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Abstract Computational models based on the phase-field
method typically operate on a mesoscopic length scale
and resolve structural changes of the material and further-
more provide valuable information about microstructure and
mechanical property relations. An accurate calculation of
the stresses and mechanical energy at the transition region
is therefore indispensable. We derive a quantitative phase-
field elasticity model based on force balance and Hadamard
jump conditions at the interface. Comparing the simulated
stress profiles calculated with Voigt/Taylor (Annalen der
Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math
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Mech 9:49, 1929) and the proposed model with the the-
oretically predicted stress fields in a plate with a round
inclusion under hydrostatic tension, we show the quantita-
tive characteristics of the model. In order to validate the
elastic contribution to the driving force for phase transition,
we demonstrate the absence of excess energy, calculated by
Durga et al. (Model Simul Mater Sci Eng 21(5):055018,
2013), in a one-dimensional equilibrium condition of serial
and parallel material chains. To validate the driving force for
systems with curved transition regions, we relate simulations
to the Gibbs-Thompson equilibrium condition (Johnson and
Alexander, J Appl Phys 59(8):2735, 1986).

Keywords Phase-field · Elasticity · Jump-conditions ·
Microstructure evolution · Heterogeneous systems ·
Interfacial excess energy

1 Introduction

The modeling of microstructure evolution has become very
essential in material science and physics. Phase-field meth-
ods become increasingly important with its capability to
simulate complicated morphological evolution, in response
to the evolution of the different thermodynamic physi-
cal fields, while incorporating the influence of capillarity.
Therefore the phase-field method has been established for
simulating the microstructural evolution in a wide variety of
material processes, such as solidification, solid-state phase
transformations, precipitate growth and coarsening, marten-
sitic transformations and grain growth [5]. In the phase-field
method, we typicallymap a given sharp interface free bound-
ary problem onto a diffuse interface that is constructed out
of smoothly varying phase-field order parameters. The dif-
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ferent physical fields (concentration, stress, strain etc.) vary
continuously across the constructed interface following the
variation of the order parameters. Such a construction is
advantageous because it obviates the requirement to track the
interface between the phase boundaries during microstruc-
tural evolution [6], as morphological evolution is implicitly
described through the spatiotemporal evolution of the differ-
ent order parameters. Concomitant with the evolution of the
phase-fields the different physical fields related to the mass,
momentum and energy are self-consistently described using
appropriate conservation equations. Although the process is
elegant, appropriate care must be exercised in the construc-
tion of the evolution equations of the phase-fields and the
conservation equations, which generally require homoge-
nization of the variables exhibiting jumps across the interface
in the original sharp interface problem. In the absence of the
correct homogenization scheme, artificial jumps in the con-
tinuous variables could be introduced in the problem, which
then leads to an incorrect mapping with respect to the actual
free-boundary problem.

Describing solid state transformation processes or pre-
dicting microstructure and mechanical property relations, an
accurate calculation of the stresses and mechanical energy
at the transition region is indispensable. This requires that
the effective material parameters are defined in the diffuse-
interface regions in non-homogeneous materials, which is
usually performed by homogenization of the material para-
meters using smooth varying functions constructed out of the
spatially varying phase-fields. In the phase-field community,
there are several known homogenization approaches, see [7]
for an overview of approaches. Khachaturyan’s model [8]
is widely established in phase-field applications. In absence
of nonelastic strains, the model of Khachaturyan is equal to
the Voigt/Taylor (VT) homogenization scheme [1] between
locally overlapping phases. The main assumption of the VT
approach is that the strains of overlapping phases are the
same. With an order parameter φ the stress in the isostrain
two phase case reads as

σ VT (φ) = Cα
[
ε − ε̃α

]
h(φ) + Cβ

[
ε − ε̃β

]
(1 − h(φ)).

(1)

ε is the local strain, which in turn depends on the gra-
dient of displacement field (∇u)i j = ∂ui/∂x j by ε =(∇u+ (∇u)T

)
/2, and σi j = (C[ε − ε̃])i j = Ci jkl(εkl − ε̃kl)

is the particular stress component using the Einstein sum-
mation convention. ε̃α and Cα represent the local nonelastic
strain and the stiffness tensor of phase α. h(φ) is the interpo-
lation function which is in the simplest case h(φ) = φ. This
approach is employed in [9–12]. Assuming equal stresses in
the transition region results in stress, due to the Reuss/Sachs
(RS) [2] approximation

σ RS(φ) = [
Sαh(φ) + Sβ(1 − h(φ))

]−1

×
[
ε −

(
ε̃αh(φ) + ε̃β(1 − h(φ))

)]
, (2)

where Sα is the compliance tensor of phase α. This local
homogenization sheme has been discussed by Steinbach [13]
and Apel et al. [14]. Ammar et al. [7] propose a Hashin-
Shtrikman homogenization between locally existing phases
and present an accurate comparison between Khachatu-
ryan’s, VT, RS and their own approach. In a recent publi-
cation, Durga et al. [3] investigate the excesses of the stress,
strain and the elastic energy for both, the VT and RS inter-
polation to estimate the material properties at the interface.
As a result of the calculations, it is clear that under condi-
tions of uniaxial loading of the interface, the RS interpolation
delivers an excess free interface,while the conditions of a par-
allel material circuit with a complete shear loading require
a VT interpolation such that there is no excess contribution
from the bulk energy density to the surface energy. With this
motivation, the respective paper proposes a model by com-
bining the VT and RS interpolation schemes wherein, a VT
interpolation is imposed, in order to derive the tangential
stress component and the RS scheme is utilized to determine
the stress components on the normal plane. Although, the
model promises a new perspective, there is a problem with
the associated formulation. In the description of the model,
the stress, strain and stiffness tensor need to be transformed
into a coordinate system consisting of the interfacial normal
and of another orthogonal direction in the plane of separation
of the phases. To derive a solution, the transformed state of
stress is assumed to be a principal state. This is a physically
unrealistic situation, given there exist purely shear problems
in materials science involving precipitate growth. Hence, the
assumption is restrictive and makes the model not globally
applicable.

VT and RS methods offer approximations for two lim-
its of the real material parameters for locally overlapping
phases. When using these schemes, the approximation of
elastic constants is only valid in one-dimensional special
cases. The VT limit provides an exact stiffness for a one-
dimensional parallel material circuit of different materials
and the RS approximation does this for a one-dimensional
material chain. For all other cases, jump conditions at the
transition zones, from one material to the other, have to be
fulfilled in order to calculate the correct stresses or strains.

The equilibrium jump condition is a force balance in the
normal direction of the interface and the Hadamard condi-
tion in the tangential direction [15]. Based on these jump
conditions, we formulate a quantitative phase-field elastic-
ity model. Comparing the simulated stress and strain profiles
with the theoretically predicted fields in a one dimensional
serial and parallel material chain setup as well as for a
plate with a round inclusion under hydrostatic tension, we
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highlight the quantitative characteristics of the model. Kim
et al. [16], Plapp [17] Choudhury and Nestler [18] pointed
out for solidification processes, that a driving force, which
contains only homogeneous variables, avoid the interfacial
excess energy. The proposed model uses normal components
of the stresses and tangential components of the strains, for
the definition of consistent potential type and consequently
for the formulation of the driving force. In order to vali-
date the elastic contribution of the driving force, we generate
one dimensional equilibrium conditions in the normal and
tangential directions and demonstrate the absence of excess
energy.

2 Model formulation

2.1 Phase-field

The model is based on a generalized phase-field approach
for microstructure evolution in multi-phase and multi-
component systems [19]. In a two phase system, only one
order parameter φ is needed, which represents the volume
fraction of phaseα. Accordingly the volume fraction of phase
β is 1−φ. The energy functional can be expresses in the form

F(φ,∇φ, ε) =
∫

V

(
εa(∇φ) + 1

ε
ωob(φ) + fel(φ, ε)

)
dV,

(3)

where fel(φ, ε) denotes an elastic energy density contribu-
tion as a function of the local strain ε. The gradient energy
density in Eq. (3) reads a(∇φ) = γαβ |∇φ|2, as presented
in [19], where γαβ represents the surface energy density
between the phases α and β. We further use an obstacle-
type formulation ωob = 16γαβφ(1− φ)/π2 as the potential.
ε is a small length scale parameter related to the diffuse inter-
face thickness. Following the Ginzburg–Landau analysis, the
interface traction φ̇ = ∂φ/∂t is proportional to a variational
derivative of the functional (3) with respect to the order para-
meter φ. The proportionality constant is the mobility of the
interface 1/τ . The evolution equation for the order parameter
φ is obtained according to

τεφ̇ = −δF
δφ

, (4)

where the variational derivative writes as

δ

δφ
= ∂

∂φ
− ∇ · ∂

∂∇φ
. (5)

We solve explicitly the momentum balance equation,

ρ ü = ∇ · σ , (6)

for the evolution of displacement field u, until themechanical
equilibrium ρ ü = 0 is reached. ρ is the mass density and
(∇ · σ )i = ∂σi j/∂x j defines the stress divergence. ü =
∂2u/∂t2 is the second partial time derivative of u.

2.2 Solid–solid jump conditions

The mechanical jump conditions for a bounded solid–solid
transition are the underlying physical equations of the pro-
posed model. For a sharp interface theory in the case of
singular surface, the force balance reads [15]

(
σα − σ β

)
n = �σ �n = 0, (7)

with the normal vector n at the interface between α and β

phase and the corresponding jump of stresses �σ �. The trac-
tion vector t tr = σαn = σα

i j n j on the left and t tr = σ βn
on the right of the transition zone are continuous functions
at the singular surface. Apart from the continuity of the dis-
placement field u, the Hadamard jump condition follows for
∇u accordingly to [15]

�∇u� = anT . (8)

(
anT

)
i j = ain j is the dyadic product of an arbitrary vector

a and the normal vector n. The jump of the deformation gra-
dient �∇u� vanishes in the tangential direction and implies
a no slip boundary condition. If we multiply two tangential
vectors t and s with 〈t, n〉 = ti ni = 0 and 〈s, n〉 = 0 it can
be seen, that �∇u�t = 0 and �∇u�s = 0.

2.3 Energy formulation

As seen in the previous section the jump conditions (7)
and (8) depend on the interface orientation n. The basic idea
of our approach is to transform the stresses and strains to the
basis fixed on n and then to calculate the energy using only
homogeneous variables, which are given by the jump condi-
tions (7) and (8). For the manageability of the calculations,
we neglect the eigenstrains ε̃ in the first step and include them
afterwards.

The base B, which is fixed due to n, is given by B =
{n, t, s}, with 〈n, t〉 = 0, 〈n, s〉 = 0, 〈t, s〉 = 0 and the
normal vector of the transition region

n = ∇φ

|∇φ| , (9)

with |∇φ| = √〈∇φ,∇φ〉 as the norm of ∇φ. The transfor-
mation of the stress tensor σ to the base coordinate system
B writes as
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σ B = Qσ QT =
⎛

⎝
σnn σnt σns
σnt σt t σts
σns σts σss

⎞

⎠ , (10)

Q is a locally defined orthonormal matrix

Q =
⎛

⎝
n1 n2 n3
t1 t2 t3
s1 s2 s3

⎞

⎠ . (11)

The traction vector t tr = σ Bn can now be written in the
transformed coordinate system

t tr =
⎛

⎝
tn
tt
ts

⎞

⎠ =
⎛

⎝
σnn σnt σns
σnt σt t σts
σns σts σss

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ =
⎛

⎝
σnn
σnt
σns

⎞

⎠ . (12)

With the previous relations formed in the coordinate system
B, the continuity of the traction vector t tr in the normal direc-
tion results in the continuity of stress components σnn, σnt
and σns . Similarly the Hadamard condition (8) leads to the
continuity of the strain components εt t , εss and εts . Thereby
the jump conditions (7) and (8) are equivalent to

�σ B� =
⎛

⎝
0 0 0
0 �σt t� �σts�
0 �σts� �σss�

⎞

⎠,

�εB�=
⎛

⎝
�εnn� �εnt� �εns�

�εnt� 0 0
�εns� 0 0

⎞

⎠. (13)

This means, that in a jump between the phases, the normal
components of σ B and the tangential components of εB are
homogeneous. Using the Voigt notation, the transformation
of stresses and strains reads

σ v
B = Mv

σ σ v, (14)

εv
B = Mv

εε
v (15)

with Mv
σ and Mv

ε as transformation matrices (see Appendix
for the definition) and the corresponding variables in Voigt
notation

σ v = (
σxx , σyy, σzz, σyz, σxz, σxy

)T
, (16)

εv = (
εxx , εyy, εzz, 2εyz, 2εxz, 2εxy

)T
. (17)

We reorder the components of the strain and stress vectors to
separate the normal and tangential components and define

εα
B := (

εα
nn, 2ε

α
ns, 2ε

α
nt︸ ︷︷ ︸

εα
n

, εt t , εss, 2εts︸ ︷︷ ︸
εt

)T = (
εα
n , εt

)T
, (18)

σα
B := (

σnn, σns, σnt︸ ︷︷ ︸
σ n

, σα
t t , σ

α
ss, σ

α
ts︸ ︷︷ ︸

σα
t

)T = (
σ n, σ

α
t

)T
. (19)

The superscript α denotes that the particular variable is non
homogeneous and dependent on the particular phase. The
homogeneous variables are denotedwithout a superscript and
are defined according to the jump conditions (13). Because of
this reformulation,wepermute the rowsof the transformation
matrices and derive the following expressions from Eqs. (14)
and (15)

σα
B = Mσ σ v, (20)

εα
B = Mεε

v. (21)

Thereby, are Mσ and Mε transformation matrices (see
Appendix for the definition) for stresses and strains directly in
the used base notation,which is defined byEqs. (18) and (19).
Using that notation and the relation M−1

σ = MT
ε [20], the

free elastic energy for the bulk phase α can be written in the
form

f α
el (ε

v) = 1

2

〈
εv,Cαεv

〉 = 1

2

〈
M−1

ε εα
B,CαM−1

ε εα
B

〉

= 1

2

〈
εα
B, MσCαMT

σ︸ ︷︷ ︸
=:Cα

B

εα
B

〉 = f α
el (ε

α
B), (22)

withCα as the stiffness tensor of phaseα in theVoigt notation.
In order to simplify the derivations, we break the stiffness
tensor into different blocks

Cα
B =

(
Cα
nn Cα

nt

Cα
tn Cα

t t

)

, (23)

where Cα
nn and Cα

t t are symmetric matrices of 3 × 3 dimen-

sions and Cα
nt is a 3 × 3 matrix with Cα

tn = CαT

nt . With the
previous notations in Eqs. (18), (19) and (23), we rewrite the
expression of the free elastic energy of the α phase as a sum
of scalar products in the appropriate spaces

f α
el (ε

α
B) = 1

2
〈εα

B,Cα
Bεα

B〉

= 1

2

(〈εα
n , Cα

nnε
α
n 〉 + 〈εα

n , Cα
ntεt 〉

+ 〈εt , Cα
tnε

α
n 〉 + 〈εt , Cα

t tεt 〉
)
. (24)

The elastic energy f α
el (ε

α
B) is a function of homogeneous εt

and non homogeneous variables εα
n . The discontinuity of εα

n
is indicated by the superscript α. Now we are able to dis-
solve the whole dependence of εα

n . This can be done in two
ways. We can replace εn in Eq. (24) for the elastic potential
energy, but then we have to deal with excess energy correc-
tion terms [16] in order to receive a quantitative formulation.
Another way is to follow the approach of Plapp [17], Choud-
hury and Nestler [18] to generate a potential which is only
dependent on homogeneous system variables. Therefore we
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consider the elastic contribution of the driving force for phase
transition.

2.4 Elasticity driving force contribution

The traction of the particular order parameter is proportional
to the variational derivative of the functional F(φ,∇φ, ε),
which is given by Eq. (3). The derivatives of the gradient
energy density a(∇φ) and the potential ω(φ) are described
e.g. in [19] or [18]. Here we are focusing only on the deriv-
ative ∂/∂φ for the variation of the elastic contribution of
F(φ,∇φ, ε).

The interface gives the orientation of the reference coor-
dinate system by the gradient vector ∇φ which in turn
represents the directions in which stresses and strains are
decomposed, using Eqs. (18) and (19). The driving force
is the total elastic energy of the system, which writes as
the interpolated sum of the elastic energies of two phases
weighted with the smooth function h(φ) and h(1 − φ) =
1 − h(φ), respectively. According to Eq. (24), the energy of
the phases can be expressed as

f α
el = 1

2

(
〈εα

n , Cα
nnε

α
n 〉 + 〈εα

n , Cα
ntεt 〉 + 〈εt , Cα

tnε
α
n 〉

+ 〈εt , Cα
t tεt 〉

)
,

f β
el = 1

2

(
〈εβ

n , Cβ
nnε

β
n 〉 + 〈εβ

n , Cβ
ntεt 〉 + 〈εt , Cβ

tnε
β
n 〉

+ 〈εt , Cβ
t tεt 〉

)
,

fel = f α
el h(φ) + f β

el h(1 − φ). (25)

We note that the superscripts α, β are mentioned only on
the non-homogeneous variables. The elastic driving force
contribution is given by the variation of fel with respect to φ

δ fel
δφ

= ∂ fel
∂φ

− ∇ · ∂ fel
∂∇φ

. (26)

To perform the first part of the variation, we just note the
following interpolations that must result out of the jump con-
dition in normal direction (see Eqs. (7) and (12)) namely

εn = εα
n h(φ) + εβ

n h(1 − φ). (27)

The derivative of fel at constant εα
B writes as

(
∂ fel
∂φ

)

εα
B

=
(
f α
el − f β

el

) ∂h(φ)

∂φ
+ ∂ f α

el

∂εα
n

∂εα
n

∂φ
h(φ)

+ ∂ f β
el

∂ε
β
n

∂ε
β
n

∂φ
h(1 − φ). (28)

In order to determine, the derivatives of the nonhomogeneous
variable with respect to the variation in the phase-field order

parameter φ, we utilize the expressions in Eq. (27). Since we
require the partial derivatives at constant εα

B , it implies the
differentiation of both sides in expression (27). It gives us
the following relation

− (
εα
n − εβ

n

) ∂h(φ)

∂φ
= ∂εα

n

∂φ
h(φ) + ∂ε

β
n

∂φ
h(1 − φ). (29)

Rewriting Eq. (28), substituting the relation (29) and using
the condition that, the normal components of stresses are
homogeneous σ n = ∂ f α

el/∂εα
n = ∂ f β

el /∂ε
β
n , the variational

derivative simplifies as

(
∂ fel
∂φ

)

εα
B

=
(
f α
el − f β

el

) ∂h(φ)

∂φ

+
〈
σ n,−

(
εα
n − εβ

n

) ∂h(φ)

∂φ

〉
. (30)

Reordering the particular components in Eq. (30), the deriv-
ative results as
(

∂ fel
∂φ

)

εα
B

=
[(

f α
el − 〈

σ n, ε
α
n

〉) −
(
f β
el − 〈

σ n, ε
β
n

〉)] ∂h(φ)

∂φ

=
[(

f α
el −

〈
∂ f α

el

∂εα
n

, εα
n

〉 )

︸ ︷︷ ︸
pα(σ n ,εt )

−
(
f β
el −

〈
∂ f β

el

∂ε
β
n

, εβ
n

〉)

︸ ︷︷ ︸
pβ(σ n ,εt )

]
∂h(φ)

∂φ

= ∂

∂φ

[
pα(σ n, εt )h(φ) + pβ(σ n, εt )h(1 − φ)

]
.

(31)

pα(σ n, εt ) and pβ(σ n, εt ) are bulk potentials, which include
only homogeneous variables σ n and εt . Both bulk potentials
weighted with the smooth function h(φ) and h(1 − φ) cor-
respondingly produce

P(φ,∇φ, σ n, εt )= pα(σ n, εt )h(φ)+ pβ(σ n, εt )h(1 − φ).

(32)

The particular bulk potentials are composed of a Legendre
transform of the bulk elastic energy density f α

el with respect
to εα

n

pα(σ n, εt ) = f α
el

(
εα
n (σ n, εt ), εt

)

−
〈

∂ f α
el (ε

α
n (σ n, εt ), εt )

∂εα
n︸ ︷︷ ︸

σ n

, εα
n (σ n, εt )

〉
. (33)

and the corresponding part of β phase.
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For the divergence part of the variation in Eq. (26), we
calculate x-component of the derivative at a constant εα

B

(
∂ fel
∂φx

)

εα
B

= f α
el

∂h(φ)

∂φx
+ f β

el
∂h(1 − φ)

∂φx

+
(

∂ f α
el

∂εt

∂εt

∂φx
h(φ) + ∂ f β

el

∂εt

∂εt

∂φx
h(1 − φ)

)

+
(

∂ f α
el

∂εα
n

∂εα
n

∂φx
h(φ) + ∂ f β

el

∂ε
β
n

∂ε
β
n

∂φx
h(1 − φ)

)

,

(34)

with φx = (∇φ)x . Similar expressions of the derivative
results for the y and z components. Assuming isotropic
bulk materials follow for material parameters Cα

B = Cα and

Cβ
B = Cβ . Since the material parameters are constant in the

particular free energy density, the derivatives ∂Cα/∂φx =
∂Cβ/∂φx = 0 are zero. The first term of Eq. (34) is zero,
because the interpolation function is independent of∇φ. The
partial derivatives are evaluated at constant εα

B = (εn, εt ), so
that the derivative ∂εt/∂φx vanishes in Eq. (34). To evaluate
the last term, we differentiate both sides of relation (27) with
respect to φx at constant εn and have

0 =
(

∂εα
n

∂φx
h(φ) + ∂ε

β
n

∂φx
h (1 − φ)

)

. (35)

Substituting the previous relation in Eq. (34) and using
∂ f α

el/∂εα
n = ∂ f β

el /∂ε
β
n = σ n , we obtain ∂ fel/∂∇φ = 0.

Therefore, the driving force part arising out of the divergence
term ∇ · ∂ fel/∂φx is zero. Therefore the elastic contribution
to the driving force equals to

δ fel
δφ

= ∂P(φ,∇φ, σ n, εt )

∂φ

= (
pα(σ n, εt ) − pβ(σ n, εt )

) ∂h(φ)

∂φ
, (36)

with the potential P(φ,∇φ, σ n, εt ) as described in Eq. (32).
For anisotropic bulk materials constants (Ci

B �= Ci ) an addi-
tional driving force contribution must be taken into account.
Comparing the bulk densities pi with the Eshelby Tensor for
small deformations b [15,21]

bkj = f α
el δ jk − σi jεik (37)

we notice, that the jump �p(σ n, εt )� of the particular bulk
densities pi (σ n, εt ) is exactly equal to the jump of nn com-
ponents of the Eshelby Tensor Eq. (37)

�p(σ n, εt )� =̂ 〈
n, �b�n

〉
. (38)

2.5 Effective material parameters

The potential of the particular phase α defined only with
continuous variablesσ n and εt is givenby theLegendre trans-
form of the elastic energy with respect to εα

n (see Eq. (33)).
All the discontinuities are excluded from the variables and
can be incorporated in the material parameter as presented
in the following.

Using Eq. (24) results in the following derivative

∂ f α
el (ε

α
n , εt )

∂εα
n

= Cα
nnε

α
n + Cα

ntεt = σ n . (39)

Reformulating the previous equation, we get an expression
for the non-homogeneous variable

εα
n = (

Cα
nn

)−1 (
σ n − Cα

ntεt
)
. (40)

The formulation of εα
n considers all shear components of the

normal stressesσ n andof the tangential strains εt . Thismakes
the proposed approach more general in comparison with the
proposed model by Durga et al. [3].

By inserting the expression (40) into (33),weget an energy
term that is only dependent on homogeneous system vari-
ables

pα(σ n, εt ) = 1

2

〈
(σ n, εt ),T α

(
σ n

εt

)〉
, (41)

with the material parameter matrix

T α =
⎛

⎝
−(

Cα
nn

)−1 (
Cα
nn

)−1Cα
nt

(
Cα
nt

)T (Cα
nn

)−1 Cα
t t − (

Cα
nt

)T (Cα
nn

)−1Cα
nt

⎞

⎠ . (42)

In order to get the total energy in the interface, we sum-
marize the bulk energies pα(σ n, εt ) and pβ(σ n, εt ) that are
weighted with the order parameter φ by multiplying with the
smooth function h(φ) and h(1−φ) = 1−h(φ), respectively.
We define the homogeneous variable ξ := (σ n, εt )

T and get

P(φ,∇φ, ξ) = pα(ξ)h(φ) + pβ(ξ)(1 − h(φ))

= 1

2

〈
ξ , T̄ ξ

〉
. (43)

T̄ is thereby the linear interpolation of the material parame-
ters

T̄ = T α(∇φ)h(φ) + T β(∇φ)(1 − h(φ)). (44)

The derivative of the potential P(φ,∇φ, ξ) with respect to
the homogeneous variable ξ = (σ n, εt )

T , yields the non
homogeneous variable
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χ(φ,∇φ, ξ) := ∂P(φ,∇φ, ξ)

∂ξ
= T̄ (φ,∇φ)ξ

= χαh(φ) + χβ(1 − h(φ)). (45)

The sign of the normal component of χ changes due to
the reverse Legendre transformation. T̄ is a new formula-
tion of the proportionality tensor between the homogeneous
variables ξ = (σ n, εt )

T and their dependent counterparts
χ = (−εn, σ t )

T . The proportionality tensor is influenced
by the interface orientation ∇φ and the order parameter φ.
Using the segmentation in Eq. (23) yields

T̄ =
(
T̄nn T̄nt
T̄ T
nt T̄t t

)

, (46)

where the parts are

T̄nn = −(
Cα
nn

)−1
h(φ) − (

Cβ
nn

)−1
(1 − h(φ)),

T̄nt = (
Cα
nn

)−1Cα
nt h(φ) + (

Cβ
nn

)−1Cβ
nt (1 − h(φ)),

T̄t t =
(
Cα
t t − (

Cα
nt

)T (Cα
nn

)−1Cα
nt

)
h(φ)

+
(
Cβ
t t −

(
Cβ
nt

)T (
Cβ
nn

)−1Cβ
nt

)
(1 − h(φ)). (47)

2.6 Incorporation of eigenstrains

The complexity of the proposedmodel increases, if we incor-
porate non-elastic strains ε̃α for the individual phase α into
the system. The non-elastic strains can either be a constant
eigenstrain εα

0 , a plastic strain εα
pl , an eigenstrain dependent

on the concentration εα
0 (c) or temperature εα

0 (T ) or even the
sum of different non-elastic strain contributions

ε̃α = εα
0 + εα

pl + εα
0 (c) + εα

0 (T ) + . . . . (48)

Using the Voigt notation and the transformation in Eq. (10),
the expression for the elastic energy Eq. (24) results in

f α
el (ε

α
B) = 1

2

〈
(εα

B − ε̃α
B), Cα

B

(
εα
B − ε̃α

B

)〉
(49)

Transforming the calculations in Sect. 2.5, we determine the
components in n-direction by

σ n = Cα
nn

(
εα
n − ε̃α

n

) + Cα
nt

(
εt − ε̃α

t

)
, (50)

εα
n = C−1

nn

(
σ n − Cα

nt

(
εt − ε̃α

t

)) + ε̃α
n . (51)

Replacing the whole dependence of εα
n in the elastic energy

formulation (49) by the Legendre transformation results in a
potential, which is only dependent on σ n and εt

pα = 1

2

〈
(σ n, εt − ε̃α

t ),T α

(
σ n

εt − ε̃α
t

)〉
− 〈σ n, ε̃

α
n 〉. (52)

Separating the eigenstrain contribution in the previous
expression reduces the potential to

pα(σ n, εt ) = 1

2

〈

(σ n, εt ),

(
T α
nn T α

nt

T α
nt

T T α
t t

)(
σ n

εt

)〉

−
〈

(σ n, εt ),

(
I T α

nt

O T α
t t

)(
ε̃α
n

ε̃α
t

)〉

+ 1

2

〈
ε̃α
t , T α

t t ε̃
α
t

〉
. (53)

With ξ = (σ n, εt )
T , the corresponding result for the total

elastic potential density is

P(φ,∇φ, ξ) = pα(ξ)h(φ) + pβ(ξ)(1 − h(φ)). (54)

2.7 Calculation of stresses in diffuse interface systems

The formulation of the mixed energy is done in the base B
given by the normal vector of the interface n and its tangen-
tial counterparts t and s. Now we derive the expression for
stress depending on strain, which is given in the Cartesian
coordinate system.

We start from the total elastic potential density in Eq. (54).
The total strains in the normal direction εn are given by the
derivative of the elastic potential density

εn = −∂P(φ,∇φ, ξ)

∂σ n

= −T̄nnσ n − T̄ntεt + χ̃n, (55)

with χ̃n as the eigenstrain contribution in thenormal direction

χ̃n :=
(
ε̃α
n + T α

nt ε̃
α
t

)
h(φ) +

(
ε̃β
n + T β

nt ε̃
β
t

)
h(1 − φ). (56)

For the normal components of the stress σ n , we obtain

σ n = −T̄ −1
nn

(
εn + T̄ntεt − χ̃n

)
. (57)

The tangential components of the stress tensor are given by
the derivative

σ t = ∂P(φ,∇φ, ξ)

∂εt
= T̄ T

nt σ n + T̄t tεt − χ̃ t , (58)

with χ̃ t as the eigenstress contribution in the tangential direc-
tion

χ̃ t := T α
t t ε̃

α
t h(φ) + T β

t t ε̃
β
t h(1 − φ). (59)

Replacing the normal component of σ by applying Eq. (57)
results in the following equation for the tangential stresses

σ t = −T̄ T
nt T̄ −1

nn

(
εn + T̄ntεt − χ̃n

) + T̄t tεt − χ̃ t . (60)
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Using the Eqs. (57) and (60) leads to the stress components
in expressed in base coordinate system

(
σ n

σ t

)
=
( −T̄ −1

nn −T̄ −1
nn T̄nt

−T̄ T
nt T̄ −1

nn T̄t t − T̄ T
nt T̄ −1

nn T̄ T
nt

)

︸ ︷︷ ︸
=:KB (φ)

(
εn
εt

)

+
(

T̄ −1
nn O

T̄ T
nt T̄ −1

nn −I

)(
χ̃n
χ̃ t

)

︸ ︷︷ ︸
=:σ̃ B

. (61)

KB(φ) is the stiffness tensor and σ̃ B(φ) contains the eigen-
stresses in the transition region. Consequently the effective
eigenstrains follow

ε̃B(φ) = −[KB(φ)]−1σ̃ B(φ). (62)

Transforming this expression back to the Cartesian coordi-
nate system using Eqs. (20) and (21), yields the effective
stiffness and the effective eigenstrains in the transition region

K(φ) = MT
ε KB(φ)Mε, (63)

ε̃v(φ) = MT
ε ε̃B(φ). (64)

We recover the Hook’s Law for the region of overlapping
phases in the Voigt notation and Cartesian coordinate system

σ v = K(φ)
(
εv − ε̃v(φ)

)
, (65)

with σ v as the stress and εv the total strain in the Voigt nota-
tion, as defined in Eqs. (16) and (17).

3 Simulation results

In order to validate the proposed model, representative sim-
ulations are performed. The stress, strain and energy fields,
which result from this, are compared to the analytical pre-
dictions and resulting fields using the Voigt/Tailor (VT) (1)
andReuss/Sachs (RS) (2) local homogenisation schemes. All
simulations are performed using the release version 2.1 of the
Pace3D package.

3.1 Serial and parallel material chains under tension

First we discuss a one-dimensional serial material chain
shown on the left side in Fig. 1, with a diffuse transition
region from the phase α to β in the center of the chain.
Such a construction represents a two-phase sample with a
sharp transition in the center. As boundary condition, we
use constant stress in x-direction and zero stresses in other
directions. Consequently, the stress in x-direction, which
is the normal direction nn (see Eq. (9)) of the interface
σxx = σnn = σ0, is constant in mechanical equilibrium
over the whole material chain. The resulting normal strain
in the bulk is εα

nn = εα
xx = σ0/Eα for the phase α and

ε
β
nn = ε

β
xx = σ0/Eβ for the phase β. With Eα = 0.1Eβ as

the corresponding Young’s modulus, the normal component
of strain εα

nn = 10εβ
nn follows with a jump at the position of
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Fig. 1 Serial 1D material chain (left) and parallel 1D material chain (right). Constant stress σ0 is applied in x-direction for the serial material chain
and constant strain is applied in y-direction for the parallel chain. (Color figure online)
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the sharp interface. In the case of a sharp interface, marked
by superscript SI, the average normal strain of the sample
εav.
nn = (εα

nn + ε
β
nn)/2 and the total mechanical energy result

in WSI
tot. = lεav.

nn σ0/2 = 11lσ 2
0 /(4Eβ), with l as the length

of the simulation domain. Consequently, a quantitative dif-
fuse interface model should reproduce the strain and energy
density jump in the center of the domain and the resulting
total energy should be equal to WSI

tot.. The left part of Fig. 1
shows the resulting strain εnn and mechanical energy density
profiles W of the serial material chain derived with VT, RS
and the proposed model. The strain and the energy density
profiles of the RS and the proposed model follow exactly the
corresponding volume fraction profile of the material, which
is given by the order parameter φ. The position of strain and
energy density jump is in the center of the simulation domain.
The total energy, calculated by a line integral over the sim-
ulation domain, is WRS

tot. = Wnew
tot. = WSI

tot.. The strain and
energy density profile of VT does not match the ideal profile
and the corresponding total energy deviates from the analytic
value WVT

tot. ≈ 0.9WSI
tot..

On the right side of Fig. 1, the results of the parallel mate-
rial chain are shown. The used boundary conditions are a
constant strain ε0 in y-direction,which is the tangential direc-
tion t t of the interface, and zero stress in other directions.
The bulk tangential stresses are σα

t t = σα
yy = Eαε0 and σ

β
t t =

σ
β
yy = Eβε0 with a jump in the center of the material chain in

the sharp interface description. The average tangential stress
for the system is σ av.

t t = (σα
t t + σ

β
t t )/2 = ε0(Eα + Eβ)/2.

The total energy results in WSI
tot. = lε0σ av.

t t /2 = (11/4)lε20 .
The tangential stress and energy density profiles calculated
with VT and the proposed method follow the correspond-
ing volume fraction and the total energy is given by WVT

tot. =
Wnew

tot. = WSI
tot.. The profiles calculated with RS do not match

the ideal line and consequently deviate the corresponding
total energy from theoretical value WRS

tot. ≈ 0.9WSI
tot..

These one-dimensional simulations show that the assump-
tion of constant strains in the diffuse interfacial region is only
valid for the tangential components and that the assumption
of constant stresses in the interface is only valid for the nor-
mal components.

3.2 Stress profiles of a plate with inclusion compared
with theory

The simulations presented in Sect. 3.1 show that the proposed
model describes the serial and parallel material chain exactly,
where only the normal or tangential components of stresses
and strains are acting, respectively. In order to validate the
presented model in a more realistic system, we model a two-
dimensional plate under plain strain conditions with a soft
cylindrical inclusion under hydrostatic tension and compare
the stress, strain and energy density fields, with theoretical
predictions [22]. The simulation setup is shown in Fig. 2
top left. We insert a circular inclusion with a radius of r =
100 cells (1 cell = 1 × 1µm) in a simulation domain of
1300 × 1300 cells. The used width of the transition region
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Fig. 2 Stress and strain profiles calculated with VT, RS and a pro-
posed model of a plate with a soft cylindrical inclusion (Ci = 0.1Cs )
under hydrostatic tension conditions compared with theoretical predic-
tions [22]. The particular field profiles are plotted along the green line

pictured in the simulation setup on the top left side. For comparison
the energy density profile calculated according to Durga et al. [3] (see
Eq. (66)) is plotted. (Color figure online)
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between the phases is λ ≈ 2.5ε ≈ 12 cells. We choose
an isotropic stiffness tensor with Young’s modulus Es =
210 GPa for the plate, Ei = 0.1Es for the soft inclusion
and an equal Poisson’s ratio for both phases νs = νi =
0.3. The hydrostatic tension is realized by a constant stress
σ0 = 100 MPa around the plate. In order to split the stress
and strain fields in the normal and tangential components,
we use the cylindrical coordinates for the underlying radial
symmetric system. Thereby we can write σnn = σrr , εnn =
εrr , σθθ = σt t and εθθ = εt t . We evaluate the stress, strain
and energy profiles in the transition zone between the solid
and the inclusion. Therefore, we plot the corresponding field
profiles, calculated with Voigt/Taylor, Reuss/Sachs, and the
proposed model in comparison with theoretically predicted
profiles along the green highlighted line in Fig. 2 top left.

We observe the same results as for the one-dimensional
simulations in (Sect. 3.1). There is a deviation from the theo-
retically calculated profiles of the non homogenous variables
σt t and εrr that are calculated using VT or RS methods
respectively. The two-dimensional simulations show an addi-
tional deviation in the bulk phases for the homogenous
variables σnn and εt t . These deviations in stresses and strains
cause a deviation in the elastic potential energy W in the
transition region, as well as in the bulk. The bulk energy
deviation depends on the curvature κ and on the interface
width λ. For the underlying simulation with κλ ≈ 0.12, we
have a deviation of 7.3 % for VT and a deviation of 7.4 %
for RV results. For a larger κ and λ product, e.g. κλ ≈ 0.8,
the deviation is raised to 29 % for VT and 27 % for RS. The
profiles of the homogenous and non homogenous variables,
calculatedwith the proposedmodel, match verywell with the
theoretical predictions. Hence the deviation of bulk energy
densities for κλ ≈ 0.12 is negligibly small (≈ 0.2 %). For
κλ ≈ 0.8, which is an extreme value for a proper description
of a curved interface, we get a deviation of ≈ 6 %.

As mentioned in the introduction, Durga et al. [3] pre-
sented amodelwhere the stress and strainfields are calculated
separately with VT and RS which then combine the cor-
responding strain and stress components for the energy
calculation. Using this model, the energy density for the
underlying radial symmetric system results in

WDurga = 1

2

(
σ RS
rr εs

′
rr + σ s′

t t ε
VT
tt

)
h(φ)

+ 1

2

(
σ RS
rr εi

′
rr + σ i ′

t t ε
VT
tt

)
h(1 − φ). (66)

Thereby, the non homogeneous variables are defined as [3]

σ s′
t t = Cstt t tεVT

tt + Csrr ttSs
rrrrσ

RS
rr

1 − Csrr ttSs
rr tt

, (67)

εs
′

rr = Ss
rrrrσ

RS
rr + Ss

rr ttCstt t tεVT
tt

1 − Csrr ttSs
rr tt

(68)

and the corresponding components for the inclusion. As
shown in Fig. 2 energy densityWDurga provides the expected
energy profile in the transition region. However, the profile
does not match the theoretical value within the inclusion.
This deviation is caused by the deviation of σ RS

rr and εVT
tt ,

which serve as the basis for the calculation of WDurga (see
Eq. (66)).

3.3 Validation of the driving force

For solidification processes, Kim et al. [16], Plapp [17]
Choudhury andNestler [18] pointedout, that using apotential
which only uses homogenous variables avoid the interfacial
excess energy. Durga et al. [3] have shown, that also in the
case of elasticity, there is an excess energy in the interface
and they have demonstrated their impact [3]. In order to
demonstrate that the proposed model does not produce an
energy excess in the interface, we generate one-dimensional
equilibrium states for the serial and parallel material chain.
The simulation setups are the same as the ones we used in
Sect. 3.1. In addition, we calculate the evolution of the order
parameter given by Eq. (4) with the elastic contribution to
the driving force given by Eq. (36).

For the case of serial material chains, the equilibrium
conditions are σα

nn = σ
β
nn and pα(ξ) = pβ(ξ). The first

condition is fulfilled by the chosen boundary conditions
σα
nn = σ

β
nn = σ0. Due to the underlying one-dimensional

problem, the particular energy density given by Eq. (53)
decreases to

pα(ξ) = 1

2

(
σnn

[−Cα
]−1
nnnnσnn

)
− σnn ε̃

α
nn

= 1

2
σ0

(−Sα
nnnnσ0 − 2ε̃α

nn

)
. (69)

Assuming that the eigenstrain in the softer phase is zero ε̃
β
nn =

0, the eigenstrain in the α phase for serial material chain
follows from the second equilibrium condition reading

pα(σnn) = pβ(σnn)

1

2
σ0

(−Sα
nnnnσ0 − 2ε̃α

nn

) = −1

2
σ0Sβ

nnnnσ0

�⇒ ε̃α
nn = 1

2

(
Sβ
nnnn − Sα

nnnn

)
σ0. (70)

Figure 3 pictures the strain and φ equilibrium profiles in the
left diagrams. The order parameter profile calculated with
RS and proposed model follow the initial φ profile. The
resulting interface width λ is equal to the theoretical value
λ = π2ε/4 ≈ 2.5ε. The solution calculated with VT model
shows a deviation in εnn and φ from the ideal profile.

In the case of parallel material chain, the equilibrium con-
ditions change to εα

t t = ε
β
t t = ε0 and pα(ξ) = pβ(ξ). With

123



Comput Mech (2015) 55:887–901 897

0.18

1.82
ε

n
n
/ε

a
v

.
n

n
εnn

εnn

εnn

εnn

φ

35 65
0

1

φ

φ
φ
φ
φ

φ

0.18

1.82

σ
t
t /

σ
a

v
.

t
t

σtt

σtt

σtt

σttφ

35 65
0

1

φ

φ
φ

φ
φφ

Fig. 3 Equilibrium profiles of φ and εnn correspondingly σt t for the
serial (left) and parallel (right) material chain calculated with VT, RS
and the proposed new model. The chosen nondimensionalized initial

surface energy γ0 = 5× 10−3 for the serial and γ0 = 4× 10−6 for the
parallel material chain. (Color figure online)

the assumption ε̃
β
nn = 0 and the equality of bulk energy den-

sities, the following set of equations hold

pα(εt t ) = pβ(εt t )

1

2
ε20C

α
t t t t − Cα

t t t tε0ε̃t t + 1

2
Cα
t t t t ε̃

α2

t t = 1

2
ε20C

β
t t t t

�⇒ ε̃α
t t = ε0

⎛

⎝1 −
√
Cβ
t t t t

Cα
t t t t

⎞

⎠ . (71)

The resulting σt t and φ equilibrium profiles are pictured in
Fig. 3 on the right.While the equilibriumφ profiles calculated
with VT and the proposed model are equal to the initial φ

profile, the equilibrium φ profile calculated with RS model
becomes broader.

The reason for the change of equilibrium interface widths
λeq is the elastic interfacial excess energy. Kim et al. [16]
and Cha et al. [23] pointed out the role of interfacial excess
energy and calculated the equilibrium interface width λ and
surface energy γ for solidification in binary systems. For the
presented model we obtain

λ =
∫ 1

0

dφ
√

16
π2 φ(1 − φ) + ε

γ0
�P(φ,∇φ, ξ)

, (72)

γ = 2γ0

∫ 1

0

√
16

π2 φ(1 − φ) + ε

γ0
�P(φ,∇φ, ξ) dφ, (73)

with �P(φ,∇φ, ξ) = P(φ,∇φ, ξ) − pα(ξ) − pβ(ξ) as
the elastic energy density difference between values at the
interface and that of the bulk phases. Durga et al. [3] cal-
culated and illustrated the elastic contribution to interfacial
excess energy for different interfacewidths. For the proposed
model the elastic contribution of interfacial energy excess of
a one-dimensional two phase domain is defined as

Wxs
el =

∫ ∞

−∞
P(φ,∇φ, ξ) − pα(ξ) − pβ(ξ)dx

=
∫ ∞

−∞
�P(φ,∇φ, ξ)dx . (74)

Applying Eqs. (72), (73) and (74) to other models, the energy
density P(φ,∇φ, ξ) has to be replaced correspondingly.
For an odd profile P(φ,∇φ, ξ), which is antisymmetric at
φ = 0.5, the elastic interfacial energy excess Wxs

el vanishes
and we retrieve the expected values for λ = π2ε/4 and
γ = γ0. Each deviation from this profile leads to an excess
energy contributionWxs

el �= 0, which distorts the equilibrium
φ and which in turn modifies the resulting interface width λ

and surface energy γ , according to Eqs. (72), (73). Figure 4
images this context.An elastic energy density profilewhich is
antisymmetric at the φ = 0.5 point changes the equilibrium
interface width and surface energy. The energy profile of the
serial chain calculated with VT model or the energy profile
of parallel chain calculated with RS model (see Fig. 1), are
elastic energy densities with non antisymmetric profiles at
the φ = 0.5 isoline. We find a change of both, the interface
width as well as the surface energy. Using an energy den-
sity, which depends only on homogenous variables, avoids
an energy excess in the interface and the expected values forλ
and γ follow. This context is shown and applied to solidifica-
tion processes by Choudhury and Nestler [18]. The proposed
model uses the homogenous variable ξ = (σ n, εt )

T in the
formulation of P(φ,∇φ, ξ), see Eq. (43). All discontinuities
are incorporated in the material parameter T (φ,∇φ). The
excess energy Wxs

el vanishes and the equilibrium φ profile
does not distort in a stationary solution of Eq. (4), as pictured
in Fig. 3 for parallel and serial material chain. Consequently,
the elastic contribution to the driving force does not modify
the equilibrium values of λ and γ , as shown in Fig. 3 for a
mount of Wα/γ0 ratios.

123



898 Comput Mech (2015) 55:887–901

0

1

2
λ
/(

2.
5

) λ
λ

λ

0

1

2

λ
/(

2.
5

)λ
λ

λ

−3 −2 −1 0 1 2

log(W α
/γ0)

0

1

2

3

γ
/γ

0

γ
γ

γ

−3 −2 −1 0 1 2

log(W α
/γ0)

0

1

2

3

γ
/γ

0

γ
γ

γ

Fig. 4 Equilibrium interface widths λ and corresponding surface energies γ for the serial (left) and parallel (right) material chains with variating
initial surface energy γ0. (Color figure online)

3.4 2D equilibrium through Gibbs–Thomson effect

In two dimensions, an interfacial equilibrium condition can
be reached using the Gibbs–Thomson effect. For a circu-
lar inclusion of radius ri , embedded in a matrix material,
an equilibrium is reached, if the surface energy is equal to
the potential energy. Such a condition satisfies the following
local condition [4,24,25]

ωs − ωi −
〈(

εsn − εin

)
, σ i

n

〉
= 2κ̄Γsi , (75)

where ωs, ωi are the grand canonical energy densities of the
solid and the inclusion respectively. κ̄ = 1/ri is the mean
curvature and Γsi is the excess grand canonical energy den-
sity at the transition surface. εsn − εin = �εn� is the jump
of strains and σ n the corresponding stress component in the
normal direction of the transition surface. The present inves-
tigation concentrates on the mechanical contribution, thus
the jump of grand canonical energy densities reduces to the
jump of elastic energy densityωs −ωi = �ω� = �Wel� at the
sharp interface transition surface. For purely elastic systems,
the Gibbs–Thomson Eq. (75) reduces to

�Wel� −
〈
�εn�, σ

i
n

〉
= 1

ri
γ
eq
si , (76)

with γsi as the surface energy density. The left part of the
previous expression is nothing else then the difference of
particular Eshelby Tensors (see Eq. (37)) in nn direction. As
already mentioned in Sect. 2.4 jump of the Ehselby Tensors
in nn direction

〈
n, �b�n

〉
is equal to the jump of bulk densities

�p(σ n, εt )�. It comes as no surprise, that in a sharp interface
limit, the elastic contribution of theGibbs–Thomson Eq. (76)

is exactly equal to the elastic driving force contribution of the
proposed model ∂P(φ,∇φ, σ n, εt )/∂φ.

We choose the simulation setup of Sect. 3.2. Furthermore
we use the theoretically predicted stress fields of Mai and
Singh [22] and calculate the equilibrium surface energy den-
sity γ

eq
si according to Eq. (76)

γ
eq
si (ri ) = ri

2

(
�σ th

θθ (ri )�ε
th
θθ (ri ) − σ th

rr (ri )�ε
th
rr (ri )�

)
. (77)

εthθθ (ri ) and σ th
θθ (ri ) are the theoretical values at the transition

surface. The theoretical description of Mai and Singh [22]
for the underlying problem requires a load σ∞, which acts in
infinity. In order to fit this value we compare the outer energy
of the simulation with the energy of theoretical description at
appropriate distance. Therebywe have ensured, that the outer
energies of the simulation and the theoretical description are
equal. This condition is satisfied for σ∞ = 1.009712σ0 and
a chosen value of σ0 = 100 MPa in the simulation.

Figure 5 (left) shows the energy field near the equilibrium
condition calculated with the proposed model. The growth
or shrinkage plot of the inclusion for different surface energy
densities γsi is shown on the right. This plot demonstrates the
quantity of the proposed driving force including 2D struc-
tures and curved surfaces. The elastic driving force of our
model is consistent with the theoretically predicted ones,
described by Eq. (77).

4 Conclusion

In this paper, we present a quantitative elasticity phase-filed
model for solid–solid systems. Despite the diffuse interface,
which is indispensable for the phase-fieldmodels, themethod
satisfies the mechanical jump conditions. Comparing the
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Fig. 5 2D validation of the proposed model over the Gibbs–Thomson
effect. The computed energy field is shown on the left. The energy
profiles on top right refer to simulations, which satisfy the condition

γsi/γ
eq
si (ri ) = 1 andwhich are plotted along the greenmarked line. The

growth or shrinkage of the inclusion for different surface energy densi-
ties γsi are shown in the bottom right diagram. (Color figure online)

simulated stress profiles in a plate with a round inclusion
under hydrostatic tension with theoretically predicted stress
fields, we show the quantitative characteristics of the resulted
fields. The presented one dimensional equilibrium simula-
tions demonstrate the quantity of the elastic driving force
contribution and show the limits of VT and RS model. Both
the interfacewidth aswell as the surface energy remain stable
at equilibrium applying the proposed model regardless of the
elastic driving force contribution. The two-dimensional equi-
librium simulations, according to theGibbs–Thomson effect,
demonstrate the quantity of the proposed elastic driving force
contribution on curved surfaces. We show a connection of
the formulated bulk potentials with the Eshelby Tensor and
demonstrate, that the proposed elastic driving force con-
tribution is exactly equal to the elastic contribution of the
Gibbs–Thomson equation.

Additionally we offer the possibility to calculate the
stresses for the particular phase σα

B = (σ n, σ
α
t )T in the tran-

sition region. The normal component is equal for both phases
and the tangential component is given by

σα
t = ∂pα(σ n, εt )

∂εt
, (78)

with pα(σ n, εt ) as described in Eq. (53). The quantitative
stresses of the particular phase is important to solve the yield
criterion in order to calculate plastic strain. For example the
Prandtl–Reuss model [26] with vonMises yield criterion and
linear isotropic hardening approximation can be used. The

coupling of the resulted phase dependent plastic strain εα
pl

with the proposed model is straightforward using Eq. (48).
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Appendix

Transformation of stresses and strains in Voigt notation

In the Voigt notation, the strains and stresses can be written
as

σ v = (
σ11, σ22, σ33, σ23, σ13, σ12

)T
, (79)

εv = (
ε11, ε22, ε33, 2ε23, 2ε13, 2ε12

)T
. (80)

Then, the transformation (10) becomes σ v
B = Mv

σ σ v , with
the transformation matrix

Mv
σ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

n1n1 n2n2 n3n3 2n2n3 2n1n3 2n1n2
t1t1 t2t2 t3t3 2t2t3 2t1t3 2t1t2
s1s1 s2s2 s3s3 2s2s3 2s1s3 2s1s2
t1s1 t2s2 t3s3 t2s3+t3s2 t1s3+t3s1 t1s2+t2s1
n1s1 n2s2 n3s3 n2s3+n3s2 n1s3+n3s1 n1s2+n2s1
n1t1 n2t2 n3t3 n2t3+n3t2 n1t3+n3t1 n1t2+n2t1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

(81)
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An analogue transformation for the strain can be written
as εv

B = Mv
εε

v , with the transformation matrix

Mv
ε =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

n1n1 n2n2 n3n3 n2n3 n1n3 n1n2
t1t1 t2t2 t3t3 t2t3 t1t3 t1t2
s1s1 s2s2 s3s3 s2s3 s1s3 s1s2
2t1s1 2t2s2 2t3s3 t2s3+t3s2 t1s3+t3s1 t1s2+t2s1
2n1s1 2n2s2 2n3s3 n2s3+n3s2 n1s3+n3s1 n1s2+n2s1
2n1t1 2n2t2 2n3t3 n2t3+n3t2 n1t3+n3t1 n1t2+n2t1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

(82)

We reorder the components of the strain and stress vectors
and define

εα
B :=

(
εnn, εns, εnt︸ ︷︷ ︸

εn

, εt t , εss, εts︸ ︷︷ ︸
εt

)T = (εn, εt )
T , (83)

σα
B :=

(
σnn, σns, σnt︸ ︷︷ ︸

σ n

, σt t , σss, σts︸ ︷︷ ︸
σ t

)T = (σ n, σ t )
T . (84)

Due to this reformulation, we permute the rows of the previ-
ous matrices Mv

σ and Mv
ε , but the named properties remain

Mσ =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

n1n1 n2n2 n3n3 2n2n3 2n1n3 2n1n2
n1t1 n2t2 n3t3 n2t3+n3t2 n1t3+n3t1 n1t2+n2t1
n1s1 n2s2 n3s3 n2s3+n3s2 n1s3+n3s1 n1s2+n2s1
t1t1 t2t2 t3t3 2t2t3 2t1t3 2t1t2
s1s1 s2s2 s3s3 2s2s3 2s1s3 2s1s2
t1s1 t2s2 t3s3 t2s3 + t3s2 t1s3 + t3s1 t1s2 + t2s1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

(85)

Mε =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

n1n1 n2n2 n3n3 n2n3 n1n3 n1n2
2n1t1 2n2t2 2n3t3 n2t3+n3t2 n1t3+n3t1 n1t2+n2t1
2n1s1 2n2s2 2n3s3 n2s3+n3s2 n1s3+n3s1 n1s2+n2s1
t1t1 t2t2 t3t3 t2t3 t1t3 t1t2
s1s1 s2s2 s3s3 s2s3 s1s3 s1s2
2t1s1 2t2s2 2t3s3 t2s3 + t3s2 t1s3 + t3s1 t1s2 + t2s1

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

(86)

This follow the transformations of stresses and strains as
used in Eqs. (20) and (21).

5 Driving force contributions of VT and RS model

The main assumption of the VT scheme [1] is that the strains
of overlapping phases are equal. In a two phase system with
φα andφβ , the corresponding volume fractions followEq. (1)
for the stress σ VT . The energy density results accordingly
to [9–11]

f V T
el (φ, ε) = f α

el (ε)h(φ) + f β
el (ε)(1 − h(φ))

= 1

2

(〈ε − ε̃α,Cα(ε − ε̃α)〉h(φ)

+〈ε − ε̃β,Cβ(ε − ε̃β)〉(1 − h(φ))
)

. (87)

Using Eq. (4), the corresponding contribution of the driving
force for the VT model is given by

� f V T
el (φ, ε) = 1

2

(
〈ε − ε̃β,Cβ(ε − ε̃β)〉

−〈ε − ε̃α,Cα(ε − ε̃α)〉) ∂h(φ)

∂φ
. (88)

The assumption of the RS model is that the stresses are
equal for the two overlapping phases. The system variables
are now changed from strains to stresses. The corresponding
elastic potential of phase α for such a system can be derived
by changing the systemvariable inEq. (87)with theLegendre
transformation to the form

f RSel (φ, σ ) = f V T
el (φ, ε) − ∂ f V T

el (φ, ε)

∂ε
ε. (89)

This results in

f RSel = 1

2

〈
σ RS,

(
Sβ(1 − h(φ)) − Sαh(φ)

)
σ RS

〉

−
〈
σ RS, ε̃αh(φ) + ε̃β(1 − h(φ))

〉
, (90)

with σ RS given in Eq. (2). The corresponding contribution
of the driving force for the RS model can be expresses as

� f RSel (φ, σ ) =
(
1

2

〈
σ RS,

(
Sα − Sβ

)
σ RS

〉

+
〈
σ RS, ε̃α − ε̃β

〉) ∂h(φ)

∂φ
. (91)
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