damage phase, followed by a discontinu-
ous crack propagation phase predicted through a remeshing
strategy. Results showed the development of a plastic shear
band diagonally across the specimen, which in turn results in
a curved crack trajectory which initiates at both the notches
and propagates towards the center of the specimen where the
two crack branches merge (Fig. 30).

Thematerial parameters are those ofMaterial II in Table 3,
also it is �=0.03 mm and ε

p
eq,crit=25 %. The adopted dis-

cretization contains 10,300 quadrilateral elements with mesh
refinement in the expected crack propagation region.

Figure 30 shows the evolution of equivalent plastic strain
and the corresponding crack phase field at several stages of
fracture process. The load-deflection curves are shown in Fig.
31. The obtained behavior is in very good agreement with the
results in [20].

5.6 Compact tension (CT) specimen

Finally, we model crack initiation and propagation for a CT
specimen. The geometry and boundary conditions are shown
in Fig. 32. The specimen contains an horizontal notch at its
mid-height, and load is applied by a top pin which is dis-
placed vertically, whereas the lower pin is fixed. Thematerial
parameters are those of Material I in Table 3, additionally
�=0.09 mm and ε

p
eq,crit=5 %. The mesh comprises 10,097

quadrilateral elements with refinement in the areas where
the crack is expected to form.

The results are shown inFigs. 33 and 34. It can be observed
as the plastic deformations concentrate ahead of the notch
(and later of the crack) tip, formingwhat can be considered as
a plastic hinge. Accordingly, an horizontal crack propagates
inward from the notch tip and, at the last stage, a secondary

Fig. 33 CT specimen. a–d
Equivalent plastic strain field
and crack phase-field at various
fracture stages (see labels in
Fig. 34)
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Fig. 34 CT specimen. Load–displacement curve

crack starts from the left edge of the specimen until failure
results.

6 Conclusions

In this paper,we proposed a newphase-fieldmodel for ductile
fracture in elasto-plastic solids, within the quasi-static kine-
matically linear regime. The distinct feature of the model is
that it couples the evolution of the crack phase field with
the accumulation of the plastic strains in a thermodynami-
cally consistent way. As demonstrated by several numerical
examples, this coupling enables the formulation to predict
the initiation of fracture in the regions of plastic strain local-
ization, in agreement with the experimental evidence. As
a result, the model is able to predict several features of
the phenomenology of quasi-static ductile fracture, includ-
ing the shape and location of the crack pattern in a tensile
specimen, the role played by the notch radius in notched
specimens, and the change in fracture mode with the incli-
nation of the applied load. With respect to brittle phase-field
models, the proposed ductile fracture model includes two
additional parameters, a threshold equivalent plastic strain
and an exponent in the coupling function, which can facili-
tate the quantitative prediction of test results.While requiring
further investigations, including e.g. the extension to the
three-dimensional large deformation framework, the study
of volumetric locking effects and a thorough experimental
validation, the proposedmodel appears a very promising tool
for the investigation of ductile fracture within the phase-field
framework. Overall, this framework seems to be the ideal
candidate to unify the prediction of diffuse ductile damage
and (within the diffusive approximation) of discrete crack
propagation, thus overcoming the difficulties of many other
approaches.

Acknowledgments This research was funded by the European
Research Council, ERC Starting Researcher Grant INTERFACES,
Grant Agreement N. 279439.

Appendix

Perturbation analysis for the s and pmutual interaction

One of the most important aspects in our phase-field model
of elasto-plastic ductile fracture is the coupling function
g(s, p) := s2p. Introduction of the exponent p, which
accounts for the accumulation and localization of plastic
strains, into the classic brittle-case function g(s) = s2 allows
us to let s explicitly depend also on the plastic energy density
�p, and not only on the elastic one, �e. This can be formally
seen from the corresponding evolution equation for s (25).
More importantly, we show below that the evolution of s in
this case will mainly be governed by p ∼ �p rather than
�e, thus delaying the brittle-like fracture development and
enabling the desired plastic-driven fracture mechanism.

Without loss of generality, we restrict ourselves to the pure
tensile loading situation so that no split of the elastic energy
density function �e is required and the evolution equation
for s is given by

−4�2	s + s + 4�

Gc
�e(ε)ps2p−1 = 1. (31)

Equation (31) is a non-linear partial differential equation
whose explicit analytical solution for s is out of reach: one can
only conclude that with p ≡ 0 (zero plastic strains), a trivial
solution is s = 1 (no phase-field development occurs).With a
suitable rescaling of variables (i.e. non-dimensionalization),
one can obtain a dimensionless version of (31) containing
a small (perturbation) parameter. An approximate analyti-
cal solution of such perturbed non-linear equation can then
be constructed explicitly, establishing a relation between s
and p.

Let L be the maximal macroscopic dimension of the con-
sidered body. We introduce the following non-dimensional
quantities:

(x̄, ȳ) :=
( x

L
,
y

L

)
, ū := u

A
, C̄ := C

E
, �̄ := �

1
2 L

,

(32)

where A > 0 is a constant whose particular choice will be
motivated below. The scaled strain tensor ε̄ = 1

2 (∇̄ ū+∇̄ ūT ),
with ∇̄ denoting the gradient w.r.t. the non-dimensional vari-
ables (x̄, ȳ), relates to the actual strain tensor ε as
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ε(u) = A

L
ε̄(ū), (33)

yielding for �e the relation

�e(ε) = 1

2
Cε2 = 1

2
EC̄

(
A

L

)2

ε̄2 = E

(
A

L

)2

�̄e(ε̄).

(34)

Also, we set s̄ := s so that 	s = 1
L2 	̄s̄, with 	̄ standing for

the Laplace operator w.r.t. (x̄, ȳ). Finally, a non-dimensional
plastic strain variable is defined as εp := εp leading to the
corresponding definition of p̄:

p̄ := ε
p
eq

ε
p
eq,crit

, ε
p
eq(t) :=

√
2

3

∫ t

0

√
ε̇p : ε̇p dτ. (35)

Note that the denominator remains the same as in the defin-
ition of p.

Using (32)–(35) we turn (31) into

−�̄2	̄s̄ + s̄ + 2�̄L

Gc
E

(
A

L

)2

�̄e(ε̄) p̄s̄2 p̄−1 = 1.

In the above, the scaling constant A can be chosen to provide
2L
Gc

E
( A
L

)2 = 1, that is, A :=
√

GcL
2E , and the dimensionless

counterpart of (31) we end up with reads as

−�̄2	̄s̄ + s̄ + �̄�̄e(ε̄) p̄s̄2 p̄−1 = 1. (36)

In what follows, we set γ := �̄ and also drop the bars over
all remaining variables in (36). This yields

−γ 2	s + s + γ�e(ε)ps2p−1 = 1, (37)

where, by definition, γ is a small (perturbation) parameter,
that is, 0 < γ � 1.

According to the perturbation analysis framework [59],
an asymptotic expansion of s is taken in a form of a power
series in γ :

s = s0 + γ s1 + γ 2s2 + · · · , (38)

what yields for 	s and s2p−1 the expansions

	s = 	s0 + γ	s1 + γ 2	s2 + · · · , (39)

and

s2p−1 = s2p−1
0 + γ (2p − 1)s2p−2

0 s1

+ γ 2(2p − 1)s2p−3
0

(
s0s2 + s21 (p − 1)

)
+ · · · ,

(40)

respectively. In (39) and (40), only the terms up to order
O(γ 2) have been retained, consistently with the assumed
expansion (38).We now substitute (38)–(40) into the govern-
ing equation (37) and collect the coefficients of like powers
of γ to obtain:

s0 + γ
(
s1 + p�es

2p−1
0

)

+ γ 2
(
−	s0 + s2 + p(2p − 1)�es

2p−2
0 s1

)
+ · · · = 1.

(41)

Equating the coefficients of each power of γ to zero we
’extract’ the equations for s0, s1 and s2. The corresponding
solutions are

s0 = 1, s1 = −p�e, s2 = p2(2p − 1)�2
e , (42)

and, due to (38), we finally obtain

s = 1 − γ p�e + γ 2 p2(2p − 1)�2
e + · · · , (43)

to be treated as an approximate analytical solution of equation
(37). Note that with γ → 0, equation (37) reduces to s = 1.
Sending γ to zero also in (43), we recover the same result,
i.e. s = 1, as expected. Recall also that setting p = 0 in (37),
the trivial solution of the reduced equation is s = 1. Similar
result is obtained while substituting p = 0 in (43).

From (43) the influence of p on the phase-field s can be
grasped. In the linear elastic regime (noplastic strains, p = 0)
and at the beginning of the plastic regime (plastic strains are
still negligibly small, 0 < p � 1), the evolution of s is
minor even with a (possibly large) non-zero contribution of
�e. In other words, the presence of p in g(s, p) = s2p delays
the brittle-like fracture formation. This is in a contrast to the
brittle phase-field formulation, when the use of g(s) = s2

results in s depending solely on�e (expansion (43) with p ≡
1) meaning that the crack development occurs independently
of the evolution of the plastic strains.

Proof of thermodynamic consistency

In this Appendix, the governing equations of the proposed
model are rewritten in the framework of the principle of vir-
tual power as developed by Gurtin, see [60,61], and their
thermodynamic consistency is investigated.

Kinematics

The kinematics is based on the decomposition of the dis-
placement gradient into elastic and plastic components∇u =
He + Hp. Correspondingly, we define the elastic and plastic
strain tensors as
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εe = 1

2

(
He + HeT

)
εp = 1

2

(
Hp + HpT

)
(44)

so that the total strain tensor is given by ε = εe+εp. Finally,
we assume thatHp is purely deviatoric, i.e. trHp = trεp = 0.

Balance equations

Let us introduce the internal power in the form

I (P) =
∫

P

σ e : Ḣe dv +
∫

P

σ p : Ḣp dv +
∫

P

ξ · ∇ ṡ dv

+
∫

P

ζ · ṡ dv (45)

where σ e and σ p are respectively an elastic stress, power-
conjugate to Ḣe, and a plastic stress, power-conjugate to Ḣp.
Since Hp is deviatoric, we may assume without loss of gen-
erality that σ p is deviatoric, i.e. that trσ p = 0. Moreover, ξ
is the microscopic stress power-conjugate to ∇ ṡ, and ζ is the
microscopic internal body force power-conjugate to ṡ, where
s is the crack field parameter, 0 ≤ s ≤ 1. The integration
domain is any subregion P of the body under consideration.
The external power is given by

W (P) =
∫

∂P

t (n) · u̇ da +
∫

P

b · u̇ dv

+
∫

∂P

χ (n) ṡ da +
∫

P

γ ṡ dv (46)

where t is the traction vector on the elementary area da of
the surface of P, ∂P , with outward unit normal n, b is the
body force,χ and γ are respectively themicroscopic external
traction and themicroscopic external body force, both power-
conjugate to ṡ. Considering a generalized virtual velocity

V =
(
ũ, H̃e, H̃p, s̃

)
(47)

satisfying the kinematical constraints above, the principle of
virtual power reads

∫

P

σ e : H̃e dv+
∫

P

σ p : H̃p dv+
∫

P

ξ · ∇ s̃ dv+
∫

P

ζ · s̃ dv

=
∫

∂P

t (n) · ũ da+
∫

P

b · ũ dv+
∫

∂P

χ (n) s̃ da+
∫

P

γ s̃ dv

(48)

for any subregion P of the body and any V . Frame invariance
implies that σ e is symmetric, therefore σ e : H̃e = σ e : ε̃e.

ApplyingEq. (48)withV = (ũ,∇ ũ, 0, 0) leads to themacro-
scopic force balancedivσ+b = 0 and to the expression of the
macroscopic traction t (n) = σ ·n, wherewehave introduced
σ := σ e as the (standard) Cauchy stress. Considering next

a virtual velocity V =
(
0,−H̃p, H̃p, 0

)
delivers the plastic

microscopic force balance [61], σ dev = σ p, where σ dev is
the deviatoric component of the stress tensor. Note that thus
also σ p is symmetric, therefore σ p : H̃p = σ p : ε̃p. Finally,
insertion in Eq. (48) of a virtual velocity V = (0, 0, 0, s̃)
yields

∫

P

ξ · ∇ s̃ dv +
∫

P

ζ · s̃ dv =
∫

∂P

χ (n) s̃ da+
∫

P

γ s̃ dv. (49)

Through the divergence theorem, Eq. (49) leads to the phase-
field microscopic force balance

divξ − ζ + γ = 0 (50)

and to the expression of the phase-field microscopic traction
χ (n) = ξ · n.

As a consequence of the above, and if we further introduce
the codirectionality constraint valid for J2 plasticity, ε̇p

‖ε̇p‖ =
np with np = σ dev‖σ dev‖ , the power balance takes the final form
∫

P

σ : ε̇e dv +
∫

P

τ pėp dv +
∫

P

ξ · ∇ ṡ dv +
∫

P

ζ · ṡ dv

=
∫

∂P

t (n) · u̇ da +
∫

P

b · u̇ dv+
∫

∂P

χ (n) ṡ da+
∫

P

γ ṡ dv,

where

τ p := ‖σ dev‖ , ėp := ∥∥ε̇p
∥∥ ≥ 0, ep (t) =

t∫

0

∥∥ε̇p
∥∥ dτ

(51)

Dissipation inequality and constitutive laws

Based on the formulation in Sect. 1, the dissipation inequality
can be written (in local form) as

Ė� − σ : ε̇e − τ pėp − ξ · ∇ ṡ − ζ · ṡ = −D ≤ 0 (52)

with E� as the free energy and D as the dissipation rate, both
per unit volume. Let us consider the following form of the
free energy

E� = E�

(
εe, ep, α, s,∇s

)
. (53)

This postulated form contains the “standard” dependencies
on the elastic strain εe and on the hardening variable α, plus
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further dependencies on the phase field and on its gradient,
as well as on ep. The latter is a scalar measure of plastic strain
accumulation defined in Eq. (51). The dependency of the free
energy on ep is needed to realize a coupling between the evo-
lution of the phase-field parameter and the accumulation of
plastic strains, and is an essential ingredient of the proposed
model. Substitution of Eq. (53) in the dissipation inequality
(52) leads to

(
∂E�

∂εe
− σ

)
: ε̇e +

(
∂E�

∂ep
− τ p

)
ėp + ∂E�

∂α
α̇

+
(

∂E�

∂s
− ζ

)
ṡ +

(
∂E�

∂∇s
− ξ

)
· ∇ ṡ = −D ≤ 0. (54)

Well-known arguments lead immediately to the elastic
stress-strain relationship

σ = ∂E�

∂εe
. (55)

Additional consequences can be driven by applying the
inequality individually to the group of terms related to the
phase field

(
∂E�

∂s
− ζ

)
ṡ +

(
∂E�

∂∇s
− ξ

)
· ∇ ṡ ≤ 0. (56)

From (56) follow the phase-field microscopic constitutive
equations

ξ = ∂E�

∂∇s
, ζ = ∂E�

∂s
. (57)

Substituting eqs. (57) into (50) leads to the phase-field evo-
lution equation

div

(
∂E�

∂∇s

)
− ∂E�

∂s
= 0, (58)

where we have further assumed γ = 0.
As a result of Eq. (55) and inequality (56), and introducing

the thermodynamic force power-conjugate to α̇,

tα := −∂E�

∂α
, (59)

the following reduced dissipation inequality is obtained from
(54)

D := τ pėp + tαα̇ − ∂E�

∂ep
ėp ≥ 0. (60)

Note that, being ėp ≥ 0, inequality (60) can be further
reduced to its “classical” version

τ pėp + tαα̇ ≥ 0, (61)

(whose satisfaction is ensured by the “classical” flow rule
and hardening evolution equation of J2-plasticity used in this
work) provided that the following inequality holds

∂E�

∂ep
≤ 0. (62)

From the specific choice of the free energy in Eq. (16) fol-
lows ∂E�

∂ep = ∂g
∂ep �

+
e (εe) and therefore inequality (62) holds

[and the reduced dissipation inequality takes the form (61)]
provided that

∂g

∂ep
≤ 0. (63)

A possible specific choice of degradation function g com-
plying with (63) is the following

g
(
s, ep

) = s2e
p/epcrit + η (64)

with coincides with the one in Eq. (17) by taking

epcrit =
√
3

2
ε
p
eq,crit (65)

This proves the thermodynamic consistency of the proposed
model.
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