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Abstract The aim of this work is to propose a formulation
to solve both small and large deformation contact problems
using the finite element method. We consider both standard
finite elements and the so-called immersed boundary ele-
ments. The method is derived from a stabilized Nitsche for-
mulation. After introduction of a suitable Lagrange multi-
plier discretization the method can be simplified to obtain
a modified perturbed Lagrangian formulation. The stabi-
lizing term is iteratively computed using a smooth stress
field. The method is simple to implement and the numeri-
cal results show that it is robust. The optimal convergence
rate of the finite element solution can be achieved for linear
elements.

Keywords Contact · Stabilized · Penalty ·
Large deformation · Perturbed Lagrangian

1 Introduction

The aim of this work is to propose a formulation to solve
contact problems in the context of large and small defor-
mations using the finite element method. We consider both
standard finite elements and the so called immersed bound-
ary elements in which an underlying Cartesian grid made
of regular hexahedral elements is cut by the real geometry
and integration is performed only in the internal part of the
elements. In recent years segment-to-segment formulations
like the mortar method [8] have been successfully applied to
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solving a wide variety of contact problems in 2D [27,35,55]
and 3D [38,39], with linear and quadratic elements [28,53],
in large and small deformations including Coulomb friction
[17,18,20,40–42,50] and dynamic problems [24]. The theo-
retical basis of the mortar method is well known [15,28,30–
32]. The compatibility of the displacement field and the con-
tact stresses allows the Brezzi–Babuska-InfSup condition to
be fulfilled, so the optimal convergence rate of the finite ele-
ment solution can be achieved. The above references are only
a part of the bibliography on the mortar method applied to
contact problems.

In the case of immersed boundaries it is more difficult to
find finite element spaces that fulfill the InfSup condition. To
our knowledge only the Vital Vertex method, first proposed
by Bechet et al. [7], can satisfy the compatibility between
displacements and multipliers. This method has been used
for imposing Dirichlet boundary conditions in 2D and 3D
[2] immersed boundaries. However, its applicability to deal
with large deformation contact problems is more involved,
although there are some works in 2D [37]. For this rea-
son, other techniques based on stabilized formulations have
recently been proposed to solve contact problems. In these
techniques the finite element spaces can be freely chosen at
the price of adding new stabilizing terms to the formulation.
Modifications of the Nitsche method have been applied to
standard FEM [13,26,29,57], X-FEM [3,4,21] and interface
problems [1,2,12,23,45]. Other techniques use different sta-
bilized formulations. For example [34] uses a polynomial
stabilization valid for linear elements or [11] penalizes the
jump in the multiplier linear elements. In other works the
idea of extending the solution of internal elements to the
intersected elements was explored [14,25]. In [19] the idea
of condensing the Lagrange multipliers to obtain a simplified
method for immersed boundaries was introduced. It was also
used in [51] using the quadrature points. The same ideas were
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applied in [5] using a stabilizing field defined in the volume
of the element instead of its surface. For Navier–Stokes equa-
tions in [46] a stabilization term that takes into account the
jump in the derivative in the internal elements edges is used
to overcome limitations of the Nitsche method in immersed
boundaries.

In this work we propose a formulation derived from the
stabilized Nitsche method. With the choice of finite element
spaces, after simplifying the formulation, we obtain a for-
mulation of the perturbed Lagrangian formulation proposed
in [47]. From our analysis, an extra term due to contact is
introduced to obtain a consistent formulation. The correc-
tion term can be iteratively computed using a smooth stress
field. The same idea is used in [52] to impose the Dirichlet
boundary conditions in immersed boundaries. It is demon-
strated that the optimal convergence rate of the finite element
solution can be achieved for linear and quadratic elements.
This paper is organized as follows: Section 2 describes the
formulation of the contact problem using Lagrange multi-
pliers. In Sect. 3 we propose a stabilized formulation based
on the Nitsche method. We propose an iterative method to
solve the problem. In Sect. 4, the convergence of the iterative
method is analyzed. In Sect. 5 the formulation is simpli-
fied and expressed as a modified penalty formulation with a
suitable choice of the Lagrange multiplier field. We provide
some details of the linearization for solving large deforma-
tion problems. In the last section some numerical examples
are solved.

2 Contact problem formulation

In this part we introduce the contact problem formulation
for small deformations. In Sect. 5 we will extend the for-
mulation to deal with large deformations and large sliding
problems. Figure 1 shows a schematic representation of two
deformable bodies labeled (1) and (2) that occupy volumes
Ω(1) and Ω(2), respectively. The boundary of each body Γ (i)
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Fig. 1 Scheme of two deformable bodies in contact

is divided into three non-overlapping surfaces, Γ (i)
D on which

Dirichlet boundary conditions are imposed, Γ
(i)

N , the Neu-
mann boundary, and Γ

(i)
C the surface of the bodies on which

contact can occur. We assume a linear elastic behavior of
the materials and small deformations. With this setting, the
contact problem can be formulated as a minimization of a
functional [33,54], the total potential energy, under the con-
tact constraints, i.e.:

min

⎧
⎨

⎩
Πp(u)=

∑

i=1,2

(∫

Ω(i)
σ (u) : ε(u) dΩ−

∫

Γ
(i)
N

u · t̂ dΓ

)⎫
⎬

⎭

subject to gN ≥ 0 in Γ
(1)

C

(1)

where σ is the stress tensor, ε linear strain tensor and t̂ are
the tractions imposed at the Neumann boundary. The normal
gap between the two contact surfaces is gN . Here we assume
that the contact constraint is satisfied for surface Γ

(1)

C . The
gap is computed as the distance between the surface point
x(1) and the intersection of the other contact surface Γ

(2)

C with
the line emanating from the first point in the direction of the
normal vector n(1),

gN =
(
x(2)

(
ξ (2)

)− x(1)
) · n(1) (2)

where ξ (2) is the local coordinate of the intersection point on
surface Γ

(2)

C (in 3D it has 2 components). The position can
be written as the sum of the initial position and the displace-
ment, i.e. x(i) = x(i)

0 + u(i). In small deformations we assume
that the contact point denoted by the surface coordinate ξ (2)

remains the same despite the deformation of the solids, i.e.
it can be computed for the initial undeformed position. We
can therefore write:

gN =
(
u(2)

(
ξ (2)

)− u(1)
) · n(1) + (

x(2)

0

(
ξ (2)

)− x(1)

0

) · n(1)

= (
u(2)

(
ξ (2)

)− u(1)
) · n(1) + gN 0

(3)

The minimization problem under inequality constraints
(1) can be solved using the Lagrange multiplier method,
which is the basis of many finite element formulations for
contact problems. A new variable, the Lagrange multiplier
field λN is introduced and the following functional must be
minimized with respect to the displacements and maximized
with respect to the multipliers

opt

⎧
⎨

⎩

∑

i=1,2

∫

Ω(i)
σ (u) : ε(u) dΩ−

∫

Γ
(i)
N

u · t̂ dΓ +
∫

Γ
(1)

C

λN gN dΓ

⎫
⎬

⎭

subject to λN ≤ 0

(4)
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Fig. 2 Cartesian grid finite elements in contact. The thick lines are the
contact surfaces that follow the deformation of the boundary elements.
Thin lines represent the subtriangulation of the boundary elements per-
formed only for integration purposes

With this formulation the inequality constraint affects the
multiplier λN . This restriction can be resolved by an active
set strategy, assuming that the real contact surface is known,
solving the problem and modifying the contact surface. From
now onwards, for the analysis of convergence, we assume
that the real contact surface is known and denoted as Γ

(1)

C .
In Sect. 5 we provide details of the algorithm used to update
the real contact surface.

As pointed out above, Eq. (4) can be used to obtain a
finite element formulation of the contact problem. The dis-
placement and multiplier fields are replaced by a suitable
finite element approximation uh ∈ U h and λh

N ∈M h .
In this work we use both 3D standard hexahedral finite

elements and the so-called immersed boundary method with
8-node linear elements H8 and 20-node quadratic elements
H20. Here we only describe the basic aspects of the immersed
boundary method. A more detailed description can be found
in [36,49], for example. In the immersed boundary method,
sometimes referred to as the Cartesian grid method, the
underlying mesh consists of regular hexahedra, and this will
be used in this work. Figure 2 schematically shows the Carte-
sian grids of two bodies that can come into contact. The thick
lines represent the contact surface, which in general does not
coincide with the edges of the elements. The shaded area rep-
resents the real domain of the bodies. For the boundary ele-
ments (elements cut by the real geometry of the problem) the
integration is performed only in the part of the elements lying
within the problem domain. Thus, a linear sub-triangulation
of the internal part of the elements is defined only for inte-
gration purposes and the contact surface is approximately
represented with straight segments, as depicted in Fig. 2.
Analogously, in the 3D case, the boundary elements are sub-
divided into tetrahedra for integration and the contact surface
is approximately represented by linear triangles.

The contact interaction between Cartesian meshes follows
the same definition as the gap given in Eq. (2) using the local
coordinate in the contact surface ξ (1) and normal vector n(1).
The position of the contact surface in the deformed config-
uration is defined by standard finite element interpolation
using all the nodes of the boundary elements and not only
the boundary nodes.

It is well known that in mixed formulations such as that
of Eq. 4 a careful choice must be made of the discretiza-
tion spaces for displacements and multipliers to achieve the
optimal convergence rate. There are two conditions [9,10]
the ElKer and the InfSup. As a solution for the compatibility
of the spaces of Lagrange multipliers and displacements we
find the mortar method, which has been successfully applied
to 2D and 3D, large and small deformation contact prob-
lems using linear or quadratic elements, as pointed out in the
Introduction. For immersed boundary methods the Vital Ver-
tex method has been defined to fulfill the InfSup condition
in the case of a Dirichlet boundary in 2D [7] and 3D [2].

The InfSup condition introduces many constraints in the
case of immersed boundaries and it is by no means straight-
forward to derive a contact formulation that fulfills this condi-
tion. Stabilized methods can be used obtain greater freedom
to choose the Lagrange multiplier space. This will be intro-
duced in the following section and will form the basis of the
proposed formulation.

3 Stabilized formulation

The difficulty in solving Eq. 4 by finite elements usually
arises when the space of the multipliers is too rich, i.e.
there are too many constraints in relation to the displace-
ment degrees of freedom as the mesh is refined. Even though
the problem can be solved, the convergence rate of the solu-
tion may be compromised. As the number of constraints
increases, the constraint equations become more dependent
and the value of the multiplier is unbounded. The idea of the
stabilized formulations is to add a new term to the functional
4 that would prevent the multiplier from taking unbounded
values.

In order to simplify the notation, from now on, we assume
that the finite element variables are denoted without super-
script h, i.e. u = uh and λN = λh

N .
The ideas of stabilizing the solution were used in [47].

Simo, Wriggers and Taylor proposed a perturbed Lagrangian
formulation to solve contact problems as the optimization of
the following functional

opt

{

Πp(u)+
∫

Γ
(1)

C

λN gN dΓ − 1

2k

∫

Γ
(1)

C

λ2
N dΓ

}

(5)
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The last integral in the functional is a penalty stabilizing term
that allows the values of the multipliers to be bounded. As
pointed out in [47], this penalized method is not consistent,
in the sense that the exact solution of the contact problem
is a solution of the above functional only at the limit, when
the parameter k → ∞, which is impossible in practice. In
[47], after some simplifications, a structure of the problem
as a pure penalty method was obtained in which the contact
constraints are imposed in an average sense.

In this work we propose a new method that includes a mod-
ification of the perturbed Lagrangian formulation to make the
formulation consistent, i.e. the finite element solution con-
verges to the exact solution as the mesh is refined for a wide
range of bounded values of the penalty parameter k.

In what follows, we first introduce (Sect. 3.1) the mod-
ified functional used to stabilize the problem and analyze
the similarities of the proposed formulation with the Nitsche
method. In Sect. 3.2 we introduce the stabilization field used
in this work and show that the proposed field overcomes some
limitations of the Nitsche method, particularly for immersed
boundary meshes. The proof of convergence of the proposed
formulation will be analyzed in Sect. 5 after introducing the
iterative solution method.

3.1 Proposed stabilized functional

The proposed formulation can be derived from a modified
version of the Barbosa–Hughes stabilization [6] in which the
stabilizing term is replaced by a smooth stress field. Stenberg
[48] demonstrated that the Barbosa–Hughes stabilization was
equivalent to the Nitsche method, so that the proposed for-
mulation can also be considered as a modified version of the
Nitsche method. The functional reads as:

opt

{

Πp(u)+
∫

Γ
(1)

C

λN gN dΓ

−
∑

∀e

h

2Eκ

∫

Γ
(1)

C

(λN − pN )2 dΓ

}

(6)

where E is the Young modulus, κ a user-defined penalty
parameter that will be defined in the following sections and
pN is the stabilizing stress. The difference is found in the
definition of the stabilizing stress pN .

The last integral in Eq. 6 is computed for each contact
segment, as defined in the following section. The constant
multiplying the stabilizing term includes E and a represen-
tative measure of the element size h. The former is needed
to obtain a physical meaning of energy, since we have the
product of stress multiplied by stress in the integral. Thus,
dividing by E transforms the term into energy. The latter, h,
is included to give the stabilizing term the same order of mag-
nitude as the strain energy. As the element size is reduced,
the variation of the element strains and stresses inside the

Γ (1)
C

Boundary element

d

i

Fig. 3 Patch of elements for computing the smooth stress field of node
i . The internal volume of the boundary elements depends on distance d

element is also reduced. We can think on the limit as being
constant in the entire element. Thus, the strain energy will be
proportional to h3, as it is a volume integral. The stabilizing
term is a surface integral so it will be proportional to h2. The
additional h constant is introduced to have the same order of
magnitude, as we need to bound the stabilizing term with the
strain energy to achieve the convergence of the method (see
the following Section).

In the case of the Nitsche method pN is the contact trac-
tion computed from the finite element solution, i.e. pN =
n · σ (u)n. This has been applied in [26,29] to derive the for-
mulations to solve contact problems. With the same choice
for pN , the value of the constant can be adapted to deal with
X-FEM problems [1,3,4,45].

The negative sign before the last integral is necessary, as
the optimization of the functional is a maximization with
respect to the multipliers. However, as the problem is a min-
imization with respect to the displacements and n · σ (u)n
linearly depends on this field, the negative sign may cause
a non desired behavior of the stabilization term. A possible
solution with standard finite elements is to bound this term
by taking a sufficiently large value for κ so that this inte-
gral can be bounded by the strain energy [51]. In the case
of immersed boundary elements there are some difficulties
involved in bounding this term, particularly in meshes with
cut elements that have a very small volume/surface ratio, as
pointed out in [25].

To illustrate this problem two boundary elements with
small internal volumes are shown in Fig. 3. In general the L2

norm of the stress on the boundary cannot be bounded by the
energy norm of the element as its volume depends on dis-
tance d which can be very close to zero. Therefore, the stress
n · σ (u)n can only be bounded with very large values of the
constant κ up to a geometric tolerance (see also [2,45]). This
can affect the convergence of the Nitsche method in this con-
text, although from the engineering point of view, the results
obtained using the tolerance seem to be acceptable. Appro-
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priate choices for the stabilizing constant are proposed in the
γ−Nitsche method [1,45] for X-FEM applications. Schott
and Wall [46] recently proposed an additional stabilization
term that penalizes the jump in the derivative along internal
element edges for fluid problems.

3.2 Smooth stress field

In this work we propose to define pN as a smooth stress
field obtained from the finite element solution, following the
ideas introduced in [52] to apply Dirichlet boundary condi-
tions in immersed boundaries. This choice is motivated from
the observation that any variable having good convergence
properties to the exact contact traction can be used as sta-
bilizing term pN in Eq. 6. The smooth stress field depends
not only on the solution of the boundary elements but also
on the internal elements, where stresses are better estimated.
The idea is close to that used in [14,25], where the displace-
ments of the internal elements are extended to the bound-
ary cut elements. In [46] the solution of the internal ele-
ments is also used to stabilize the variables in the boundary
elements.

The smooth stress field is based on the SPR (Supercon-
vergent Patch Recovery) first proposed in [59] and improved
in [43] to include constraint equations that must be fulfilled
by the exact solution. Here we recall the main features of
the smooth stress field calculation. The smooth stress field
Si = {1 x y xy . . .} ai is defined as a polynomial associated
to each node i whose coefficients ai are computed solving
the following minimization problem:

ai = argmin

{∫

Ω
patch
i

(σ (u)− Si ) · (σ (u)− Si ) dΩ

}

(7)

where σ (u) is the stress field computed from the finite ele-
ment solution. The integral is extended in the volume of a
so-called nodal patch Ω

patch
i . This volume includes all inter-

nal elements that contain node i and the internal volume of
boundary elements that contain this node. For example, Fig. 3
shows the patch of node i in a 2D case, that contains two
internal and two boundary elements. With this choice, small-
volume boundary elements (d close to zero, in which the
finite element stress is poorly estimated, i.e. it has a large
error) contribute less than the internal elements to the com-
putation of the smooth stress field.

The stabilization term is computed as the normal traction
of the smooth stress in the contact surface pN = n ·Sn. With
this definition it can be proved that the L2 norm of pN in the
contact surface can be bounded with the energy norm [52],
with a bounded positive constant C as follows

‖S‖2L2(ΓC )
≤ EC

h
‖u‖2E (8)

where h is a representative measure of the element size
and ‖ · ‖E is the energy norm in the volume. The value of
C depends on the order of the interpolation and the nodal
patches. For immersed boundaries the worst case appears for
nodes whose elements are cut and have very small volume.
Even in that case, as the smooth stress field depends on the
solution of the internal elements, the constant C is bounded.
In practice we found that we can use C ≥ 10 for linear and
quadratic elements.

4 Iterative solution method

The stabilization term pN depends on the finite element solu-
tion u. However, it is somewhat cumbersome to obtain an
explicit formula for it, as its computation derives from Eq.
(7). Following the ideas presented in [52], we propose an iter-
ative process to solve the optimization problem 6 in which
the stabilization term pN is assumed to be constant. After
solving the problem, pN is updated from the finite element
solution, and problem 6 is solved again. The process begins
with pN = 0 and runs until convergence is achieved.

Assuming that the stabilization term pN is known, we
solve problem (6) taking variations with respect to the dis-
placements and the multipliers to obtain a following vari-
ational equation. We have to find the iteration k solution,
[uk, λk

N ], solving the following system

∑

i=1,2

G(i)
int (u

k, δu)+
∫

Γ
(1)

C

λNδgN (uk) dΓ

=
∑

i=1,2

G(i)
ext (δu) ∀δu

∫

Γ
(1)

C

δλk
N gN (uk) dΓ − h

Eκ

∫

Γ
(1)

C

δλN λk
N dΓ

= − h

Eκ

∫

Γ
(1)

C

δλN pN (uk−1) dΓ ∀δλN

(9)

G(i)
int and G(i)

ext are the virtual work of internal and exter-
nal forces of body i , respectively. The contact integral in
the first equation is the virtual work of contact forces, and
δgN is the virtual gap computed by taking variations in Eq.
(3). The smooth pressure is written as pN (uk−1) to empha-
size the dependence of this variable on the solution of a
previous iteration k − 1. In the second equation, the first
integral contains the constraints imposed to fulfill the non-
penetrability condition of contact. The other two integral
terms in the second equation prevent the contact constraints
from being exactly fulfilled but tend to compensate each other
as the mesh is refined. At the limit, when the element size
tends to zero, λN = pN and the exact constraint will be
enforced.
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Note that, compared with the Nitsche method used in [26],
the proposed formulation has a lower number of integrals that
need to be evaluate to obtain the tangent matrix of the system.
In particular, all the terms of the Nitsche method that derive
from the variation of the stabilization term pN (which is here a
function of u) are avoided in the proposed formulation, at the
cost of an iterative solution process. It is necessary to verify
the conditions under which the iterative method converges
to the solution and to check the stability of the system. This
is done in the following Section after defining the Lagrange
multiplier finite element space.

5 Lagrange multiplier interpolation: Penalty method

The stabilized formulation (9) gives greater freedom than
the Lagrange formulation to choose the Lagrange multiplier
finite element space. The displacement field is defined in uh ∈
H1(Ω) and the multiplier space λh

N ∈ L2(ΓC). We choose
for the displacement field linear 8-node H8 or quadratic 20-
node H20 hexahedral elements, having degree of interpola-
tion p = 1 and p = 2, respectively. As pointed out above,
we deal with standard or cut (immersed boundary) elements.

The only requirement for the Lagrange multiplier space
is that it must have adequate approximation properties. Sten-
berg [48] analyzes the approximation properties of the multi-
plier space used to impose the Dirichlet boundary conditions
using the Nitsche method. From this analysis, if the solu-
tion is regular enough, the optimal convergence rate can be
achieved [52] if the Lagrange multiplier space is at least a
piecewise constant, not necessarily continuous, interpolation
for linear elements H8 and a piecewise linear, not necessarily
continuous, interpolation for quadratic elements H20.

In [51] an implicit definition of the multiplier field was
introduced for 2D elements, based on the value of the mul-
tiplier at the quadrature points of the surface used to numer-
ically evaluate the boundary integrals. The Dirichlet bound-
ary conditions in immersed boundary elements problem was
analyzed in this work. For 2D problems, the Dirichlet bound-
ary was divided into segments defined in each cut element.
It has been stated that n pg = 2 quadrature points for lin-
ear elements define a piecewise linear interpolation for the
multiplier q = 1 and can exactly integrate polynomials of
degree 3. As the product of the multiplier and the displace-
ment has degree 2, it is enough to exactly evaluate integrals
with constant Jacobian. Similarly, in 2D for quadratic ele-
ments n pg = 3 allows exact integration and good approxi-
mation properties of the multiplier field.

In the case of contact problems, the boundary integrals on
the contact surface are more complex because they involve
functions defined in the two bodies in contact. Exact evalu-
ation of the contact surface integrals would need a segmen-
tation of the surface, as proposed for the mortar method in

Γ (1)
C

Γ (2)
C

Fig. 4 Concentrated inexact numerical integration. The integrands
are only evaluated at the quadrature points (shown as multiplication)
defined in each contact slave surface segment. The circles are the nodes
and the squares are the corresponding contact points on the master sur-
face. Normal vectors are independently defined for each slave segment

[39,40,56]. Instead of looking for exact integration, in this
work we use the same strategy proposed in [18,22,50] and
depicted in Fig. 4. The approximate integration is performed
evaluating the integrand at the quadrature points defined on
the surface Γ

(1)

C regardless of whether the integrand belongs
to one or other body. Despite the inexact integration, this
method has certain advantages. First, the evaluation has a
lower computational cost and is easy to implement. Also, the
optimal convergence rate of the finite element solution error
can be achieved for linear elements if a uniform refinement is
performed. The reason is that the error in the contact integral
computation will decrease linearly as the mesh is refined.

The main drawback of this integration is that for quadratic
elements the theoretical rate of convergence p+ 1 in energy
norm is lost when the mesh is refined. The problem can be
alleviated by increasing the number of quadrature points, so
that the level of the integration error is reduced. Even though
the rate is not improved, the optimal rates of convergence of
the finite element error could be achieved for the first meshes
when the discretization error is much higher than the integra-
tion error. Therefore, from the engineering point of view, the
method is suitable for achieving an accurate finite element
solution with a reasonable amount of degrees of freedom.
It must be pointed out that in some contact problems the
regularity of the solution itself limits the theoretical rate of
convergence that could be achieved with quadratic elements.

Another alternative that is explored in the numerical exam-
ples in the present paper is to impose the contact constraints
on both contact boundaries Γ

(1)

C , Γ
(2)

C at the same time, which
is possible due to the stabilized formulation. It can be seen
as the double pass strategy defined in the classical penalty
method. As the stabilization stresses pN

(1) and pN
(2) are act-

ing at the same time on both bodies, λN = pN
(1) + pN

(2)

must be fulfilled. Any weight factor can be defined between
0 and 1 for the two pressures. In the examples we choose
pN

(1) = pN
(2) = λN/2.

5.1 Penalty method

Once the Lagrange multiplier field is defined, the iterative
method of Eq. (9) can be simplified by eliminating the

123



Comput Mech (2015) 55:737–754 743

Mesh 1 Mesh 2

Fig. 5 First two meshes of the sequence used to solve the problem of a
hollow sphere under internal pressure. The hollow sphere is discretized
into two volumes using non-conforming meshes

10−1.2 10−1 10−0.8 10−0.6 10−0.4
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Mesh size, h

E
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L, κ = 10 L, κ = 100 L, κ = 1000
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Fig. 6 Energy norm error of the solution as a function of the element
size for the hollow sphere under internal pressure problem. Analysis of
the influence of parameter κ

Lagrange multipliers. As the interpolation is defined as a
piecewise discontinuous function, the multiplier can be con-
densed element by element before the assembly. Indeed,
due to the concentrated numerical integration, they can also
be eliminated for every quadrature point. The value of the
Lagrange multiplier at each quadrature point is:

λk
N g = pN (uk−1)+ Eκ

h
gN g (10)

where the subindex g is used to denote the value of the vari-
able at the quadrature point.

Formally, we proceed as in [48,52] to obtain a simplified
stabilized problem. We can take the variation of the multiplier
as the projection in L2 of an appropriate displacement field
in the second equation of the problem (9) to condense the
multiplier and then substitute in the first equation to obtain:
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Fig. 7 L2 norm error of the solution as a function of the element size
for the hollow sphere under internal pressure problem. Analysis of the
influence of parameter κ

∑

i=1,2

G(i)
int (u

k, δu)+ Eκ

h

∫

Γ
(1)

C

gN (uk) δgN dΓ

=
∑

i=1,2

G(i)
ext (δu)−

∫

Γ
(1)

C

δgN pN (uk−1) dΓ (11)

Here we find a close similarity between the proposed for-
mulation and the perturbed Lagrangian formulation [47].
In the first iteration, when pN = 0, the formulation is a
pure penalty method, but computed in a distributed sense.
This coincides with the formulation in [47]. As far as the
integral can be exactly evaluated, the penalty term in Eq.
(11) is like a distributed spring that joins the two bodies in
contact. As it has been pointed out above, the number of
quadrature points can be freely chosen, provided that they
define a suitable interpolation of sufficient degree. Increasing
the number of points only affects the numerical integration
error. Although the number of constraints in the formulation
(9) is increased, as we condense the Lagrange multipliers,
the number of equations remains the same for the simpli-
fied formulation (11). On the right hand side of Eq. (11) the
smooth stress field has the effect of compensating the error
introduced by the penalty method. This term is computed
iteratively from the finite element solution (see Sect. 5.3).
Another alternative followed in the literature in order to find
stable contact formulations using springs without stabilizing
terms (penalty formulation) is to properly choose the num-
ber of quadrature points and define a distributed integration
[16,58].

The system of Eq. (11) can be written in matrix form using
the standard finite element procedure to define the following
residual:
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Fig. 8 Energy norm error of the solution as a function of the element
size for the hollow sphere under internal pressure problem. Analysis of
the influence of the integration error

rk =
(

K+ Eκ

h
M

)

dk − f− S dk−1 = 0 (12)

where dk is the nodal displacements vector in the iteration
k, K is the stiffness matrix and f is the external force vec-
tor. For clarity of presentation we assume that the initial gap
gN 0 is zero. Matrix M is computed from the second inte-
gral of Eq. (11) using the numerical integration presented
above and the gap definition. Although, in general, h is
included in the integral of each element for meshes with
different element sizes, here we leave the factor to empha-
size the dependence of this term on the element size. Matrix
S is derived from the last integral of Eq. (11) and points
out the linear dependence of the smooth stress field with
respect to the displacement field. In practice, this term is
computed as the additional contact force vector fk−1

N depend-
ing on the previous displacement field and S is not explicitly
obtained.

5.2 Large deformations

The formulation proposed above for small deformations can
be extended to deal with large deformations and large slid-
ing problems. The virtual work of internal and external forces
can be evaluated in the standard way for all type of material
behavior, including hyper-elasticity and plasticity. In addi-
tion to the contact iterations, another non-linear behavior due
to contact has to be considered, i.e. the change of the con-
tact point as the bodies deform. This makes the gap and the
virtual gap to be non-linear functions of the displacements.
Equation (11) is now the residual of a non-linear equation
that can be solved using a semi-smooth Newton method.
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Fig. 9 L2 norm error of the solution as a function of the element size
for the hollow sphere under internal pressure problem. Analysis of the
influence of the integration error

After numerical integration the residual can be expressed
as:

δu · rk = δu ·
(

fint (uk)− fext

)

+
∑

∀g
Hg

(
Eκ

h
gN g(u

k)+ pN g(u
k−1)

)

δgN g Jg

(13)

where Hg is the weight of the quadrature point and Jg the
Jacobian of the transformation. Here the sum is extended
to the active quadrature points that will be discussed in the
following subsection.

Here any definition found in the literature of the con-
tact variables gN and δgN at the quadrature points could be
used (based on closest point projection [33,54] for example)
although the aim of this paper is not to deal with the compu-
tation details of these contact variables for large deformation
problems. We have chosen the definition given in a previous
paper [50], to which we refer for details of linearizations.
Also, we neglect the linearization of the Jacobian because
it leads to a non-symmetric tangent matrix. An additional
term could be included in the functional of the formulation
to recover symmetry [17] and perform a consistent lineariza-
tion. In practice, the convergence obtained without consistent
linearization in the numerical problems analyzed seems to be
acceptable.

We use the definition of the gap based on the ray tracing,
so we follow the formulation proposed in [50] also used in
[24] for 2D problems, but extended to 3D. We recall here the
main steps of the derivation. Taking variations in expression
(2), we have
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Fig. 10 Hollow sphere under internal pressure problem. Convergence of the Richardson iteration of the system. The normalized norm of the
residual is shown for linear and quadratic elements

δgN =
(
δu(2) − δu(1)

) · n(1) + s(2)

ξ · n(1) δξ + s(2)

η · n(1) δη

(14)

where δξ and δη are the variations of the contact point local
coordinates and s(2)

ξ and s(2)
η are the tangent vectors. The vari-

ations of the contact point can be computed using the same
procedure as in [50] to obtain the following system (2), we
have

[
s(1)

ξ · s(2)

ξ s(1)

ξ · s(2)
η

s(1)
η · s(2)

ξ s(1)
η · s(2)

η

] {
δξ

δη

}

=
{(

δx(2) − δx(1)
) · s(1)

ξ + gNδn(1) · s(1)

ξ(
δx(2) − δx(1)

) · s(1)
η + gNδn(1) · s(1)

η

}

(15)

The tangent matrix is obtained taking the derivative with
respect to the displacements. As pointed out above, we
neglect the derivative of the Jacobian. The tangent matrix
used in the numerical examples is:

KT = K+
∑

∀g
Hg

Eκ

h
�gN g(u

k) δgN g Jg

+
∑

∀g
Hg

(
Eκ

h
gN g(u

k)+ pN g(u
k−1)

)

�δgN g Jg

(16)

where K is the directional derivative of the work of internal
forces with respect to the displacements. For the derivative
of the virtual gap �δgN the procedure described above can
be followed.

5.3 Solution algorithm

Algorithm 5.1: ()

Compute pN from previous step (Sect. 3.2)

λN g ← pN g +
Eκ

h
gN g

while residual > T ol : Augmentation loop

do

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

while residual > T ol : Contact loop

do

⎧
⎨

⎩

Check active quadrature points: λN g < 0
Solve system of Equation (11)
Check residual. Equation (12)

Update pN

Check residual. Equation (12)

The proposed method has certain similarities with the
Uzawa algorithm used in the augmented Lagrangian formu-
lation, in which updating the Lagrange multiplier is called
augmentation. We use the same term for the updating per-
formed in (10), using the smooth stress field. It also resem-
bles the method used in [1] to solve contact problems. The
algorithm for small deformation problems is shown in Algo-
rithm 5.1. For every load step, the smooth stress field pN g
and the gap gN g are first obtained for each quadrature contact
point from the previous solution.

In addition to the augmentation iterations, another iter-
ative process is defined to resolve the contact surface, i.e.
to determine which part of the potential contact surface is
active and will be used to impose the impenetrability con-
straints. The contact check is performed at each quadrature
point, using the value of the multiplier defined in Eq. (10),
so that λN g ≤ 0. It can be seen that the contact iterations
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Fig. 11 Model of the rigid sphere contact with an immersed boundary
mesh

Fig. 12 Contact traction of the rigid sphere contact with an immersed
boundary mesh

are performed with a constant value of the smooth stress pN ,
which acts as an external pressure on the contact surface,
so that the contact iterations are similar to a pure penalty
method. The contact iterations run until the active contact
points are unchanged. In this work this is directly checked
with the residual of Eq. (12).

For large deformation problems, the structure of the algo-
rithm is the same, the only changes being the computa-
tion of the residual, which is now defined in Eq. (13),
and the solution of the system of equations by a Newton
method.

In terms of computational cost, the proposed method is
equivalent to an augmented Lagrange formulation imple-
mented by the Uzawa algorithm. The advantage of the pro-
posed method is the freedom to choose the number of quadra-
ture points at which the contact constraints are imposed as
the method is stabilized. Compared with the Lagrange multi-
plier formulation (or augmented Lagrange in which the mul-
tipliers remain as variables of the system), in the proposed
method the system of equations to be solved in each itera-
tion is smaller in size. Another advantage is that the system
matrix is positive definite, which usually reduces the resolu-
tion time. On the other hand, the number of iterations is in
general greater as there is a nested loop.

5.4 Convergence of the iterative method

The iterative process for augmentations defined above in Eq.
(12) can be viewed as the Richardson method of solving a
system of equations. This system can be rewritten as:

Table 1 Rigid sphere in contact
with an immersed boundary
mesh

Convergence of the contact and
Richardson iterations.
Normalized norm of the
residual. The mark indicates that
the stabilizing stress pN was
updated in the previous iteration

Iter Dz = −0.15, κ = 10 Dz = −0.3, κ = 10 Dz = −0.3, κ = 100

2 1.71E−01 1.16E−02 5.88E−03

3 5.68E−02 4.09E−03 1.75E−03

4 3.19E−02 2.03E−03 1.83E−03

5 2.22E−02 1.53E−03 4.56E−04

6 1.07E−02 4.00E−04 2.91E−04

7 3.16E−16 3.49E−16 7.21E−05

8 ∗1.48E−02 ∗1.38E−02 1.05E−05

9 3.11E−04 3.97E−16 1.50E−06

10 3.64E−16 ∗2.90E−04 1.06E−16

11 ∗2.79E−04 3.38E−16 ∗5.12E−04

12 4.80E−16 ∗6.01E−06 1.55E−05

13 ∗5.72E−06 3.38E−16 1.03E−16

14 2.98E−16 ∗1.42E−07 ∗1.20E−06

15 ∗1.23E−07 3.12E−16 1.15E−16

16 3.97E−16 ∗3.89E−09 ∗2.85E−09

17 ∗2.76E−09
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Fig. 13 Initial configuration of
the elastic ring contact problem

25050
20

90 100

Δy

Fig. 14 Deformable ring in
contact with an elastic block.
Deformation and contact
pressure for different time steps
of the simulation

t = 0.4

t = 0.6

t = 0.7

t = 0.9
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Fig. 15 Deformable ring in
contact with an elasto-plastic
block. Deformation and contact
pressure for different time steps
of the simulation

t = 0.4

t = 0.6

t = 0.7

t = 0.9

(

K+ Eκ

h
M

)

dk = S dk−1 + f (17)

The convergence [44,52] is then verified if the spectral

radius of the iteration matrix

(

K+ Eκ

h
M

)−1

S is lower than

1 (equivalently, the modulus of any eigenvalue α is lower than
1), even if the set of active quadrature points changes from
one iteration to another.

To prove this, we start with the definition of the eigenvalue
problem. Any eigenvector v∗ associated with an eigenvalue
α of the iteration matrix fulfils

S v∗ = α

(

K+ Eκ

h
M

)

v∗ (18)

On the other hand, if the following equation is satisfied
for any nodal displacement vector v:

vT S v < vT
(

K+ Eκ

h
M

)

v ∀v (19)

then the modulus of α is necessarily lower than 1 and the
convergence is proven.

To check Eq. (19), we use the definition of the stabilization
term S v:

∣
∣
∣vT S v

∣
∣
∣ =

∣
∣
∣
∣
∣

∫

Γ
(1)

C

gN (v) pN (v) dΓ

∣
∣
∣
∣
∣
.

Applying the Cauchy-Schwarz inequality, using Eq. (8), and
taking into account that for two positive numbers x, y , it
holds that 2 x y ≤ x2 + y2, we have:
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Fig. 16 Elastic ring in contact with a block. Reaction force in the ring
as a function of the time step

∣
∣
∣vT S v

∣
∣
∣ =

∣
∣
∣
∣
∣

∫

Γ
(1)

C

gN (v) pN (v) dΓ

∣
∣
∣
∣
∣
≤ ‖gN (v)‖

L2,Γ
(1)

C

×‖pN (v)‖
L2,Γ

(1)
C
≤ ‖gN (v)‖

L2,Γ
(1)

C

√
EC

h
‖v‖E

≤ EC

4h
‖gN (v)‖2

L2,Γ
(1)

C

+ ‖v‖2E (20)

Now, taking κ > C/4 we obtain the bound of the stabilization
term and the iterative process will converge.

Remark The stabilization term is only computed on the active
contact zone of the current iteration, even if the size of the
contact surface Γ

(1)

C has been modified. This ensures that Eq.
20 is verified even in this case.

6 Numerical examples

Some academic examples have been solved to test the per-
formance of the proposed formulation. We used standard
finite elements and immersed boundary elements with linear
H8 and quadratic H20 interpolation and different number of
quadrature points. In the case of standard linear elements we
tried n pg = 2 × 2, n pg = 3 × 3 and n pg = 16 × 16. For
quadratic elements we tried n pg = 3x3 and n pg = 16× 16.
For immersed boundary elements the number of quadrature
points is based on the triangulation of the surface due to the
intersection of the real geometry with the element. For inte-
gration purposes, we divide the hexahedra into tetrahedra
and use the quadrature formulas for the surface triangles of
the tetrahedra whose face coincides approximately with the
contact surface.

6.1 Hollow sphere under internal pressure

The first example to be tested is a problem with an exact
solution, so that the discretization error can be exactly com-
puted. The problem is a hollow sphere under internal pres-
sure. We define two volumes that are discretized using non-

Table 2 Elastic rings in contact
with a block

Convergence of the non-linear
contact and Richardson
iterations. The mark indicates
that an augmentation is
performed, so the stabilizing
stress pN is updated. The
normalized norm of the residual
is shown

Iter t = 0.5, EL t = 0.6, EL t = 0.7, EL t = 0.5, PL t = 0.6, PL t = 0.7, PL

2 8.07E−02 8.74E−02 1.00E−01 4.17E−02 4.44E-02 4.84E−02

3 1.15E−03 9.02E−04 1.89E−03 7.38E−04 7.44E−04 5.19E−03

4 4.58E−05 1.91E−04 5.99E−04 1.63E−05 5.15E−04 1.54E−04

5 1.42E−07 2.32E−06 1.52E−04 4.70E−07 6.99E−06 6.70E−06

6 3.23E−10 1.27E−08 4.11E−05 6.26E−10 3.97E−07 6.39E−08

7 ∗3.29E−04 4.39E−11 5.59E−06 ∗4.25E−04 1.01E−09 4.05E−10

8 1.53E−06 ∗4.68E−04 3.16E−10 4.75E−07 ∗8.62E−04 ∗1.53E−03

9 3.40E−09 4.09E−06 ∗5.88E−04 2.07E−09 1.49E−06 6.09E−06

10 ∗1.58E−06 1.08E−08 2.77E−06 ∗2.14E−06 1.38E−08 5.81E−08

11 2.20E−09 4.84E−11 2.49E−08 2.85E−09 4.50E−11 3.19E−10

12 ∗9.25E−09 ∗2.33E−06 1.92E−10 ∗1.39E−08 ∗5.48E−06 ∗1.17E−05

13 5.33E−09 ∗3.58E−06 2.36E−11 9.60E−09 5.36E−08

14 ∗1.48E−08 1.29E−08 ∗1.11E−10 1.94E−11 2.88E−10

15 4.11E−11 8.92E−11 ∗4.07E−08 ∗1.02E−07

16 1.13E−10 ∗2.17E−08 8.48E−11 3.40E−10

17 8.45E−11 ∗3.76E−10 ∗8.22E−10

18 ∗1.36E−10
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Fig. 17 Model of the bicycle
tire contact problem. The inner
tube is shown in yellow (light
grey), the rim in blue (dark grey)
and the casing in white. (Color
figure online)
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conforming meshes as depicted in Fig. 5. A sequence of uni-
formly refined meshes is obtained by element subdivision.
In this problem all the quadrature points of the potential con-
tact surface are in contact, so there are no iterations due to
changes in contact conditions.

The first test was performed to check the influence of the
constant κ in the finite element solution using standard linear
(L) and quadratic (Q) elements. In Figs. 6 and 7 the energy
norm error and the L2 norm error of the finite element solu-
tion are plotted as a function of a representative element size.
The triangles show the theoretical convergence rate that can
be achieved in every case. These test were performed using
n pg = 16x16 quadrature points both for H8 and H20 ele-
ments to keep the integration error as small as possible. The
theoretical convergence rate is obtained in all cases, at least
for this level of error. The results show that the influence of
the parameter κ is negligible in this example, as the curves
for different values of κ perfectly overlap.

As pointed out above, it is not expected that the quadratic
elements can achieve the theoretical rate of convergence of
the finite element solution because of the integration error.
However, if the meshes are not very refined (for example, the
meshes shown in Fig. 5), the level of the discretization error
is much higher than the integration error. Despite the lower
rate of convergence of the latter, the optimal convergence
rate can be achieved. To test the influence of the integration
error we solved the same problem using different number
of quadrature points and different types of integration. For
H8 linear elements we used n pg = 2 × 2, n pg = 3 × 3
and n pg = 16 × 16. For H20 quadratic elements we used
n pg = 3 × 3, n pg = 3 × 3 with double pass integration
(i.e. the surfaces of both bodies are considered at the same
time as contact surfaces where the numerical integration is
performed), and n pg = 16 × 16. The discretization error is
shown in Figs. 8 and 9, in energy and L2 norms, respectively.

The triangles show the theoretical rate of convergence. Opti-
mal convergence is achieved for linear elements. However,
for quadratic elements using n pg = 3× 3 quadrature points,
the integration error seems to affect the solution for the more
refined meshes and the convergence rate is reduced. To alle-
viate this effect, using both a double pass strategy and more
quadrature points seems to reduce the integration error and
allows the optimal rate to be recovered in this case and for
these element sizes.

This linear example was used to test the convergence of
the Richardson iterations of the system and the influence of
parameter κ . In Fig. 10 the normalized norm of the residual
(Eq. (11)) is shown as a function of the number of iterations.
The results are shown for linear H8 and quadratic H20 ele-
ments and different values of the parameter κ . Convergence
is achieved between 4 and 6 iterations. This behavior is rep-
resentative of all the tests ran for other numerical examples.
In this case, the best convergence is achieved with a double
pass strategy and κ = 100.

6.2 Rigid sphere in contact with a deformable block

In the second example a contact problem between a rigid
sphere and an elastic solid is solved using an immersed
boundary mesh. The geometry of the elastic solid is shown in
Fig. 11. It is a modified block with dimensions 2×2×2 units
of length, in which the upper face is a parabolic surface. The
highest point of the parabolic surface is at 2.5 units of length.
As it can be observed the elastic solid geometry is embed-
ded in a uniform Cartesian Grid. The boundary elements are
cut by the geometry and integration is only performed in the
internal part of these elements. A sub-triangulation of the
boundary elements using linear tetrahedra is performed only
for integration purposes. The number of quadrature points
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Fig. 18 Inner tube contact
problem. Comparison of the
deformed configuration for
different time steps. The
colormap is proportional to the
modulus of the displacement

t = 0.275

t = 0.5

t = 0.75

t = 1.0

on the contact surface also depends on this sub-triangulation
(7 quadrature points for each triangle).

The sphere is located above the curved surface of the
block, and contact occurs at this curved face (see Fig. 12).
A rigid body motion towards the elastic solid is applied to
the sphere causing a maximum theoretical penetration of
Dz = 0.15 or Dz = 0.3 units of length. The radius of the
sphere is 2 units of length. Figure 12 shows the deformed

configuration of the elastic block. The colormap values are
related to the modulus of the displacement field. The contact
traction at each quadrature point of the surface is also shown
in the same figure. The convergence of the contact iterations
and the augmentations is shown in Table 1 for different ini-
tial penetration Dz and penalty parameter κ values. We use a
tolerance of 10−8 to determine if the solution has converged,
both for the contact and Richardson iterations.
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6.3 Deformable ring in contact with a deformable block

The third example is a large deformation and large slid-
ing contact problem. A scheme of the example is shown in
Fig. 13. The upper body consists of two joined rings of equal
thickness but different Neo-Hookean hyperelastic material
properties. The material parameters are E = 105 andυ = 0.3
for the inner ring and E = 103 and υ = 0.3 for the outer
ring. The problem is 3D, with symmetry boundary condition
applied to the frontal plane. The ring thickness is 40 units
of length and the block thickness is 50 units of length. The
block is linear elastic with material parameters E = 103 and
υ = 0.3. We solved the problem assuming two materials for
the block: a pure elastic behavior and plasticity with yielding
limit Sy = 50 and plastic hardening H = 50. A downward
displacement of Dy = 90 is applied to the elastic ring. The
displacement is applied in 20 steps in the elastic case and 40
steps in the plastic case, with the time ranging from t = 0 to
t = 1. Linear elements were used in the simulation and the
number of quadrature points was n pg = 4×4. The block con-
tact surface was taken as slave surface where the integration is
performed.

Figures 14 and 15 shown some snapshots of the deformed
configuration and contact pressure with elastic and plastic
behavior of the block. In the first time steps, the deformation
of the block is pure elastic and both examples show the same
deformed configuration. From t = 0.65 plastic deformation
occurs in the second case that causes a different deformation
of the ring and contact pressure distribution. This effect can
also be noticed in Fig. 16, where the reaction force is plot-
ted versus the time step for both cases (elastic and elasto-
plastic).

In Table 2 we show the convergence of the contact and
Richardson iterations for different time steps and both elas-
tic (EL) and elasto-plastic (PL) behavior of the block. The
normalized norm of the residual (Eq. 13) is shown as a func-
tion of the iterations. A mark is shown when an augmentation
is performed, i.e. the stabilizing stress pN is updated. The tol-
erance of the relative error of the residual is set at 10−8. As in
the linear Example 1 shown above, after 3 or 4 Richardson’s
iterations the solution has almost converged and the changes
in the displacement or contact stresses are very small.

6.4 Bicycle inner tube

The last example is depicted in Fig. 17 and shows a quarter
of the inner tube of a bicycle tire that is submitted to increas-
ing internal pressure. As the tube deforms, contact occurs
between the tire and the rim. The rim is an elastic material
with properties E = 108 and υ = 0.3, the inner tube and
the casing are hyper-elastic materials with E = 1000 and
υ = 0.3. The pressure is increased from 0 to p = 40 units
of pressure. A variable time step increment is applied from

Table 3 Inner tube contact problem

Iter DP SP

2 2.83E−02 2.82E−02

3 4.68E−04 5.17E−04

4 1.34E−08 1.48E−08

5 ∗3.86E−03 ∗7.72E−03

6 2.03E−08 4.36E−08

7 ∗1.34E−06 8.55E−11

8 8.70E−11 ∗5.36E−06

9 ∗1.34E−09 1.26E−10

10 ∗ 9.99E−09

Convergence of the non-linear contact and Richardson iterations. The
mark indicates that an augmentation was performed in the previous
iteration. The normalized norm of the residual is shown

t = 0 to t = 1 in 40 steps. In the front plane of the cas-
ing there is a crack that allows the inner tube to escape. The
number of elements in the casing at this plane is 65. The cas-
ing is subdivided in 65 equal segments corresponding to the
element edge and the crack ranges as depicted in Fig. 17.

The value of the penalty constant was κ = 10. The prob-
lem was solved using both a double pass and single pass
strategies. The deformed configuration is shown in Fig. 18 for
different time steps using the double pass contact. In Table 3
a comparison of the residual convergence is shown. In this
example, similar behavior is found for both strategies.

7 Conclusions

This paper proposes a new method for solving contact prob-
lems. The formulation is based on the stabilized Nitsche
method and after simplifying the equations by condensing the
multipliers, a modified penalty formulation is obtained. The
method has similarities with the perturbed Lagrangian for-
mulation [47], but with the addition of an extra term that can
be computed iteratively and makes the formulation consis-
tent. The proposed method was effectively applied to solving
large and small deformation problems implemented with 3D
standard 8-node linear and 20-node quadratic elements and
with immersed boundary elements in which a Cartesian grid
is cut by the real geometry. The method was also tested for
materials with elastic, elasto-plastic and hyperelastic behav-
ior. The formulation is robust and simple and can converge
to the exact solution with optimal convergence rates.

The results show an optimal convergence rate of the finite
element solution for linear elements. For quadratic elements,
the integration error can reduce the optimal convergence rate.
To overcome this problem, the use of more quadrature points
or a double pass strategy has been shown to be effective
from the engineering point of view. The method has a user-
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dependent parameter κ to be defined. In the numerical exam-
ples we analyzed a wide range of variation of κ from 10 to
1000 and similar discretization errors and convergence of the
iterations were obtained.

A double iterative process is defined to solve contact prob-
lems. The first loop is the contact iteration in which the sta-
bilization stress is kept constant and the formulation is a pure
penalty method, with κ as penalty constant. The convergence
analysis of the method show that a relatively high value of the
penalty parameter is needed to guarantee convergence. This
value prevents the use of very large time step increments
in which the initial penetration of the unconverged solution
is very large, and can be considered as a limitation of the
method.
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