
Comput Mech (2015) 55:591–602
DOI 10.1007/s00466-015-1125-6

ORIGINAL PAPER

The complex variable reproducing kernel particle method
for the analysis of Kirchhoff plates

L. Chen · Y. M. Cheng · H. P. Ma

Received: 22 June 2014 / Accepted: 21 January 2015 / Published online: 6 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this paper, the complex variable reproducing
kernel particle method (CVRKPM) for the bending problem
of arbitrary Kirchhoff plates is presented. The advantage of
the CVRKPM is that the shape function of a two-dimensional
problem is obtained one-dimensional basis function. The
CVRKPM is used to form the approximation function of the
deflection of a Kirchhoff plate, the Galerkin weak form of
the bending problem of Kirchhoff plates is adopted to obtain
the discretized system equations, and the penalty method is
employed to enforce the essential boundary conditions, then
the corresponding formulae of the CVRKPM for the bending
problem of Kirchhoff plates are presented in detail. Several
numerical examples of Kirchhoff plates with different geom-
etry and loads are given to demonstrate that the CVRKPM in
this paper has higher computational precision and efficiency
than the reproducing kernel particle method under the same
node distribution. And the influences of the basis function,
weight function, scaling factor, node distribution and penalty
factor on the computational precision of the CVRKPM in this
paper are discussed.
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1 Introduction

The bending problem of Kirchhoff plates is one of the impor-
tant research topics in solid mechanics. An overview of the
existing literature reveals that most of the previous exact
analyses were developed using the semi-inverse method for
Levy-type plates. It is rather difficult to obtain trial functions
satisfying the non-simply supported boundary conditions and
natural boundary conditions. Then many researchers have put
in considerable efforts to develop efficient numerical meth-
ods to solve this problem.

In classical thin plate theory introduced by Kirchhoff, the
governing equation about the deflection w is a fourth order
elliptic partial differential equation. Due to the complicated
equation, the finite element method (FEM) for solving the
bending problem of Kirchhoff plates was developed with
some challenges [1]. The boundary element method (BEM)
was presented to solve the problems of the static bending
of thin and thick plates [2,3]. In the BEM, the high-order
singularity of the kernel functions requires the corresponding
algorithms of numerical integrations with high precision [4].

Beyond the traditional FEM and BEM, meshless (or mesh-
free) methods have been developed to solve a lot of problems
in the past decades. The shape functions in meshless methods
depend on the nodes in the problem domain, and can solve
many complicated problems with high precision without the
remeshing technique [5,6]. Many meshless methods, such as
smooth particle hydrodynamics (SPH) method [7], diffuse
element method (DEM) [8], element-free Galerkin (EFG)
method [9], improved element-free Galerkin (IEFG) method
[10–14], interpolating element-free Galerkin method [15–
17], meshless local Petrov–Galerkin (MLPG) method [18],
reproducing kernel particle method (RKPM) [19], reproduc-
ing kernel element method (RKEM) [20–23], local Petrov–
Galerkin approach with moving Kriging interpolation [24–
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27], element-free kp-Ritz method [28], complex variable
meshless method [29–37], and meshless with boundary inte-
gral equation methods [38–44], have been developed.

The moving least-squares (MLS) approximation is widely
used to form the shape function in many meshless meth-
ods, but the MLS approximation is the approximations of
the scalar functions, and thus the meshless methods that is
derived from it require a lot of nodes in the domain. The
complex variable moving least-squares (CVMLS) approx-
imation was developed for the approximation of a vector
function [45,46]. Under similar computational precision, the
meshless methods based on the CVMLS approximation can
distribute fewer nodes in the domain than the ones based on
the MLS approximation. Combining the CVMLS approxi-
mation with the Galerkin weak form, the complex variable
element-free Galerkin (CVEFG) method was presented for
two-dimensional elasticity, fracture, elastodynamics, elasto-
plasticity and viscoelasticity problems [47–52].

The RKPM is another one of important meshless meth-
ods [53,54]. It has been used to analyze structural dynam-
ics [55,56], large deformation [57,58], and fluid mechanics
problems [59]. Similar to the MLS approximation, the RKPM
is the approximation for scalar functions. Then the RKPM
requires a lot of nodes in the domain, and the shape functions
and their derivatives must be obtained at every node, which
leads to a great computational cost. Hence, the complex vari-
able reproducing kernel particle method (CVRKPM) for the
approximation of a vector function was developed by the
authors of this paper, and was then applied to some prob-
lems [29–36]. The advantage of the CVRKPM is that the
correction function of a 2D problem is formed with 1D basis
function when the shape functions are obtained. Then the
number of unknown coefficients of the correction function
in the CVRKPM is fewer than the one in the RKPM, then for
an arbitrary point in the domain we need fewer nodes which
support domains cover the point. And in the CVRKPM the
dimension of the matrices used to form the shape functions
and their derivatives is reduced, which improves greatly the
computational efficiency without loss of the computational
accuracy. In addition, the fewer unknown coefficients are
also lead to the fewer nodes required in the entire domain
of a problem, then under the same node distribution, the
CVRKPM has greater precision than the RKPM.

In recent years, some meshless methods have been applied
to plate problems. Belytschko et al. have used the EFG
method to solve thin plate problems [60]. Liu et al. presented
the meshfree method for static and free vibration problems
of thin plates [61,62]. Liu et al. [63] and Sladek et al. [64]
proposed meshfree methods for numerical simulations of
large deflection of plates. Long et al. applied respectively the
MLPG method and meshless local boundary integral equa-
tion method for the analysis of thin plates [65–67]. Atluri
et al. presented the MLPG method to analyze thick plate

problems [68]. Li et al. applied the RKEM to solve Kirch-
hoff plate problems [22,23]. Tinh et al. proposed a moving
Kriging interpolation-based meshfree method for numerical
simulation of Kirchhoff plates problems [69,70]. And Yan
et al. presented the dual reciprocity hybrid radial boundary
node method to solve Kirchhoff plates [71].

In this paper, the CVRKPM for solving the bending prob-
lem of Kirchhoff plates is presented. The Galerkin weak form
is used to obtain the discretized system equations, and the
penalty method is employed to apply the essential bound-
ary conditions, then the corresponding formulations of the
CVRKPM for the analysis of thin plates are obtained in
detail. Several numerical examples are presented to verify
the accuracy of the CVRKPM, and the corresponding numer-
ical results are compared with the ones of the RKPM and the
analytical solutions to show the advantages of the present
method.

2 Governing equations and some definitions
of the Kirchhoff plate

A Kirchhoff plate, defined on the plate domain � enclosed
by the boundary �, is considered, and a Cartesian reference
system Ox1x2x3 located on its middle plane is used (see
Fig. 1). The thin plate with uniform thickness h is subjected
to a transversal distributed load q(x1, x2) per unit area.

In Kirchhoff plate theory, the displacements u and v,
which parallel to the undeformed middle plane, can be
expressed as

u = −x3
∂w

∂x1
, (1)

v = −x3
∂w

∂x2
, (2)

where w is the transversal displacement of the middle plane,
which is also called the deflection of the middle plane of
the thin plate in the x3 direction. It is clearly shown that the
deflection w of the thin plate can be regarded as the field
variable of the bending problem of thin plates.

For the homogeneous and isotropic Kirchhoff plate, the
governing equation for the deflection can be written as

D0∇4w(x1, x2) = q(x1, x2), ((x1, x2) ∈ �) , (3)

where ∇4(·) is a biharmonic operator,

∇4(·) = ∂4(·)
∂x4

1

+ 2
∂4(·)

∂x2
1∂x2

2

+ ∂4(·)
∂x4

2

, (4)

D0 is the flexural stiffness of Kirchhoff plate,

D0 = Eh3

12
(
1 − ν2

) , (5)
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Fig. 1 Thin plate subjected to
transverse distributed load

h

),( 21 xxq

Ω

ux ,1

vx ,2
wx ,3

O

Γ

E is Young’s modulus, ν is Poisson’s ratio, and h is the thick-
ness of the thin plate.

The essential boundary conditions are

w = w̄,
(
(x1, x2) ∈ �u1

)
, (6)

∂w

∂n
= θ̄n,

(
(x1, x2) ∈ �u2

) ; (7)

and the natural boundary conditions are

Mn = M̄n,
(
(x1, x2) ∈ �t1

)
, (8)

Vn = V̄n,
(
(x1, x2) ∈ �t2

)
, (9)

where Mn and Vn are the bending moment and the effective
shear force, respectively; w̄, θ̄n , M̄n and V̄n are the prescribed
deflection on the essential boundary �u1 , the rotation angle
about the tangent to the essential boundary �u2 , the bending
moment on the natural boundary �t1 , and the effective shear
force on the natural boundary �t2 , respectively; n denotes the
outward normal direction to the natural boundary �.

3 The approximation of the CVRKPM

Suppose that the problem domain � is discretized by a set
of nodes {z1, z2, . . . , zn}, and n is the total number of nodes.
Using the CVRKPM, the approximation wh(z) of a function
w(z) at an arbitrary point z, z = x1 + ix2, is defined as

wh(z) =
N∑

I=1

Φ̃I (z) · wI = Φ̃(z) · w, (10)

where

Φ̃I (z) = Re[ΦI (z)], (11)

Φ̃(z) =
(
Φ̃1(z), Φ̃2(z), . . . , Φ̃N (z)

)
, (12)

w = (w1, w2, . . . , wN )T, (13)

N is the number of nodes which support domains cover the
point z, wI is the node deflection at the node zI in the middle
plane of the thin plate; ΦI (z) is the shape function of the
CVRKPM,

ΦI (z) = C(z; z − zI )wh(z − zI )�VI , (14)

�VI is the volume of node zI , wh(z − zI ) is the weight
function, C(z; z − zI ) is the correction function, which is
expressed as

C(z; z − zI ) =
m∑

i=0

pi (z − zI ) · bi (z) = pT(z − zI )b(z),

(15)

bT(z) = (b0(z), b1(z), . . . , bm(z)), (16)

m is the highest order of polynomial basis functions, and
pi (z − zI ) are the basis functions, which can be chosen as

• Quadratic basis:

pT(z − zI ) = (1, (z − zI ), (z − zI )
2), and m = 2;

(17)

• Cubic basis:

pT =(1, (z − zI ), (z − zI )
2, (z − zI )

3), and m =3;
(18)

• Quartic basis:

pT = (1, (z − zI ), (z − zI )
2, (z − zI )

3, (z − zI )
4),

and m = 4. (19)
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The quintic spline weight function is defined as

wh(r) =
{

1 − 10r2 + 20r3 − 15r4 + 4r5, 0 ≤ r ≤ 1,

0, r > 1

(20)

where r = dI
ρI

, dI = |z − zI | , ρI = dmax · cI is the size
of the support domain of the weight function at node zI ,
dmax is the scaling factor of the support domain of the weight
function, and cI is the least distance between node zI and
other nodes.

The coefficients bi (z) in Eq. (16) are obtained via the
reproducing conditions, i.e.

G(z) · b(z) = H, (21)

where

G(z) =
m∑

I=1

p(z − zI ) · pT(z − zI ) · wh(z − zI ) · �VI ,

(22)

and

H = (1, 0, . . . , 0)T. (23)

Then we have

b(z) = G−1(z) · H. (24)

The advantage of the CVRKPM is that the correction
function of a two-dimensional problem is obtained using
one-dimensional basis function, which leads to the fewer
unknown coefficients in the CVRKPM than those in the
RKPM. Especially for the bending problem of thin plates,
the second derivatives of the shape functions are involved,
then the highest order of polynomial basis functions is at least
quadratic. For the quadratic basis, the basis function in the
RKPM is pT = (

1, x1 − x ′
1, x2 − x ′

2, (x1 − x ′
1)

2, (x1 − x ′
1)

(x2 − x ′
2), (x2 − x ′

2)
2
)
, and six unknown coefficients are

needed, however the basis function in the CVRKPM is
pT = (

1, z − z′, (z − z′)2
)
, and only three unknown coef-

ficients are needed. Accordingly, for the cubic basis, ten
unknown coefficients are needed in the RKPM, but only four
unknown coefficients are needed in the CVRKPM. Because
the fewer unknown coefficients will result in fewer dimen-
sion of the matrix G, the inversion of the matrix G and the
product of matrices can be obtained simply and rapidly. Then
the CVRKPM has greater computational efficiency than the
RKPM.

In addition, because the unknown coefficients are fewer,
we need fewer nodes which support domains cover the point
z. Then we also require fewer nodes in the entire domain
of a problem. Accordingly, under the same node distribution
in the problem domain, the CVRKPM has greater precision
than the RKPM [29,30].

4 The CVRKPM for the analysis of Kirchhoff plates

In this section, the formulae of the CVRKPM for the analysis
of Kirchhoff plates are obtained in detail.

We define respectively pseudo-strain and pseudo-stress as

εp =

⎡

⎢
⎢⎢
⎣

− ∂2w

∂x2
1

− ∂2w

∂x2
2

−2 ∂2w
∂x1∂x2

⎤

⎥
⎥⎥
⎦

= Lw (25)

and

σp =
⎡

⎢
⎣

M11

M22

M12

⎤

⎥
⎦ = Dεp, (26)

where L is the differential operator matrix,

L(·) =

⎡

⎢
⎢⎢
⎣

− ∂2

∂x2
1

− ∂2

∂x2
2

−2 ∂2

∂x1∂x2

⎤

⎥
⎥⎥
⎦

(·), (27)

Mii , i = 1, 2, is the bending moment at xi direction, M12

is the twisting moment; D is a matrix of constants related to
the material property and the thickness of the plate, and for
homogeneous plates,

D = D0

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦ . (28)

The Galerkin weak form is employed to discretize the
governing equation. Because the shape functions of the
CVRKPM do not satisfy the property of Kronecker δ func-
tion, the essential boundary conditions can not be applied
directly. In this paper, penalty method is used to impose
the essential boundary conditions. The corresponding con-
strained Galerkin weak form can be given as [62,65]
∫

�

δεT
p · σ pd� −

∫

�

δw · qd� −
∫

�t1

δ

(
∂w

∂n

)
M̄nd�

−
∫

�t2

δwV̄nd� +
∫

�u1

δ (w − w̄) · α1 · (w − w̄) d�

+
∫

�u2

δ

(
∂w

∂n
− θ̄

)T

· α2 ·
(

∂w

∂n
− θ̄

)
d� = 0, (29)

where α1 and α2 are penalty factors which are used to apply
the essential boundary conditions. In this paper, when

α1 = α2 = (1.0 ∼ 1.0 × 101)E, (30)

we can obtain the solutions with high precision.
By using the stress–strain relationship Eq. (26) and

the strain–displacement relationship Eqs. (25), (29) can be
explicitly expressed as
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∫

�

δ(Lw)T · D · (Lw)d� −
∫

�

δw · qd�

+
∫

�t1

δ

(
∂w

∂n

)
· M̄nd� −

∫

�t2

δw · V̄nd�

+
∫

�u1

δ(w − w̄) · α1 · (w − w̄)d�

+
∫

�u2

δ

(
∂w

∂n
− θ̄

)T

· α2 ·
(

∂w

∂n
− θ̄

)
d� = 0. (31)

From Eq. (10), we have

Lw = L

(
N∑

I=1

Φ̃I wI

)

=
N∑

I=1

L(Φ̃I wI )

=
N∑

I=1

⎡

⎢⎢
⎣

− ∂2

∂x2
1

− ∂2

∂x2
2

−2 ∂2

∂x1∂x2

⎤

⎥⎥
⎦ (Re[ΦI (z)] · wI )

=
N∑

I=1

⎡

⎣
−Re[ΦI,11]
−Re[ΦI,22]
−2Re[ΦI,12]

⎤

⎦ · wI =
N∑

I=1

BI wI = B · w,

(32)

where ΦI,i j , i, j = 1, 2, represents the second derivative of
the CVRKPM shape function,

B(z) = (B1(z), B2(z), . . . , BN (z)), (33)

BI =
⎡

⎣
−Re[ΦI,11]
−Re[ΦI,22]
−2Re[ΦI,12]

⎤

⎦ . (34)

Substituting Eqs. (10) and (32) into Eq. (31) yields

δwT ·
(∫

�

BTDBd�

)
· w − δwT ·

(∫

�

Φ̃
T

qd�

)

− δwT ·
⎛

⎝
∫

�t1

(
∂Φ̃

∂n

)T

M̄nd�

⎞

⎠

− δwT ·
(∫

�t2

Φ̃
T · V̄nd�

)

+ δwT ·
(∫

�u1

Φ̃
T · α1 · Φ̃d�

)

· w

− δwT ·
(∫

�u1

Φ̃
T · α1 · w̄d�

)

+ δwT ·
⎛

⎝
∫

�u2

(
∂Φ̃

∂n

)T

· α2 ·
(

∂Φ̃

∂n

)

d�

⎞

⎠ · w

− δwT
∫

�u2

(
∂Φ̃

∂n

)T

· α2 · θ̄d� = 0. (35)

Because δwT is arbitrary, from Eq. (35) we have the final
discrete equation as

K̄w = F̄, (36)

where

K̄ = K + Kα, (37)

F̄ = F + Fα, (38)

K is the global stiffness matrix,

K =
∫

�

BT · D · Bd�; (39)

Kα is the global penalty matrix,

Kα =
∫

�u1

Φ̃
T · α1 · Φ̃d�+

∫

�u2

(
∂Φ̃

∂n

)T

· α2 ·
(

∂Φ̃

∂n

)

d�;
(40)

F is the global external force vector,

F =
∫

�

Φ̃
T

qd� +
∫

�t1

(
∂Φ̃

∂n

)T

M̄nd� +
∫

�t2

Φ̃
T

V̄nd�,

(41)

and the vector Fα is caused by the essential boundary con-
dition,

Fα =
∫

�u1

Φ̃
T · α1 · w̄d�+

∫

�u2

(
∂Φ̃

∂n

)T

· α2 · θ̄d�. (42)

5 Numerical examples

In this section, several numerical results for selected plate
problems with boundary conditions are presented to illustrate
the implementation of the CVRKPM for the bending problem
of arbitrary Kirchhoff plates in this paper.

In the numerical examples presented in this section, the
material properties are given as follows: Young’s modulus
E = 2.1×1011 N/m2, Poisson’s ratio ν = 0.3 and the thick-
ness of the plate h = 0.01 m. A regular node distribution and
the background mesh for quadrature are used to obtain the
final system equation. 4 × 4 Gaussian quadrature is used for
numerical integrations on each cell of the background mesh.

5.1 A square plate for convergence analysis

The convergence of the present CVRKPM for the bend-
ing problem of thin plates is studied by analyzing the node
deflections and strain energy. And the influences of the basis
function, weight function, scaling factor, node distribution
and penalty factor on the computational precision of the
CVRKPM in this paper are discussed.
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Fig. 2 A square plate subjected to a uniformly distributed load

The deflection norm ‖w‖ and strain energy norm ‖e‖ are
defined as

‖w‖ =
(∫

�

w2d�

) 1
2 ; (43)

‖e‖ =
[

D0

2

∫

�

(∇2w)2d�

] 1
2

. (44)

The relative errors of ‖w‖ and ‖e‖ are defined as

rw = ‖wn − we‖
‖we‖ (45)

and

re = ‖en − ee‖
‖ee‖ , (46)

respectively. Here wn and en are the numerical results of
the deflection and the strain energy obtained by the present
method, respectively; we and ee are the analytical ones of the
deflection and the strain energy, respectively.

In this example, a square plate subjected a uniformly dis-
tributed load with all edges simply supported (see Fig. 2) is
considered to illustrate the convergence of the CVRKPM in
this paper. The analytical solution of the problem is

w = 16q0

π6 D0

∞∑

m=1,3,...

∞∑

n=1,3,...

sin mπx1
a · sin nπx2

a

mn
(

m2

a2 + n2

a2

) , (47)

where D0 is the flexural rigidity in Eq. (5), q0 is the uniformly
distributed load, and a is the side length of the square plate.
In this example, q0 = 1, 000 N/m2 and a = 1.0.

Regular node distributions of 7 × 7, 11 × 11 and 21 × 21
are used to study the relative errors of the numerical solutions
of the present CVRKPM. The size h in the Figs. 3, 4, 5, 6 is
defined as the distance in the x1 direction between two neigh-
boring nodes. The quadratic, cubic and quartic basis func-
tions and the quintic spline weight function are employed.
The relative errors of the deflection norm ‖w‖ and strain
energy norm ‖e‖ are shown in Figs. 3 and 4, respectively. It
can be seen that cubic basis function can give better results

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

Quadratic basis
 Cubic basis
 Quartic basis

lg
(r
w)

lgh

Fig. 3 Relative errors of the deflection norm ‖w‖

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
-3.0

-2.5

-2.0

-1.5

-1.0
Quadratic basis
 Cubic basis
 Quartic basis

lg
( r e

)

lgh

Fig. 4 Relative errors of the strain energy norm ‖e‖

-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7
-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

Cubic spline weight function
Quartic spline weight function
Quintic spline weight function

lg
(r
w

)

lgh

Fig. 5 Relative errors of the deflection norm ‖w‖

than quadratic basis function. In addition, quartic basis func-
tion can also give similar good results as the cubic basis
function, but it spends more CPU time.

The CVRKPM is flexible with respect to the construction
of the shape functions. It is possible to optimize the accu-
racy of the present method by using a proper weight function
because the approximation results are governed by the con-
tinuity of the weight function. Therefore, in this paper, we
compare the relative errors of the CVRKPM when using dif-
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Cubic spline weight function
Quartic spline weight function
Quintic spline weight function

lg
( r
e)

lgh

Fig. 6 Relative errors of the strain energy norm ‖e‖
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lg
( r
w)
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Fig. 7 Influence of dmax on the relative errors of the deflection norm
‖w‖

ferent spline weight functions. Figs. 5 and 6 show the relative
errors of the norms ‖w‖ and ‖e‖ using the cubic, the quar-
tic and quintic spline weight function, respectively, while
the cubic basis function is employed. It can be seen that the
quintic spline weight function can obtain the solution with
higher accuracy. In fact, the quintic spline function possesses
C2 continuity within the support domain, as well as on its
boundary, then C3 shape functions can be obtained due to
the properties of the quintic spline weight function.

All of these figures also show that the present CVRKPM
has high precision for the norms ‖w‖ and ‖e‖, and gives
reasonable numerical results for the unknown variable and
its derivatives. At the same time, because the continuity of
the approximation is in connection with the continuity of the
weight function, if the order of the weight function is higher
than the order of the basis function, the order of the continuity
of the numerical approximation will be similar to that of
the weight function. Then in this case we can only require
the basis function with lower order. It is a good choice to
use cubic basis function as well as the quintic spline weight
function in our numerical analyses. Then in the following
examples, the cubic basis and quintic spline weight function
are used in the CVRKPM for Kirchhoff plates.

0.01*E 0.1*E 1.0*E 10*E 100*E 1000*E
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Fig. 8 The relative errors of the norm ‖w‖ for different penalty factor
α

The influences of scaling factor dmax on the numerical
results are investigated under different regular node distri-
butions. The relationship between the relative error of the
deflection norm ‖w‖ and the scaling factors dmax is shown in
Fig. 7. From the numerical results, we can see that the best
solutions are obtained when dmax = 4.1. In the following
examples in this paper, we let dmax = 4.1.

The study of the influence of penalty factor α on the solu-
tions of the CVRKPM is considered here. The relative errors
of the norm ‖w‖ for different penalty factor α under dif-
ferent node distributions of 7 × 7, 9 × 9, 11 × 11, 13 ×
13, 15 × 15, 17 × 17 and 19 × 19 are shown in Fig. 8. It
is shown that the good solutions of the thin plate can be
obtained when α = (1.0 ∼ 10)× E . The large errors appear
when α > (103 × E). On the other hand, α should be a
large number. It is difficult to obtain a good result when
α < (10−2 × E). In the following examples in this paper, we
let α = 1.0 × E .

The numerical errors of the present CVRKPM at different
node distributions are compared with those of the RKPM, as
shown in Fig. 9. It can be seen that the computational accu-
racy of the CVRKPM is higher than the one of the RKPM
under the same node distribution. Moreover, the numerical
results obtained by the present CVRKPM become more accu-
rate when the number of nodes increases.

Under the same node distribution, the CVRKPM takes
less CPU time than the RKPM. Table 1 shows the com-
parison of the corresponding CPU time of the CVRKPM
and RKPM under various node distributions. It is shown that
the CVRKPM has greater computational efficiency than the
RKPM under the same node distribution.

5.2 Simply supported rectangular plate

As the second example, we consider a simply supported rec-
tangular plate with uniformly distributed bending moment
on two opposite edges (see Fig. 10).
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Fig. 9 The relative errors of the norm ‖w‖ under various node distri-
butions

Table 1 Comparison of CPU time under various node distributions

Node distribution CPU time (s)

RKPM CVRKPM

7 × 7 13.86 7.203

9 × 9 29.156 15.328

11 × 11 49.343 24.703

13 × 13 76.204 38.297

15 × 15 108.64 55.531

17 × 17 145.89 75.094

19 × 19 191.891 97.094

21 × 21 238.984 120.719

1x
O

2x

a

2
b

2
b

0M

0M

Fig. 10 Simply supported rectangular plate

The analytical solution of the deflection when x2 = 0 is

(w)x2=0 = 2M0a2

π3 D0

∞∑

m=1

1

m3

αm thαm

chαm
sin

mπx1

a
, (48)

where

αm = m π b

2a
, (m = 1, 3, 5, . . .). (49)

In this example, the parameters used for the numerical
simulation are a = 2, b = 1 and M0 = 1, 000 Nm/m. Based
on the results of the first numerical example, we take the scal-
ing factor dmax = 4.1 and the penalty factor α1 = 2.1×1011.

0.0 0.5 1.0 1.5 2.0

-0.005

-0.004

-0.003

-0.002

-0.001

0.000 Analytical
 CVRKPM

        (CPU time 13.787s)
 RKPM

        (CPU time 31.469s)

w

x1

Fig. 11 The deflection w when x2 = 0

0q

a

a

O C

BA

1x

2x

3x

Fig. 12 Simply supported square plate with linearly hydrostatic pres-
sure

The numerical results of the RKPM, the present CVRKPM
and the analytical solution along x1 axis are shown in Fig. 11.
It can be seen that the present CVRKPM and the RKPM have
similar numerical precision, but the present CVRKPM takes
less CPU time than the RKPM.

5.3 Simply supported square plate under hydrostatic
pressure

The third example considered is a square plate subjected to
the linearly distributed hydrostatic pressure with all edges
simply-supported, as shown in Fig. 12. The analytical solu-
tion is

w = 8q0a4

D0 π6

∞∑

m=1

∞∑

n=1

(−1)m+1

mn(m2 + n2)2 sin
mπx1

a
sin

nπx2

a
,

(n = 1, 3, 5, . . .), (50)

where q0 is the maximum numerical value of distributed
hydrostatic pressure.

In this study, q0 = 1, 000 N/m2, a = 1.0, dmax = 4.1 and
α1 = 2.1×1011. And the regular node distribution of 11×11
are used. The material properties are the same as those in the
previous examples.

The analytical solution and the numerical results of the
present method at (x1, 0.5) and (0.5, x2) are shown in
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Fig. 13 The deflection w at points (x1, 0.5)
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Fig. 14 The deflection w at points (0.5, x2)

Figs. 13 and 14. It can be seen that there is very good agree-
ment between the numerical results and the analytical solu-
tion given by Eq. (50).

5.4 Clamped circular plate with uniform load

A clamped circular plate, as shown in Fig. 15, subjected to
the uniform transverse pressure q is considered to further

Fig. 16 Node distribution

investigate the applicability of the CVRKPM of the bending
problems of Kirchhoff plate with curved boundary.

The analytical solution of the problem is

w = q R4

64D0

(
1 − r2

R2

)2

, (51)

where R is the radius of the plate, and r is the distance from
the center of the middle plane of the thin plate.

In this example, the parameters selected for the present
CVRKPM are dmax = 4.1, α1 = α2 = 2.1 × 1011, R = 1.0
and q = 1, 000 N/m2. Due to symmetry, only a quarter of the
plate is considered (see Fig. 15b). Figure 16 shows the node
distribution on the quarter of the plate. The numerical results
of the deflection w at the points with different distances from
the center are shown in Fig. 17. It can be seen that the present
CVRKPM gives the numerical solution with high precision.

6 Conclusions

The CVRKPM for solving the bending problems of Kirch-
hoff plates is proposed in this paper. The advantage of the
CVRKPM is that the correction function of a 2D problem is

Fig. 15 Clamped circular plate.
a Clamped circular plate. b A
quarter of the plate

(a) Clamped circular plate (b) A quarter of the plate

1x

2x

O

aR

1x

2x

symmetry

fixed 

symmetry

O
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Fig. 17 The deflection w at r -direction

formed with 1D basis function when the shape functions are
formed. Then the unknown coefficients of correction func-
tion in the CVRKPM are fewer than in the RKPM. There-
fore, we need fewer nodes with support domains that cover
an arbitrary point in the problem domain. At the same time,
the fewer unknown coefficients will reduce the dimension
of matrices, then we can obtain the inversion of matrices, as
well as the product of matrices, simply and rapidly, which
will lead to the greater computational efficiency.

Convergence studies in the first numerical example show
that the present method possesses an excellent convergence
rate for the deflection and the strain energy. Numerical results
show that using the cubic basis and the quintic spline weight
function can get quite accurate numerical results. Moreover,
the scaling factor is examined numerically. It is evident that
good computational results can be achieved if appropriate
scaling factor is selected. Several numerical examples have
been given and the numerical results show that the present
method is accurate and in agreement with the theoretical
analysis.

Although isotropic material law and uniform plate thick-
ness were assumed for simplicity, the formulae in this paper
can be applied directly to the bending problems of Kirch-
hoff plates with any material law and any thickness varia-
tion. Besides, the current formulation possesses flexibility in
adapting the density of the nodes at any place of the prob-
lem domain such that the precision of the solution can be
improved easily. This is especially useful in developing intel-
ligent, adaptive algorithms based on error indicators for engi-
neering applications.
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