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Abstract Since many years the relevance of fibre-rein-
forced polymers is steadily increasing in fields of engineer-
ing, especially in aircraft and automotive industry. Due to
the high strength in fibre direction, but the possibility of
lightweight construction, these composites replace more and
more traditional materials as metals. Fibre-reinforced poly-
mers are often manufactured from glass or carbon fibres
as attachment parts or from steel or nylon cord as force
transmission parts. Attachment parts are mostly subjected
to small strains, but force transmission parts usually suffer
large deformations in at least one direction. Here, a geomet-
rically nonlinear formulation is necessary. Typical examples
are helicopter rotor blades, where the fibres have the func-
tion to stabilize the structure in order to counteract large
centrifugal forces. For long-run analyses of rotor blade defor-
mations, we have to apply numerically stable time integrators
for anisotropic materials. This paper presents higher-order
accurate and numerically stable time stepping schemes for
nonlinear elastic fibre-reinforced continua with anisotropic
stress behaviour.
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1 Introduction

This paper is an extension of theworks [1] and [2] to a special
anisotropic material class, the transversally isotropic mate-
rial. The base for the investigated time-stepping schemes is
the time finite element approach proposed in [3] and [4],
in which higher-order accurate time-stepping schemes are
developed systematically with the focus on numerical stabil-
ity in the presence of stiffness combined with large rotations
for computing dynamical problems. In the present work,
these advantages over conventional time-stepping schemes
are combined with highly nonlinear anisotropic material
behavior. The presented integrators preserve all first inte-
grals of a free motion of a conservative continuum, i.e. the
total linear and the total angular momentum as well as the
total energy, which is advantaguous because it guarantees
that the discrete configuration vector is embedded in the
right solution space [5]. In order to guarantee the preser-
vation of the total energy, the transient approximation of the
anisotropic stress tensor has to be enhanced. First, the so-
called continuous Galerkin (cG) method in time is used for
designing higher-order accurate time integration schemes,
which is a common approach (compare [1,6–8] and [9]). In
the case of stiff nonlinear elastodynamics, these total energy
and momentum conserving time-stepping schemes have bet-
ter stability properties (see [10] and [11], for instance), which
is ideal for medium and long term calculations. Furthermore,
the potential of these integrators is demonstrated for example
in [12], that includes an enhancement to coupled thermo-
mechanical problems.

A common method to enhance the conventional integra-
tors, which is also used in this paper, is to replace an ordinary
derivative with a conserving discrete derivative (see, for
example, [10,13,14] and [15]). In order to create anisotropic
material behaviour, the starting point is the definition of a
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free energy density function that depends on a certain strain
measure, and additionally on so-called structural tensors (cf.
[16–22] and references therein for a detailed discussion),
which represent the fibre directions of the fibre reinforced
material. In general, polyconvex free energy density func-
tions arewell suited for these problems (cf. [23,24] and [18]),
and are used in several practical fields of structuralmechanics
(see, for example, [25,26] and [27]).

In the following, the equations of motion of the gener-
alized problem in Hamitonian formulation are presented.
Then, the description of the anisotropic material behav-
iour based on polyconvex free energy density functions
is shown. Subsequently, a finite element discretization in
space and time for dynamical problems based on non-
linear anisotropic elastic continua is summarized. Both,
conventional momentum-conserving and enhanced energy-
momentum conserving time stepping schemes are exhibited,
and compared by analysing two representative numerical
examples.

2 The dynamical problem in Hamiltonian
formulation

The presented time discretization implies amathematical for-
mulation of the considered dynamical problemwith ordinary
differential equations of first order. Besides a formulation in
the Lagrangian phase space using the generalized velocity
vector v = q̇ as independent variable, there exists the Hamil-
tonian phase space using the generalized momentum vector
p. Since the latter method relates the total linear momen-
tum directly with the time-stepping scheme, the Hamil-
tonian formulation is advantagous for structure-preserving
time-stepping schemes. Note that this advantage is further
exploited using variational time integrators (see [28] and ref-
erences therein), which realise a time-discrete Legrendre
transformation, called position-momentum form, making
time-stepping schemes momentum conserving, which do
usually not conserve momenta as the Lobatto-quadrature-
based trapezoidal rule.

2.1 Equations of motion

In general, semi-discrete nonlinear elastodynamics describe
motions of a finite set of material pointsB, which are placed
in the Euclidean space E

ndim , usually modelled by the real
coordinate spaceRndim . In a continuousmechanical structure,
the material points are finally represented by the spatial finite
element nodes.

Let us consider a set B̄ of npoi material points, which
are arranged in a configuration Bt at a given time t . Every
material point in this configuration is specified by its position
vector qA with A = 1, . . . , npoi. Assuming a free motion of

the mechanical structure, the number of degrees of freedom
reads ndof = ndim · npoi. The vector q = (q1, . . . ,qnpoi) ∈
R
ndof denotes the coordinate vector of the configuration.
We suppose in this work conservative internal forces due

to elastic deformations of a mechanical structure, which is
derived from a internal potential energy V int(q), having the
gradient

∇qV
int(q) = Q(q)q (1)

with a nonlinear symmetric stiffnessmatrix and a block struc-
ture that reads

Q(q) = Q(q) ⊗ Indim (2)

where

Q =
⎡
⎢⎣
Q11 . . . Q1npoi

...
...

Qnpoi1 . . . Qnpoinpoi

⎤
⎥⎦ (3)

Here, the matrix Indim denotes the ndim × ndim identity
matrix, and the symbol ⊗ designates the direct matrix prod-
uct.

We refer to the vector q̇ as the velocity vector of the config-
uration, where the superimposed dot denotes differentiation
with respect to time. The kinetic energy T of the configura-
tion is then given as the quadratic form

T (q̇) = 1

2
q̇TMq̇ (4)

with respect to the velocity vector. The non-singular symmet-
ric mass matrix also possesses a block structure that takes the
form

M = M ⊗ Indim (5)

where

M =
⎡
⎢⎣
M11 . . . M1npoi

...
...

Mnpoi1 . . . Mnpoinpoi

⎤
⎥⎦ (6)

denotes the corresponding structure matrix. Neglecting con-
servative external forces, the Lagrangian L(q, q̇) = T (q̇) −
V int(q) of this dynamical problem is equal to the difference
between the kinetic energy T (q̇) and the internal potential
energy V int(q). The corresponding generalized momentum
vector p = (p1, . . . ,pnpoi) ∈ R

ndof of the material points is
defined by

p = ∇q̇L(q, q̇) = Mq̇ (7)
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The Hamiltonian H follows from the Legendre transforma-
tion of the Lagrangian L with respect to the velocity vector
as H(q,p) = p · q̇(p) − L(q, q̇(p)). Hence, replacing q̇ in
the Hamiltonian, H is identical with the total energy of the
configuration, given by

H(q,p) = T ∗(p) + V int(q) (8)

where

T ∗(p) = 1

2
pTM−1p (9)

denotes the conjugate kinetic energy with respect to the gen-
eralized momentum vector. The matrix M

−1 denotes the
inverse mass matrix, which also has a block structure of the
form

M
−1 = M−1 ⊗ Indim (10)

with

M−1 =

⎡
⎢⎢⎣
M inv

11 . . . M inv
1npoi

...
...

M inv
npoi1

. . . M inv
npoinpoi

⎤
⎥⎥⎦ (11)

where M inv
AB symbolize an entry of the inverse mass matrix.

Using Lagrange- D’Alembert’s principle in Hamiltonian
form, we find the equations of motion

q̇ = ∂H

∂p
= M

−1p (12)

ṗ = −∂H

∂q
+ fnc = −Q(q)q + fnc (13)

in first order form, where the vector fnc = (f1nc, . . . , f
npoi
nc ) ∈

R
ndof includes all non-conservative external forces that act

on the material points. In this paper, the vector fnc includes
non-conservative explicitly time-dependent forces.

Combining the generalized coordinates and generalized
momenta in the state vector z = [q,p]T ∈ R

2ndof , the equa-
tions of motion can be written as the following compact
system of first order ordinary differential equations:

ż = J∇zH(z) + fz (14)

where

J =
[
0 1
−1 0

]
⊗ Indof and fz =

[
0
fnc

]
∈ R

2ndof (15)

denotes the symplectic unit matrix and the force vector in the
Hamiltonian phase space, respectively.

Remark 1 Considering a continuum body as in this work,
the total angular momentum balance principle renders the
symmetry of the second Piola–Kirchhoff stress tensor S
(see [16]). After a spatial finite element discretization as in
Sec. 4.1, the total angular momentum balance leads to the
symmetry of the matrix Q in Eq. (1) (see [1]). The symme-
try of the second Piola–Kirchhoff stress tensor also holds
for generally composite materials (see [17,18]), in which
the fibres are continuously arranged in a matrix material,
so that the continuum theory of fiber-reinforced compos-
ites can be applied (see Sec. 3.1). Hence, we also obtain for
an anisotropic material formulated with structural tensors a
symmetric matrix Q in Eq. (1).

2.2 Energy and momentum conservation

If both the Hamiltonian system does not depend explicitly
on time t and is in absence of non-conservative forces, the
Hamiltonian H(q,p) remains constant during the motion.
Since for the present problem the total energy and Hamil-
tonian H is identical, the total energy is conserved inherently
(see [2], for more details). Furthermore, it can be shown that
both the total linear momentum

P =
npoi∑
A=1

pA (16)

and the total angular momentum

L =
npoi∑
A=1

qA × pA (17)

are also conserved (for a proof may also see [2]).

3 The anisotropic material formulation

Fibre-reinforced polymers are compositematerialsmade of a
polymer matrix reinforced with fibres of a different material.
These polymers may be modelled for finite strains by an
isotropic material law for the matrix, and structural tensors
for the fibres (see [29] and [30], for instance). The finite strain
model of such an anisotropic elastic material behaviour is
introduced in this section.

3.1 Invariant formulation of the free energy

Let X ∈ R
ndim be the coordinates of an arbitrary material

point of a solid continuum body B in the initial configura-
tion B0 at time t = 0. Furthermore, let x ∈ R

ndim be the
coordinates of the same material point at any time t > 0
in the current configuration Bt , which are defined by the
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vector-valued deformation mapping

x(t) = ϕ(X, t) (18)

The deformation directions in the solid continuum are given
by the deformation gradient

F(X, t) = ∇Xϕ(X, t) (19)

The right Cauchy–Green tensor as deformation measure
with respect to the material configuration B0 then reads

C = FTF (20)

To build an anisotropic material law, we first define a scalar-
valued free energy density function (see [31]), which can be
a sum of an arbitrary number of free energy density func-
tions that depend on the scalar-valued invariants of the right
Cauchy–Green tensor. In general, let all free energy den-
sity functions fulfil the requirement of polyconvexity in the
sense of Ball [23] to guarantee the existence of minimizers.
The main invariants of the right Cauchy–Green tensor read

I1(C) = tr(C) = C : I (21)

I2(C) = 1

2
[(C : I)2 − C : C] (22)

I3(C) = det(C) (23)

where the double dot symbol denotes the scalar product of
two second-order tensors.

To define the fibre direction of the fibre-reinforced struc-
ture,we use so-called structural tensors (see [16,17] and [18],
for instance). These are built by a normalized directional vec-
tor a ∈ R

ndim , which lies in the direction of the fibres in the
undeformed reference configuration. The considered struc-
tural tensor reads

A = a ⊗ a → |a| = 1 (24)

In general, one can define an arbitrary number of differ-
ent fibre families by its corresponding directional vectors.
In our case, we consider one family of fibres, so we have a
special case of anisotropy on hand, the so-called transverse
isotropy. Hence, two additional pseudo-invariants of the right
Cauchy–Green tensor can be defined as

I4(C,A) = C : A (25)

I5(C,A) = C2 : A (26)

where the tensor C2 is equal to the single dot product of C
with itself. These pseudo-invariants describe the stretch of
the fibres and the intercation with the matrix, respectively.

3.2 Isotropic free energy

Considering the isotropic part of the free energy density func-
tion, it is advantageous to split off the volumetric part C̃ of
the right Cauchy–Green tensor, which only depends on the
distortion, but not on the volume change of a volume element
of the continuum body. It reads

C̃ = I
− 1

3
3 C (27)

with det(C̃) = 1. From this follow the modified main invari-
ants

Ĩ1(C̃) = tr(C̃) = I
− 1

3
3 I1 (28)

Ĩ2(C̃) = 1

2
[(C̃ : I)2 − C̃ : C̃] = I

− 2
3

3 I2 (29)

that also depend only on the distortion.
The whole isotropic part of the free energy then is sub-

divided into an isochoric, i.e. volume-preserving part, and a
purely volumetric part in the following way:

W isotr = W isotr
iso ( Ĩ1, Ĩ2) + W isotr

vol (I3) (30)

with Ĩ1 = I
− 1

3
3 I1 and Ĩ2 = I

− 2
3

3 I2.

3.3 Anisotropic free energy

For the anisotropic part, we also use the modified pseudo-
invariants, which read here

Ĩ4(C̃,A) = C̃ : A = I
− 1

3
3 I4 (31)

Ĩ5(C̃,A) = C̃2 : A = I
− 2

3
3 I5 (32)

Assuming that mechanical energy is only stored due to the
distortion of the fibres (but not due to its volume change), the
whole anisotropic part of the free energy density function is
equal to its isochoric sub-part:

W aniso = W aniso
iso ( Ĩ4, Ĩ5) (33)

with Ĩ4 = I
− 1

3
3 I4 and Ĩ5 = I

− 2
3

3 I5.

3.4 Total free energy density function

Since it is assumed that the matrix and the fibre material
of the continuum body store the mechanical energy without
interaction, the total free energy density function is the sum

W = W isotr + W aniso

= W [I1(C), I2(C), I3(C), I4(C,A), I5(C,A)] (34)
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of both the isotropic matrix and the anisotropic fibres. Dur-
ing the practical use in numerical simulations, the total free
energy density function should be formulated according to
Eq. (34) as functions of the invariants I1, . . . , I5, because
this represents the universal case that can be handled best
to calculate the stress tensor and the corresponding tangent
operator (see Appendixes 1 and 5).

4 Time integration of semi-discrete elastodynamics

Considering a continuumbody,we have to introduce a spatial
discretization to obtain a dynamical systemof a finite number
of degrees of freedom. In this paper, we apply a Bubnov–
Galerkin finite element method with linear brick elements
as used in Reference [2], in order to allow a comparison of
the behaviour of the time integration schemes proposed in
this work with the behaviour reported in Reference [2]. But
the use of mixed formulations as in Reference [29] using
at least Q1/P0 brick elements is to be recommended and
realized in the follow-up work. As in Reference [2], the time
discretization is performed by a Petrov-Galerkin finite
element method in time called cG method, in contrast to the
usually applied finite difference method.

4.1 Finite element discretization in space

In order to clarify the used notation, we summarize the stan-
dard spatial finite element discretization of a solid continuum
body (see Reference [32], for instance), embedded in a ndim-
dimensional Euclidean spaceEndim , and modelled by the real
coordinate space Rndim . In this way, a solid continuum body
B ⊂ R

ndim is partitioned into non-overlapping finite ele-
ments Be, e = 1, . . . , nel.. The positions of the element
nodes in the initial configurationBe

0 at time t = 0 are denoted
by Xa

e ∈ B̄e
0, a = 1, . . . , nen, and their positions in the cur-

rent configuration Be
t at time t ∈ I = [0, T ] are denoted

by xae = qae (t) ∈ B̄e
t , with the time-dependent position vec-

tor qae : I → R
ndim of the node a in the element Be

t . The
arbitrary position Xe ∈ Be

0 and its position xe ∈ Be
t are

parameterized by the mappings

Xe = Ψ e(ηe) =
nen∑
a=1

Na(ηe)Xa
e (35)

xe = ψe(ηe, t) =
nen∑
a=1

Na(ηe)qae (t) (36)

where Na : � → R
ndim , a = 1, . . . , nen, denote Lagrangian

shape functions which satisfy the aimed interpolation condi-
tion Na(η

b
e ) = δba , where ηbe ∈ �̄, b = 1, . . . , nen, are the

element nodes of the e-th element in the parent domain. Fur-
ther, the material motion xe(Xe, t) = ψe ◦ (Ψ e)

−1(Xe)(t) is

approximated by the deformation mapping

ϕe(Xe, t) =
nen∑
a=1

Na(ηe(Xe))qae (t) (37)

The Lagrangian velocity field ve(Xe, t) tangent to the
element Be

t in the point xe is given by ve(Xe, t) =
∂ϕe(Xe, t)/∂t . Further, the spatial tangent attached at the
point Xe in the elementBe

0 arises from the deformation gra-
dient Fe = ∇Xeϕe in the e-th element. From the deformation
gradient, the right Cauchy–Green-tensor Ce = FT

e Fe as
deformation measure in the e-th element is derived (see Ref-
erence [1] for their explicit expressions). Thepotential energy
V int of the configuration B0 results from summing over the
strain energies

V int
e =

∫
Be

0

We(Ce,A)dV (38)

of the elements. The gradient ∇qV of the strain energy then
takes the form of Eq. (1), where

Q =
nel

A
e=1

Q̂e(Ce,A) (39)

follows from assembling the element matrices

Q̂e(Ce,A) =
⎡
⎢⎣
Q̂e

11 . . . Q̂e
1nen

...
...

Q̂e
nen1

. . . Q̂e
nennen

⎤
⎥⎦ ⊗ Indim (40)

where

Q̂e
ab(Ce,A) =

∫
Be

0

Se(Ce,A) : Ne
abdV (41)

includes the material part of the internal force vector com-
ponents, based on the tensor

Nab
e = J−T

e · [∇ηNa ⊗ ∇ηNb] · J−1
e (42)

denoting the spatial structure matrix of the linearised strain
operator Ba

e with respect to Be
0. The total kinetic energy T

of the initial configuration B0 is defined as the sum of all
kinetic element energies

Te = 1

2

∫
Be

0

ρ0ve · ve dV (43)

= 1

2

nen∑
a,b=1

Me
abq̇

a
e · q̇be ≡ 1

2
q̇Te Meq̇e (44)
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that corresponds with the element cooordinate vector qe =
(q1e , . . . ,q

nen
e ). The element mass matricesMe have a block

structure of the form

Me =
⎡
⎢⎣
Me

11 . . . Me
1nen

...
...

Me
nen1

. . . Me
nennen

⎤
⎥⎦ ⊗ Indim (45)

where

Me
ab =

∫
Be

0

ρ0NaNb dV (46)

denotes the mass matrix entries. The element mass matrices
are also assembled to the global consistent mass matrix M.
such that the kinetic energy T and the linear momentum
vector p of the configuration are given by the Eqs. (4) and (7),
respectively.

4.1.1 Algorithmic momentum conservation

As it is shown in [2], this spatial discretization on hand pre-
serves the total linear momentum P and the total angular
momentum L, which means that it does not influence both
total momenta by the spatial discretization. Keeping both
total momenta constant during the whole simulation requires
both an unsupported mechanical structure (e.g. the free flight
of a blade in Sect. 5) in the absence of external forces.

4.2 GALERKIN-based finite element discretization in
time

The considered time interval T = [t0, T ] of interest is
divided into Nτ − 1 non-overlapping subintervals Tn of
length hn, n = 1, . . . , Nτ − 1, such that

T =
Nτ −1⋃
n=1

Tn (47)

The partition of the interval T is related with a mesh of time
points t0 < t1 < . . . < tn = T . Each subinterval Tn =
[tn−1, tn] is transformed to a master element Iα = [0, 1]
with respect to the normed time α using the transformation
rule

α(t) = t − tn−1

hn
(48)

where hn = tn − tn−1 denotes the time step size. Accord-
ingly, the motion in each subintervalTn is determined by the
following initial value problemwith respect to themaster ele-
ment: Given the initial value z0 = z(tn−1), find the motion

ζ0 : Iα × R
2ndof 
 (α, z0) �→ z(α) ∈ R

2ndof determined by
the ordinary differential equation

dz
dα

= hnJ∇zH [z(α)] + fz(α) (49)

with respect to the time α ∈ Iα . Galerkin’s method deter-
mines nodal values of the trial function such that the residual
error of the considered differential equation is orthogonal
to all functions in the test space. The residual error of the
differential equation (49) reads

R(z) = dz
dα

− [hnJ∇zH(z) + fz] (50)

The continuous Galerkin (cG) method is based on specific
polynomials z(α) of degree k as trial functions and δz(α) of
degree k − 1 as test functions, which have the form

z(α) =
k+1∑
J=1

MJ (α)zJ (51)

and

δz(α) =
k∑

I=1

M̃I (α)δzI (52)

respectively. Here, zJ and δzI denote the corresponding
nodal values at equidistant time nodes. The functionsMJ and
M̃I denote Lagrange polynomials of degree k and k − 1,
respectively, with respect to the corresponding equidistant
nodes on the master element. A continuous solution is pro-
vided by z1 = z0, i.e. for every time step, the first nodal
values of the trial functions are given by the final values of
the previous time step or, at the beginning of the time inter-
val T , by the initial values of the motion. Then, Galerkin’s
orthogonality condition for the residual error R(z) on the
master element Iα is the weak form

∫ 1

0
Jδz(α) · R[z(α)]dα = 0 (53)

Owing to the fundamental theorem of variational calculus,
the weak form in Eq. (53) leads to k vector equations for the
k unknown nodal values zJ , J = 2, . . . , k + 1, given by

k+1∑
J=1

∫ 1

0
M̃I M

′
J dα zJ

− hn

∫ 1

0
M̃I

(
J∇zH [z(α)] + fz

)
dα = 0 (54)

123



Comput Mech (2015) 55:921–942 927

with I = 1, . . . , k, where the equations can be divided into
two integral terms. The primedenotes here the timederivative
with respect to α.

4.3 The continuous GALERKIN (cG) time stepping
scheme

Using the gradient of the Hamiltonian H and taking Eq. (15)
into account, one finds the following time discretization of
the semi-discrete equations of motion, which is called cG(k)
method:

k+1∑
J=1

∫ 1

0
M̃I M

′
Jdα qJ − hn

∫ 1

0
M̃IM

−1pdα = 0 (55)

k+1∑
J=1

∫ 1

0
M̃I M

′
Jdα pJ + hn

∫ 1

0
M̃I

(
Q

hq − fnc
)
dα = 0 (56)

with I = 1, ..., k. Generally, the second integral of Eq. (56)
has to be determined by numerical quadrature, because its
integrand posesses a nonlinearity, caused by the definition
of the entries of the approximated stiffness matrix Q

h . This
integral is approximated by the k-point Gaussian quadrature
rules, because the collocation property of the time stepping
schemes has to be taken into account to preserve first inte-
grals, i.e. the total momenta are conserved and the equations
ofmotion are fulfilled exactly at theGauss-points ξl . A proof
may be found in [2]. The quadrature reads

∫ 1

0
M̃I

(
Q

hq − fnc
)
dα

≈
k∑

l=1

M̃I (ξl)
[
Q

h(ξl)q(ξl) − fnc(ξl)
]
wl (57)

All other integrals in the Eqs. (55) and (56) can be determined
exactly by the k-point Gaussian quadrature rules, because
they only include polynomials of degree 2k − 1.

The time approximation Q
h(α) of the global stiffness

matrix is given by the element stiffness matrices Q̂h
e (C

h
e (α)),

where Ch
e : Iα → R

ndim×ndim denotes, in general, an arbi-
trary consistent time approximation of the right Cauchy–
Green tensor in the e-th element. The usual cG approxima-
tion of the element deformation gradient Fe is defined by

Fe =
k+1∑
I=1

MI (α)Fe
I (58)

which arise straightforward from Eqs. (19) and (51). The
standard time approximation of the right Cauchy–Green
tensor then reads Ce = FT

e Fe according to its definition in
Eq. (20).

4.3.1 Algorithmic momentum conservation

According to [2], it can be verified that the cG(k)method con-
serves the total linear and angular momenta inherently when
using the k-point Gaussian quadrature. As alreadymentioned
above, the key of this conservation is the fulfilled collocation
property by the k-point Gaussian quadrature in connection
with the chosen trial function in Eq. (51).

4.4 The enhanced Galerkin (eG) time stepping scheme

The equations in this section mainly refer to the works [2]
and [1], where the equations are derived for isotropic mate-
rial elaborately. We therefore only summarize here the main
results, which are still valid since structural tensors are time-
independent.

In general, the cG time-stepping schemes from the sec-
tion above does not conserve mechanical energy, but only
in the case that the integral in Eq. (57) is calculated exactly.
This requirement is called the energy conservation condition
for the cG(k) method, from which we can derive a design
criterion that leads finally to the enhanced Galerkin (eG)
time-stepping scheme.

Further, the so-called assumed strain approximation Ce

is used, where the right Cauchy–Green tensor is approxi-
mated directly by its nodal values Ce

I at the time nodes αI

(see also [4]). This approximation is indifferent with respect
to rigid body motions (cf. [14]), and given by

Ce =
k+1∑
l=1

MI (α)Ce
I (59)

Furthermore, the design criterion for energy conservation
leads to an enhanced gradient of the strain energy density
functionWe. Considering the assumed strain approximation
from Eq. (59), one can find a so-called enhanced assumed
gradient associated with k-point Gaussian quadrature that
reads

DWe = ∇CeWe[Ce(α),A] + Ge

Ne

∂Ce(α)

∂α
(60)

with the terms

Ge = We[Ce(1),A] − We[Ce(0),A]

−
k∑

l=1

∇CeWe[Ce(ξl),A] : ∂Ce(ξl)

∂α
wl (61)

Ne =
k∑

l=1

∂Ce(ξl)

∂α
: ∂Ce(ξl)

∂α
wl (62)
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When inserting the enhanced assumed gradient in the cG(k)
method, the eG(k) method is obtained. These higher-order
energy and momentum conserving time-stepping schemes
read

k+1∑
J=1

∫ 1

0
M̃I M

′
JdαqJ − hn

∫ 1

0
M̃IM

−1pdα = 0 (63)

k+1∑
J=1

∫ 1

0
M̃I M

′
JdαpJ + hn

∫ 1

0
M̃I

(
Qq − fnc

)
dα = 0 (64)

with I = 1, ..., k, where the second integral in Eq. (64) is
calculated by

∫ 1

0
M̃I

(
Qq − fnc

)
dα

=
k∑

l=1

M̃I (ξl)
[
Q(ξl)q(ξl) − fnc(ξl)

]
wl (65)

The time approximationQ(α) of the stiffness matrix is given
by the element stiffness matrices Q

e
(α) with the entries

Qe
ab =

∫
Be

0

2DWe(α) : Ne
abdV (66)

using the enhanced assumed gradient.

5 Representative numerical examples

In this section, we present representative numerical examples
using the eG(k) time stepping schemes as well as the cG(k)
schemes for k = 1, 2, 3. We consider both a free moving
structure and a supported structure with Dirichlet bound-
ary conditions. The latter is excited by a transient external
force (see [17] for static numerical experiments, for instance).
Our aim is to verify the conservation properties stated for
the eG(k) method, and to present a comparison between the
cG(k) and the eG(k) method with respect to conservation of
first integrals, accuracy and numerical cost.

5.1 COOK’s membrane

As first example, we consider the well-known example for
anisotropic stress behaviour of Cook’s membrane, here dis-
cretized by nel = 100 eight-node Lagrange elements, and
defined by nno = 242 spatial element nodes (cf. [24]). The
membrane is clamped on its left edge and loaded by the force
F on the right edge, which is uniformly distributed on all
nodes and acts in y-direction. The direction of the force is
fixed and not influenced by the deformation of themembrane.
The initial position is equal to the undeformed reference

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60 Structure in reference configuration

x

y

F

Fig. 1 Initial configuration of the left side clamped Cook’s membrane

configuration in Fig. 1. We consider both a simple static
load, where the membrane is loaded by a time-independent
force, and a transient dynamic load, where we have a hat-
shaped excitation combined with a certain initial velocity
field. More precisely, in the static load case, the nodal forces
FA, A ∈ {1, . . . , nno}, of the right boundary elements are
given by

FA = F̂ = const. (67)

where F̂ denotes the y-direction vector weighted with an
amplitude ‖F̂‖, and in the dynamic load case, the force is
time-dependent, and described by the hat function

f (t) =
⎧⎨
⎩
t at 0 ≤ t ≤ 1
2 − t at 1 < t ≤ 2
0 at t > 2

such that

FA = F̂ · f (t) (68)

Furthermore, we have an initial velocity field with compo-
nents in the y-direction whose magnitude increases linearly
from the left to the right edge, which means the A-th node
with its coordinate vector qA = [x A, yA, zA]T has an initial
velocity vector

vA =
[
0, vmax · x

A

48
, 0

]T

(69)

where the value of vmax is generally set to 1.
The considered mechanical structure consists of transver-

sally isotropic continuousmaterialwith a homogeneousmass
density ρ0 = 1. Its mechanical behaviour is defined by the
strain energy density function
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Fig. 2 Static deformation of Cook’s membrane due to a static force with absolute value ‖F̂‖ = 400 using the non-stiff material. The colours
indicate in the left plot the Eucidean norm ‖τ‖2 of the Kirchhoff stress tensor and in the right plot the third invariant I3. (Color figure online)

W = W isotr + W aniso (70)

with

W isotr = c1
2

(
I−1/3
3 I1 − 3

)
+ c2

(
I−1
3 I 3/22 − 3

√
3
)

+ c3(I3 − 1)2 (71)

W aniso = c4
2c5

exp

[
c5

(
I−1/3
3 I4 − 1

)2 − 1

]
(72)

where the parameters c1, c2, c3 and c4 are stress-like parame-
ters, while the parameter c5 is dimensionless (see Reference
[33] and Reference [34], respectively, and note Remark 2 and
Remark 3). We define a parameter set for the non-stiff case
with the values

c1 = 300

c2 = 100

c3 = 100

c4 = 240

c5 = 80

‖F̂‖ = 220 (73)

and a set for the stiff case, given by

c1 = 3000

c2 = 1000

c3 = 1000

c4 = 2400

c5 = 800

‖F̂‖ = 2200 (74)

The direction vector for the reinforced fibres takes the form
a = [1, 1, 1]T /

√
3.

Remark 2 The isotropic strain energy function in Eq. (71)
can be found in Reference [33] with the applicability only
for deformations with det[F] ≈ 1 as calculated during the
considered deformations in this paper. We refer to this ref-
erence for an appropriate modification of Eq. (71) for larger
deformations.

Remark 3 The anisotropic strain energy function in Eq. (72)
has been taken from Reference [34] due to the guarenteed
vanishing second Piola–Kirchhoff stress tensor S in the
reference configurationB0, and therefore also in the case of
rigid body motions. This is crucial for the applicability of
the enhanced assumed gradient DWe(α) used in this paper,
as well as for its scientific basis, the discrete gradient in [14].
But, note that this function is only polyconvex for the range
I−1/3
3 I4 > 1, in contrast to the strain energy function pro-
posed in [34]. However, as also mentioned in Reference [34],
for the proposed strain energy function the vanishing stress
has to be enforced in the reference configuration mathemat-
ically, and in the present paper also for the superimposed
group motions as translations and rotations.

5.1.1 Numerical results

In Fig. 2, the static deformation of the membrane due to
the force ‖F̂‖ = 400 is depicted, which is an examplary
representation of the effect of the anisotropic fibre direction
(cf. [24]). In the left plot, the colours of the spatial finite
elements indicate the distribution of the Euclidean norm of
theKirchhoff stress tensor. We observe a higher total stress
(fibres and matrix) at the boundaries of the membrane. The
right plot demonstrates the distribution of the third invariant
I3 of themembranematerial. Here, we show that the material
parameter are chosen so that det[C] ≈ 1.0.

Fig. 3 shows a representative configuration of the nonstiff
membrane (here at time t = 2) during the dynamic simula-
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Fig. 3 Dynamic deformation of Cook’s membrane at time t20 = 2 in
the dynamic load case using the non-stiff material determined by the
cG(1) method with the time step size hn = 0.1. The colours indicate

in the left plot the Eucidean norm ‖τ20+1/2‖2 of the Kirchhoff stress
tensor and in the right plot the third invariant I320+1/2 . (Color figure
online)

tion, calculated by the cG(1) method with the time step size
hn = 0.1. In the left plot, we show the current distribution of
the norm of the Kirchhoff stress tensor at the first temporal
Gauss point, that is themidpoint of the time step.Weobserve
a high total stress at the loaded boundary of the membrane.
The arrows at the element nodes demonstrate the current
Lagrangian velocity field during the oscillation. The right
plot depicts the current distribution of the third invariant I3
of the membranematerial. Here, we observe that the material
parameter are chosen so that det[C] = 1.0 ± 0.5%.

In the dynamic load case, computed in a transient long
term simulation, the total linear and total angular momenta
of the membrane cannot be constant. The dynamic reaction
forces on the left edge of themembrane have to be considered
in the momentum balances, and effect a temporal change of
the momenta during the oscillation of the membrane. Due
to the oscillation excitation until the time t = 2, the total
energy increases to a certain value and can be investigated
with respect to energy conservation from the time t ≥2 on.

Figures 4, 5 and 6, respectively, depict a comparison of
the total energies of the cG(k) and the corresponding eG(k)
method of the non-stiff material. We recognize, that after the
changes of the time step sizes hn from 0.1 to 1, the total
energies of the cG(k) time-stepping schemes increase up to
certain values, and then the simulations are aborted due to
blow-up-behaviour of the mechanical structures. We have to
change the time step sizes up to the tenfold value to enforce
aborts of the cG(k) time-stepping schemes, because during
the oscillations of themembranes onehas rigid body rotations
which are not as large as those of the blade. This observation
is also reported in Reference [35] by using the standard trape-
zoidal rule. Considering the eG(k) time-stepping schemes in
the non-stiff case, the total energies again remains exactly
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eG(1) method

Fig. 4 Comparison of the total energy H using the cG(1)-method and
the eG(1)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 3 and 1 for t > 3

constant after the excitation, and are indifferent with respect
to time step size changes.

We now compare the total energies of the cG(k) and the
corresponding eG(k) method when using the stiff material,
depicted in Figs. 7, 8 and 9. For the polynomial degrees k = 1
and k = 2, the time step size hn was changed from 0.1 to 0.2.
For k = 3, the time step size was increased from 0.1 up to 1.
We recognize again that the eG(k) schemes conserve the total
energies exactly after the excitation, while the cG(k) schemes
abort at a certain simulation time. Further, the time step
changes demonstrate the benefit of higher-order time integra-
tors as the cG(k) and eG(k) method on numerical stability.

Figures 10 and 11 depict the logarithm of the relative
global error in the position at time T = 1 versus the log-
arithm of the associated time step size hn , and the double
logarithmic plot of the relative global error
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Fig. 5 Comparison of the total energy H using the cG(2)-method and
the eG(2)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 3 and 1 for t > 3
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Fig. 6 Comparison of the total energy H using the cG(3)-method and
the eG(3)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 3 and 1 for t > 3
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Fig. 7 Comparison of the total energy H using the cG(1)-method and
the eG(1)-method in the stiff case. The time step size is 0.1 for t ≤ 3
and 0.2 for t > 3

eq = ‖q(T ) − qref(T )‖
‖qref(T )‖ (75)
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Fig. 8 Comparison of the total energy H using the cG(2)-method and
the eG(2)-method in the stiff case. The time step size is 0.1 for t ≤ 3
and 0.2 for t > 3
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Fig. 9 Comparison of the total energy H using the cG(3)-method and
the eG(3)-method in the stiff case. The time step size is 0.1 for t ≤ 3
and 1 for t > 3

versus the corresponding CPU time, respectively. The refer-
ence solution qref is again computed using the eG(4) method
with a time step size of hn = 0.001. Both diagrams show
relations with respect to the convergence and the numerical
costs that are similar to those of the simulation of the blade’s
free flight in the next section.

5.2 Free flight of a fibre-reinforced blade

As second example, we consider a fibre-reinforced blade dis-
cretized by nel = 100 eight-node Lagrange elements in
space, which are defined by nno = 238 element nodes (cf.
[2]). The centre of the blade’s hub is positioned in the origin of
the respective Euclidean space. The initial position is equal to
the undeformed reference configuration. The structure con-
sists of transversally isotropic continuous material with a
homogeneous unit mass density ρ0 = 1. Its mechanical
behaviour is defined by the following strain energy density
function
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Fig. 11 Relative global error in the position eq versus CPU time in the
non-stiff case (T = 1)

W = W isotr + W aniso (76)

with

W isotr = c1
2

(I
− 1

3
3 I1 − 3) + c2(I3 − 1)2 (77)

W aniso = c3
2c4

exp

[
c4

(
I−1/3
3 I4 − 1

)2 − 1

]
(78)

where the parameters c1, c2 and c3 are stress-like parame-
ters, while the parameter c4 is dimensionless. We define a
parameter set for the non-stiff case with the values

c1 = 300

c2 = 100

c3 = 240

c4 = 80 (79)
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Fig. 12 Initital configuration B0 of the fibre-reinforced blade in the
non-stiff case. The colour indicates the Euclidean norm ‖τ0+1/2‖2 of
the Kirchhoff stress tensor determined by the cG(1) method. (Color
figure online)

and one for the stiff case with

c1 = 3000

c2 = 1000

c3 = 2400

c4 = 800 (80)

The used exemplary unit direction vector of the fibres in the
polymer matrix reads a = [1, 1, 1]T /

√
3.

The fibre-reinforced blade performs a free flight due to
its initial translational velocity described by the vector vT =
[2, 0,−0.1] ∈ R

3 and its initial angular velocity vectorω0 =
[0, 0.7, 0.7] ∈ R

3 such that the initial velocity vector of the
node A is determined by means of the Euler theorem as

vA0 = vT + ω0 × qA
0 (81)

The initial configuration B0 with the initial Lagrangian
velocity field v0 is depicted in Fig. 12. This chosen veloc-
ity field causes a total (fibers and matrix) Kirchhoff stress
‖τ0+1/2‖2 at the midpoint of the first time step, indicated by
the depicted colours in Fig. 12.
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Fig. 13 Current configurationsBtn of the fibre-reinforced blade in the
non-stiff case, starting at t0 = 0 on the left and finishing at tN = 19.6 on
the right, determined by the cG(1) method. The colour indicates in the

top plot the Eucidean norm ‖τn+1/2‖2 of the Kirchhoff stress tensor
and in the bottom plot the third invariant I3n+1/2 . The arrows in the top
plot denodes the current Lagrangian velocity field. (Color figure online)
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Fig. 14 Time step differences of the total linear and angular momenta relative to the tolerance ε = 10−8 of the Newton–Raphson pertaining to
the fibre-reinforced blade computed with the cG(1)-method in the non-stiff case. The time step size hn is 0.1 for t ≤ 10 and 0.2 for t > 10

5.2.1 Numerical results

An examplary motion of the fibre-reinforced blade using
the non-stiff material determined by the cG(1) method is
depicted in Fig. 13. In the top plot, we show the time evo-
lution of the norm of the Kirchhoff stress tensor at the first
temporalGauss point of the cG(1) method, i.e. the midpoint
of the time step, as colours of the spatial elements.Weobserve
a high total stress in a quarter of the blade’s hub, caused by

the given initial velocity field in connection with the inertia
of the blade. The arrows at the element nodes indicates the
current Lagrangian velocity field of the blade. The bottom
plot demonstrates the time evolution of the third invariant
I3 of the blade material. Here, we show that the material
parameter are chosen so that max(det[C]) = 1.0 + 1%.

In Fig. 14, we show the time step differences of the total
linear and the total angular momenta of the cG(1) method
in the non-stiff case relative to the Newton–Raphson toler-
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Fig. 15 Time step differences of the total linear and angular momenta relative to the tolerance ε = 10−8 of the Newton–Raphson pertaining to
the fibre-reinforced blade computed with the cG(2)-method in the non-stiff case. The time step size hn is 0.1 for t ≤ 5 and 0.2 for t > 5
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Fig. 16 Time step differences of the total linear and angular momenta relative to the tolerance ε = 10−8 of the Newton–Raphson pertaining to
the fibre-reinforced blade computed with the cG(3)-method in the non-stiff case. The time step size hn is 0.1 for t ≤ 5 and 0.2 for t > 5

ance ε = 10−8. Algorithmic momentum conservation now
means that this time evolutions stay below a correspond-
ing absolute value of one. Since the cG(1) method shows an
absolute value below 5·10−4 for the total linearmomenta and
0.3 for the total angular momenta, the algorithmic momen-
tum conservation of the cG(1) method is obvious. But the
comparison with the higher-order cG-methods furnishes an

Table 1 Comparison of the time step differences of the total linear and
the total angular momenta of the cG method relative to the Newton–
Raphson tolerance ε = 10−8

[Pi(tn)−Pi(tn−1)]
ε

[Li(tn)−Li(tn−1)]
ε

cG(1) O(10−4) O(10−1)

cG(2) O(10−3) O(10−1)

cG(3) O(10−2) O(10−1)

interesting result. The algorithmic conservation for quadratic
(see Fig. 15) and cubic (see Fig. 16) time finite elements still
apply, but the range of the absolute value for the total linear
momentum difference on the time step increases, in con-
trast to the range of the total angular momentum difference
(see Table 1). This behaviour of the total linear momentum
is attributed to the standard update formula of the nodal
momenta xp in Eq. (102), which is naturally based on the
position vector xq of the Newton–Raphson method (see
Appendix 3). An improvement can be reached by an update
formula for the momentum vector xp directly based on the
residual vector R(xq) (more precisely, the vector Fdyn in
Reference [35]). However, this behaviour of the total lin-
ear momentum difference can be avoided by solving for the
vector xTz = [xTq , xTp ] in the Newton–Raphson scheme.
Fore more details, we may refer to the follow up paper.
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Fig. 17 Total linear and angular momenta of the fibre-reinforced blade computed with the eG(1)-method in the stiff case. The time step size hn is
0.1 for t ≤ 10 and 0.2 for t > 10

0 1 2 3 4 5 6 7 8 9 10
−100

0

100

200

300

400

500

600

700

800

time

lin
ea

r m
om

en
ta

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10
−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

time

an
gu

la
r m

om
en

ta

L1

L2

L3

Fig. 18 Total linear and angular momenta of the fibre-reinforced blade computed with the eG(2)-method in the stiff case. The time step size hn is
0.1 for t ≤ 5 and 0.2 for t > 5
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Fig. 19 Total linear and angular momenta of the fibre-reinforced blade computed with the eG(3)-method in the stiff case. The time step size hn is
0.1 for t ≤ 5 and 0.2 for t > 5
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Fig. 20 Comparison of the total energy H using the cG(1)-method
and the eG(1)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 10 and 0.2 for t > 10
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Fig. 21 Comparison of the total energy H using the cG(2)-method
and the eG(2)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 5 and 0.2 for t > 5

Considering the algorithmic conservation laws of the sim-
ulation using the eG(k)-method in the Figs. 17, 18 and 19,
we notice that the enhanced time stepping schemes also con-
serve both the total linear and the total angular momenta. In
general, the fulfillment of the algorithmic conservation laws
for total momenta does not depend on the time step size or
its change during the simulation. Furthermore, it is not influ-
enced by the transversally isotropic material behaviour.

Regarding the total energies H of the non-stiff material
computed by the cG(k) and the eG(k)-method shown in the
Figs. 20, 21 and 22, we recognize that after the changes
of the time step sizes hn from 0.1 to 0.2, the total ener-
gies of the cG(k) time-stepping scheme increase up to a
certain value, and then the simulations are aborted, because
the convergence criteria of the applied Newton–Raphson
methods cannot be reached. Here, we detect the so-called
blow-up-behaviour of the mechanical structure.With respect
to the degree k, it can be seen that the abort of the simula-
tions appear as later as higher k is. This is natural, because
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Fig. 22 Comparison of the total energy H using the cG(3)-method
and the eG(3)-method in the non-stiff case. The time step size is 0.1 for
t ≤ 5 and 0.2 for t > 5
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Fig. 23 Comparison of the total energy H using the cG(1)-method and
the eG(1)-method in the stiff case. The time step size is 0.1 for t ≤ 10
and 0.2 for t > 10

higher-order polynoms in time are able to approximate the
overlaid translational and rotational motion of the blade,
especially the rigid body rotations, more precisely. On the
other hand, considering the eG(k) time-stepping schemes, the
total energies remain exactly constant during the complete
simulations, and are indifferent with respect to time step size
changes.

We now compare the total energies of the cG(k) and the
corresponding eG(k) method when using the stiff material,
depicted in Figs. 23, 24 and 25. Especially considering the
cG(1) method in Fig. 23, one can see that the conventional
time-stepping schemes abort after some seconds even with a
time step size of 0.1 in the presence of stiffness. Higher-order
cG(k) methods abort shortly after the change of the time step
size, while the eG(k) schemes again conserve the total energy
of the mechanical structure all over the time interval. To give
a conclusion about the quality of the reached convergence
behaviour of the Newton–Raphson method, we show an
investigation of the relative global error
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Fig. 24 Comparison of the total energy H using the cG(2)-method and
the eG(2)-method in the stiff case. The time step size is 0.1 for t ≤ 5
and 0.2 for t > 5
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Fig. 25 Comparison of the total energy H using the cG(3)-method and
the eG(3)-method in the stiff case. The time step size is 0.1 for t ≤ 5
and 0.2 for t > 5

eq = ‖q(T ) − qref(T )‖
‖qref(T )‖ (82)

in the position vector at a certain time T . Here, qref denotes
the reference solution of the position vector computed by
using the eG(4) method with a time step size of hn = 0.001.
Fig. 26 depicts the logarithm of the relative global error in
the position at time T = 1 versus the logarithm of the asso-
ciated time step size hn for the cG(k) and eG(k) method for
k = 1, 2, 3. We recognize, that the rates of convergence,
specified by the slopes of the graphs, have values of about
2k for both the cG and the eG method, as aspected. Finally,
Fig. 27 shows a double logarithmic plot of the relative global
error versus the corresponding CPU time. In general, we see
a greater CPU time for the eG(k) method compared to the
corresponding cG(k) method due to the higher costs for com-
puting the stiffness and the tangent matrices. However, we
identify intersections in graphs of the higher-order methods
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Fig. 26 Relative global error in the position eq versus time step size
hn in the non-stiff case (T = 1)

102 103 104
10−10

10−9

10−8

10−7

10−6

10−5

10−4

CPU time

re
la

tiv
e 

er
ro

r e
q

cG(1)
cG(2)
cG(3)
eG(1)
eG(2)
eG(3)

Fig. 27 Relative global error in the position eq versus CPU time in the
non-stiff case (T=1)

(k = 2, 3), because these methods need less iterations. Thus,
higher costs for the computation and assembly of the larger
system matrices could be compensated by lower costs in the
Newton–Raphson methods (cf. [35]).

6 Summary and outlook

The relevance of fibre-reinforced polymers (FRP) is steadily
increasing in engineering fields due to the possibility of light-
weight construction, for example in the aircraft industry [36].
Due to the high strength in fibre direction, but possible large
deformations in other directions, these composites replace
more and more traditional strong but heavy materials as met-
als. Fibre-reinforced polymers are often subjected to small
strains, but a geometrically nonlinear formulation is neces-
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sary due to large deformations of the reinforced structural
elements at least in one direction, as for helicopter rotor
blades. Here, the fibres have the function to stabilize the
structure in one direction in order to counteract large cen-
trifugal forces. A stress analyses of rotor blades in long-run
simulations demands numerically stable time integrators for
anisotropic materials. This paper presents numerically sta-
ble and also higher-order accurate time stepping schemes for
nonlinear elastic fibre-reinforced continua with anisotropic
stress behaviour. These time-stepping schemes are based
on a time discretization of ordinary differential equations
of first order. Therefore, a state space representation of
the considered continuum dynamics is necessary. In this
paper, the Hamiltonian formulation of dynamics is preferred,
because two of the first integrals of the motion are at most
quadratic approximated in time, i.e. the totalmomenta,which
allows an exact algorithmic total momentum conservation.
These algorithmic conservation properties allow for more
numerical stability in the presence of large rotations. Since
fibre-reinforced polymers are composite materials made of
a polymer matrix reinforced with fibres of a different mater-
ial, these polymers are here modelled for finite strains by an
isotropic material law for the matrix, and structural tensors
for the fibres (cf. [29,30]). To build such an anisotropic mate-
rial law, we first define a scalar-valued free energy density
function [31], which is a sum of free energy density func-
tions that depend on the scalar-valued invariants of the right
Cauchy–Green tensor and the structural tensors, and then
derive from that the second Piola–Kirchhoff stress ten-
sor in the equations of motion. The space-time discretisation
of the considered anisotropic continuum is performed by a
trilinear Bubnov–Galerkin approximation in space, and a
higher-order accurate Petrov–Galerkin approximation in
time. In order to preserve the mathematical structure of the
equations of motion leading to asymptotically stable discrete
nonlinear equations ofmotion, algorithmic conservation laws
of total linear and total angular momentum as well as total
energy are preserved by Gaussian quadrature and a spe-
cial time approximation of the stress tensor. The resulting
energy-momentum conserving eG(k) time-stepping schemes
are applied to twomechanical structures: a three-dimensional
blade-model and the well-known Cook’s membrane. Both
continuum bodies are reinforced by uni-directional fibres,
and are simulated in the presence of large deformations and
superimposed rigid bodymotions. The presented eG(k) time-
stepping schemes of higher-order prove to be numerically
stable in comparison with the standard cG(k) time-stepping
schemes of the same order. Further, the advantage of increas-
ing the polynomial order in dynamical simulations is also
shown. In fact, higher-order schemes reduce numerical time
integration costs if accuracy is of interest for the simulation,
and are more stable in the presence of material stiffness.
Accordingly, these schemes can be recommended for sim-

ulating fibre-reinforced continua under dynamic loads as
helicopter rotor blades.

In the future, we investigate a new modification of the
enhanced assumed gradientDWe, which take the fibre direc-
tion a in the structural tensors not only in its numerator Ge

into account. From this new adjustment to anisotropic mater-
ial, the authors suspect an important improvement especially
for two and more families of fibres. Further, we aim at the
incorporation of the mixed spatial finite element discretiza-
tion in [15], internal damping behaviour of the matrix and
the fibres, the thermal conductivity of both, especially of
conductive fibres, in nonlinear mechanical structures [37].
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Appendix

In the following, the implementation of the presented time-
stepping schemes are sketched, including the residuals
and the corresponding tangent matrices in the Newton–
Raphson method necessesary for solving these nonlinear
algebraic equation systems. In general, the implementation
is close to the one in [2].

Appendix 1: The stress tensor

As already derived extensively in [24,38] and [18], the sec-
ond Piola–Kirchhoff stress tensor corresponding to the
above free energy density function is given by

S(C,A) = 2∇CW = 2
5∑

i=1

∂W

∂ Ii

∂ Ii
∂C

= 2

{ (
∂W

∂ I1
+ ∂W

∂ I2
I1

)
I − ∂W

∂ I2
C + ∂W

∂ I3
I3C−1

+ ∂W

∂ I4
A + ∂W

∂ I5
(A · C + C · A)

}
(83)

depending on the right Cauchy–Green tensor and the struc-
tural tensor. Here, the free energy function is assumed to
depend on the invariants I1, . . . , I5. If the free energy func-
tion depends on the modified invariants Ĩ1, . . . , Ĩ5, we have
to take the chain rule of differentiation into account for cal-
culating the partial derivatives in Eq. (83), which leads to

∂W

∂ I1
= ∂W

∂ Ĩ1

∂ Ĩ1
∂ I1

= ∂W

∂ Ĩ1
I
− 1

3
3 (84)
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∂W

∂ I2
= ∂W

∂ Ĩ2

∂ Ĩ2
∂ I2

= ∂W

∂ Ĩ2
I
− 2

3
3 (85)

∂W

∂ I3
=

5∑
i=1
i �=3

∂W

∂ Ĩi

∂ Ĩi
∂ I3

(86)

∂W

∂ I4
= ∂W

∂ Ĩ4

∂ Ĩ4
∂ I4

= ∂W

∂ Ĩ4
I
− 1

3
3 (87)

∂W

∂ I5
= ∂W

∂ Ĩ5

∂ Ĩ5
∂ I5

= ∂W

∂ Ĩ5
I
− 2

3
3 (88)

where we have to bear in mind in the summation convention
that there exist no invariant Ĩ3.

Appendix 2: The residuum

Here, the implementation of the residuum for both the
cG(k) and the eG(k) method is described. The time-stepping
schemes take the form of Eqs. (55) and (56) for the cG(k)
method, and of Eqs. (63) and (64) for the eG(k) method,
where the stiffnessmatrixQ is used for the cG(k) method and
stiffness matrix Q for the eG(k) method ,respectively. Col-
lecting the unknown coordinates and momenta in the vectors
xq = (q2, . . . ,qk+1) and xp = (p2, . . . ,pk+1), the cG(k)
method read in matrix notation

b′′ ⊗ q1 + [A′′ ⊗ Indof ]xq − hn{b′ ⊗ [M−1p1]
+ [A′ ⊗ M

−1]xp} = 0

b′′ ⊗ p1 + [A′′ ⊗ Indof ]xp
+ hn[W̃(ξ1, . . . , ξk) ⊗ Indof ]f(xq) = 0 (89)

with

W̃ =
⎡
⎢⎣
M̃1(ξ1) . . . M̃1(ξ1)

...
...

M̃k(ξ1) . . . M̃k(ξk)

⎤
⎥⎦ (90)

where we defined the following shorthand notations for a
compact representation:

A′ =
⎡
⎢⎣
A′
11 . . . A′

1k
...

...

A′
k1 . . . A′

kk

⎤
⎥⎦ A′′ =

⎡
⎢⎣
A′′
11 . . . A′′

1k
...

...

A′′
k1 . . . A′′

kk

⎤
⎥⎦

b′ =
⎡
⎢⎣
b′
1
...

b′
k

⎤
⎥⎦ b′′ =

⎡
⎢⎣
b′′
1
...

b′′
k

⎤
⎥⎦ (91)

with

A′
I J =

∫ 1

0
M̃I MJ+1dα A′′

I J =
∫ 1

0
M̃I M

′
J+1dα (92)

b′
I =

∫ 1

0
M̃I M1dα b′′

I =
∫ 1

0
M̃I M

′
1dα (93)

The force vector f(xq) is given by

f(xq) =
⎡
⎢⎣

[Q(q(ξ1))q(ξ1) − fnc(ξ1)]w1
...

[Q(q(ξk))q(ξk) − fnc(ξk)]wk

⎤
⎥⎦ (94)

Note that the non-conservative force vector fnc depends
explicitly on time t . Its dependence on the normed time α

can be obtained by using the inverse function of Eq. (48) and
inserting t (α).

Since the unknown momenta are linear combinations of
the unknown coordinates, one can eliminate the vector xp
such that we obtain the residuum

R(xq) = 1

hn
[AR

m ⊗ M]xq + 1

hn
AR
q ⊗ [Mq1] + AR

p ⊗ p1

+ hn[W̃(ξ1, . . . , ξk) ⊗ Indof ]f(xq) = 0 (95)

with

AR
m = A′′[A′]−1A′′ AR

q = A′′[A′]−1b′′ AR
p = b′′ − A′′[A′]−1b′

(96)

In order to obtain the matrix representation of the eG(k)
method, we only have to substitute the stiffness matrixQ for
the matrix Q.

Appendix 3: The Newton–Raphson method

The residuum of the cG(k) method respresents a system of
nonlinear equations, which has to be solved numerically for
determining the unknown coordinates qA, A = 2, . . . , k+1.
Therefore, we apply the Newton–Raphson method, in
which we perform a linearization of the nonlinear equation
system and solve these equations iteratively with the fol-
lowing iteration formulas, denoting the iteration index by
i = 0, 1, . . . , imax:

x(i+1)
q = x(i)

q − K−1
T (x(i)

q )R(x(i)
q ) (97)

where KT(xq) = ∇xqR(xq) indicates the tangent operator
corresponding to the residuum in Eqs. (89), and is given by

KT(xq) = 1

hn
[AR

m ⊗ M] + hn[W̃ ⊗ Indof ]K(xq) (98)
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where the matrix K(xq) has the following block structure

K(xq) = ∇xq f(xq) =
⎡
⎢⎣
K2(ξ1)w1 . . . Kk+1(ξ1)w1

...
...

K2(ξk)wk . . . Kk+1(ξk)wk

⎤
⎥⎦ (99)

The unknown coordinates for the first iteration within every
time step are determined in the physically motivated prestep

x(0)
q = −Aq

q ⊗ q1 − hnA
q
p ⊗ [M−1p1] (100)

with

Aq
q = −ek

Aq
p = [A′′]−1A′[A′′]−1b′′ − [A′′]−1b′

ek = (1, . . . , 1) ∈ R
k (101)

which initiate the variables by the rigid body motion. The
momenta xp can be computed subsequently using the now
known coordinates qA, A = 1, . . . , k + 1:

xp = 1

hn
[Ap

m ⊗ M]xq + 1

hn
Ap
q ⊗ [Mq1] − Ap

p ⊗ p1 (102)

with

Ap
m = [A′]−1A′′ Ap

q = [A′]−1b′′ Ap
p = [A′]−1b′ (103)

As the stopping criterion for the iterative solution procedure,
we check in this paper simply the Euclidean norm of the
residuum.The vector x(i)

q is accepted as approximate solution
if the norm of the residuum fulfils a tolerance ε in the way

‖R(x(i)
q )‖ ≤ ε (104)

For all simulations, we have chosen a tolerance of ε =
10−8. Note that there are more appropriate stopping criteria
necessary for systems with internal variables and thermo-
mechanical couplings (see [12]).

Appendix 4: The tangent matrix

The blocks KJ , J = 2, . . . , k + 1 of the tangent K(xq) in
Eq. (99) themselves have again a block structure, given by

KJ =
nel

A
e=1

⎡
⎢⎣

eK11
J . . . eK1nen

J
...

...
eKnen1

J . . . eKnennen
J

⎤
⎥⎦ (105)

The blocks eKab
J ∈ R

ndim×ndim can be divided additively
in both a geometrical and a material part such that

eKab
J =e Kab

GeoJ +e Kab
MatJ (106)

Defining for a compact presentation of the tangent matrices
the abbreviations

Be
a = Fe ⊗ ∇ηNa · J−1

e (107)

[eBb
J ]T = J−T

e · ∇ηNb ⊗ [Fe
J ]T (108)

the geometrical and the material parts associated with the cG
method read

eKab
GeoJ = MJ Q̂

e
abIndim (109)

eKab
MatJ = MJ

∫
Be

0

Be
a : L (Ce,A) : [Be

b]T dV (110)

For the eG method, especially the material parts of the
tangent operator are more complicated due to the additional
terms of the enhanced gradient:

eKGeo
ab
J

= MJQe
abIndim

eKMat
ab
J

=
∫
Be

0

Be
a :

[
MJL (Ce,A)+ 4M ′

J
G e

N e
I

]
: [eBb

J ]T dV

+
∫
Be

0

Be
a :

[
2δJ,k+1

N e

∂Ce

∂α
⊗ SeJ

− 4

N e

∂Ce

∂α
⊗ Le1

]
: [eBb

J ]T dV

−
∫
Be

0

Be
a :

[
4G

N 2
e

∂Ce

∂α
⊗ eLb2

]
dV

where

Le1 =
k∑

l=1

{
MJ (ξl)

∂Ce(ξl)

∂α
: ∇2

Ce
We(Ce(ξl),A)

+ M ′
J (ξl)

[
∇CeWe(Ce(ξl),A) + G e

N e

∂Ce(ξl)

∂α

]}
wl

eLb2 =
k∑

l=1

∂Ce(ξl)

∂α
:
{
M ′

J (ξl)[Be
b(ξl)]T

+ MJ (ξl)

[
∂Be

b(ξl)

∂α

]T
}

wl

Note that these tangent matrices only apply for the case that
the vector of the non-conservative forces fnc does not depend
on the coordinates q and the momenta p, respectively.
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Appendix 5: The material tangent operator

The material tangent operator L , see Reference [18], nec-
essary in the linearisation of the semi-discrete equations of
motion, is a fourth-order tensor resulting from the gradient
of the second Piola–Kirchhoff stress tensor. Defining the
short hand notations

Ii jkl = 1

2
(δikδ jl + δilδ jk) (111)

{
(A ⊗ I)S24

}
i jkl

= 1

4
(Ailδ jk + A jlδik + Aikδ jl + A jkδil)

(112)
{
−C−1 � C−1

}
i jkl

= −1

2
(C−1

ik C−1
l j + C−1

il C−1
k j ) (113)

of the symmetric fourth-order unity tensor I, the minor and
major symmetric product (A⊗ I)S24 of the structural tensor
Awith the unity tensor I and the major symmetric product�
of the symmetric inverse right Cauchy–Green tensor, this
fourth-order tensor takes the form (cf. [16] and [24])

L (C,A) = 2∇CS = 4∇2
CW

= 4
5∑

i=1

{
∂ Ii
∂C

⊗
⎡
⎣

5∑
j=1

∂

∂ I j

(
∂W

∂ Ii

)
∂ I j
∂C

⎤
⎦

+ ∂W

∂ Ii

∂

∂C

(
∂ Ii
∂C

) }

=
{

∂2W

∂ I 21
+ 2I1

∂2W

∂ I1∂ I2
+ ∂W

∂ I2
+ I 21

∂2W

∂2 I2
)I ⊗ I

−
(

∂2W

∂ I1∂ I2
+ I1

∂2W

∂2 I2

)
(C ⊗ I+I ⊗ C)+ ∂2W

∂2 I2
C ⊗ C

− ∂W

∂ I2
I +

(
∂2W

∂ I1∂ I4
+ I1

∂2W

∂ I2∂ I4

)
(A ⊗ I + I ⊗ A)

− ∂2W

∂ I2∂ I4
(C ⊗ A + A ⊗ C) + ∂2W

∂ I4∂ I4
A ⊗ A

+
(

∂2W

∂ I1∂ I5
+ I1

∂2W

∂ I2∂ I5

)
[(I ⊗ (AC + CA)

+ (AC + CA) ⊗ I]
− ∂2W

∂ I2∂ I5
[(C ⊗ (AC + CA) + (AC + CA) ⊗ C]

+ ∂2W

∂ I5∂ I5
[(AC + CA) ⊗ (AC + CA)]

+ ∂W

∂ I4∂ I5
[(A ⊗ (AC + CA) + (AC + CA) ⊗ A]

+ ∂W

∂ I5
(A ⊗ I)S24 + I3

(
I3

∂2W

∂ I3∂ I3
+ ∂W

∂ I3

)
C−1 ⊗ C−1

+ I3
∂W

∂ I3
(−C−1 � C−1)

+ I3

(
∂2W

∂ I1∂ I3
+ I1

∂2W

∂ I2∂ I3

)
(I ⊗ C−1 + C−1 ⊗ I)

− I3
∂2W

∂ I2∂ I3
(C ⊗ C−1 + C−1 ⊗ C)

+ I3
∂2W

∂ I3∂ I4
(A ⊗ C−1 + C−1 ⊗ A)

+ I3
∂2W

∂ I3∂ I5
[(AC+CA) ⊗ C−1 + C−1 ⊗ (AC+CA)]

(114)

Note that Eq. (114) also represents the universal case, and
does not require a split of the free energy density function
into an isochoric and volumetric part.
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