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Abstract Low-order finite elements face inherent limi-
tations related to their poor convergence properties. Such
difficulties typically manifest as mesh-dependent or exces-
sively stiff behaviour when dealing with complex prob-
lems. A recent proposal to address such limitations is the
adoption of mixed displacement-strain technologies which
were shown to satisfactorily address both problems. Unfor-
tunately, although appealing, the use of such element techno-
logy puts a large burden on the linear algebra, as the solution
of larger linear systems is needed. In this paper, the use of an
explicit time integration scheme for the solution of the mixed
strain-displacement problem is explored as an alternative. An
algorithm is devised to allow the effective time integration
of the mixed problem. The developed method retains second
order accuracy in time and is competitive in terms of com-
putational cost with the standard irreducible formulation.
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Nomenclature

(•) : (•) Double contraction of tensor (inner product).
(•) · (•) Single contraction of vector and tensor.
(•)T Vector, matrix transpose.
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(•)n Variable (•) at time tn .
γ Vector of strain weighting function.
σ Stress tensor.
ε Small strain tensor.
E Green-Lagrange strain tensor.
e Almansi strain tensor.
F Gradient deformation tensor.
N Vector of displacement shape functions.
u Displacement field.
w Vector of displacement weighting functions.
¨(•) Second derivative of (•) with respect to time t .

�t Time step.
δi j Kronecker’s symbol.
P Projection operator.
P⊥ Orthogonal projection operator.
∇(•) Gradient operator.
∇ · (•) Divergence operator.
∇s(•) Symmetric gradient operator∇s(•)= 1

2 (∇(•)+
∇(•)T ).

ρ Density.
τε Stabilization parameter.
υ Poisson’s ratio.
ε̃ Enhancement strain.
E Young’s modulus.
he Finite element characteristic length.
le
min Minimum element length in the finite element

mesh.

1 Introduction

The solution of problems in solid mechanics has been one
of the main driving forces of the development of the finite
element method (FEM), which in turn has allowed engineers
to tackle a wide variety of otherwise untreatable problems. In
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structural mechanics, displacements are normally chosen as
unknowns and strains are computed as dependent variables
by differentiation of the displacement field. Since no fur-
ther reduction is possible in the choice of the unknown field,
standard displacement-based approaches are also known as
irreducible formulations. Irreducible formulations are very
effective in addressing a wide range of practical problems,
however, they may lead to stiff or mesh-dependent beha-
viour in corner cases. The performance of standard low-order
displacement-based elements is also known to be poor in
nearly incompressible conditions. Standard low-order ele-
ments tend to show “volumetric locking” which manifests as
unrealistically stiff behaviour. A vast literature exists propos-
ing cures for such problems, with early proposals based
on reduced integration techniques or on the use of cor-
rected assumed-strains, see for instance, the F-bar method
[1]. Mixed displacement-pressure approaches started to be
employed in the 90 s for the solution of truly incompres-
sible problems [1–5]. Such techniques were also shown to
provide an accuracy advantage when used in application to
compressible problems (see e.g. [6]).

A different mixed formulation is employed here with the
goal of improving the accuracy of the Finite Element dis-
cretization. The idea is to combine different primary vari-
ables, in our case displacements and strains, following the
concept described in [7]. This approach was proved to show
better mesh independence properties while providing the
formal guarantee of a strain field converging at the same
rate as the displacement one, which manifests in enhanced
stress/analysis accuracy in both linear and non-linear analy-
ses [8]. Following the ideas in [9–14], a stabilization tech-
nique is needed to allow the use of the same order of interpo-
lation for the two primary variables of interest. Specifically
the variational multiscale method (VMS) is employed in the
current work.

The inherent limitation of the displacement-strain tech-
nology is related to its computational cost, since such tech-
nique involves higher number of degrees of freedom (dofs)
per mesh node (9 vs. 3 for the 3D case) which results in
much larger linear systems to be solved. The goal of the
current paper is to obviate this limitation by exploring the
use of an explicit time integration scheme. We will prove
that a completely explicit approach is feasible when employ-
ing the mixed technology of interest and that it is competi-
tive with the irreducible case. In particular, we will show
that, for a given mesh, the critical time step is larger for
the mixed formulation with respect to the irreducible case,
thus enlarging the stability region of the explicit scheme. For
this purpose, three different cases are studied. First a sim-
ple small-displacement example is analysed with the aim of
obtaining an analytical estimation of the critical time step.
Second, a cantilever beam is studied, again in the small strain
regime. Lastly, the same analysis is performed in the large-

deformation regime, proving that geometrical nonlinearities
can be included within the proposed mixed-displacement for-
mulation, and that such extension comes very natural when
an explicit integration scheme is employed.

2 Mixed strain/displacement formulation in transient
dynamics problems

2.1 Continuous problem

The standard approach in computational solid mechanics is
the use of irreducible formulations, in which the deforma-
tion is expressed in terms of the derivatives of the displace-
ment field. While this approach is sufficient to satisfactorily
address many problems, it suffers from severe limitations
when used in combination with low-order finite element dis-
cretization. This is evident, for example, in the case of crack-
propagation problems, which require guarantee on the local
convergence of the strain field, which can not be provided by
the standard irreducible element technology. Similar require-
ments exist however in other areas of application, such as
when approaching the incompressible limit.

An appealing possibility to overcome such limitations is
the use of mixed formulations, in which additional fields are
used as primary variables in combination with the displace-
ment field. Among the many existing possibilities is the use
of the two primary variables u(x) and ε = ε(x), where u(x)

is the displacement field and ε(x) is a suitable strain mea-
sure (e.g the linear strain ∇s u in small deformations or the
Almansi strain in the large deformations case), has appealing
properties. The mixed formulation is constructed by observ-
ing that, at continuous level, the primal variable ε (we omit
whenever possible the dependence on x) coincides with the
equivalent strain ε(u) computed by differentiation of the dis-
placement field. Combining this with the linear momentum
conservation equation yields

∇ · σ + b = ρ ü in �

−ε(x) + ε(u) = 0 in � (1)

where� is the domain occupied by the solid in a space of ndim

dimensions, ρ denotes the material density, the superposed
dots on u denotes partial differentiation respect to time t (in
this case acceleration) and σ is the appropriate stress tensor
field, which is generally written as

σ = C(ε) : ε (2)

where C is a fourth-order constitutive tensor, which may
include non-linear behaviour. In addition to Eq. (1), which
must hold for all time t , the problem is subjected to appro-
priate Dirichlet and Neumann boundary conditions applied
respectively on the portions ∂�u and ∂�σ of the boundary,
and to the initial conditions expressed by
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u̇|t=0 = v0 (3)

u|t=0 = u0 (4)

Introducing Eq. (2) in Eq. (1), the strong form becomes

∇ · (C(ε) : ε) + b = ρ ü in �

−ε(x) + ε(u) = 0 in � (5)

The two fields u = u(x) and ε = ε(x) can be both dis-
cretized by the FEM as independent primary variables. Intro-
ducing the discrete nodal unknown uh and εh and the corres-
ponding test functions wh and γ h and applying the Galerkin
procedure we thus obtain
∫

�

wh · (∇ · (C (εh) : εh)) d� +
∫

�

wh · bd�

=
∫

�

ρwh · ühd� (6a)
∫

�

γ h · (εh − ε(uh)) d� = 0 (6b)

Unfortunately, if equal-order interpolation are used for uh

and εh , the resulting Galerkin method is unstable [15]. Lack
of stability manifests as a spurious oscillations in the dis-
placements field that may entirely pollute the solution. A
modified formulation needs to be devised to properly stabi-
lize the solution, hence guaranteeing the convergence of the
method. Such stabilizations can be derived in the framework
of sub-grid approaches [11] as we show next.

2.2 Stabilized finite element methods

The origin of the instabilities of the proposed mixed method
is that the finite element space employed is not sufficiently
large to accommodate the optimal solution. Sub-grid scale
stabilization methods retrofit this situation by enlarging the
search space, via the introduction of sub-grid variables. The
key idea of the sub-grid approach is exactly to consider that
the continuous fields can be split in two components, a coarse
one, to be solved for, and a finer one to be modelled. Such
components correspond to different scales or levels of reso-
lution [7], and are naturally separated in the scales that can be
resolved by the finite element discretizations and the ones that
can not be resolved at the given discretization level. For the
stability of the discrete problem, it is necessary to include the
effects of both scales in the approximation, that is, the effect
of the finer (unresolved) scale needs to be included in the
resolved model. For the specific problem at hand we apply
such scale separation to the strain variable to give

ε(x) = εh(x) + ε̃ (7)

where εh is the strain component of the (coarse) finite ele-
ment scale and ε̃ is the enhancement of the strain field cor-
responding to the sub-grid scale. While a similar assumption
can be made for the displacements, previous experience (see

e.g.[7,8,15]) hints that this splitting is not needed for this
variable. Taking into account such considerations, the stabi-
lized model is in the form
∫

�

wh · (∇ · (

C(εh) : (

εh + ε̃
)))

d�

+
∫

�

wh · bd� =
∫

�

ρwh · ühd� (8)
∫

�

γ h · (

εh + ε̃ − ε(uh)
)

d� = 0 (9)

substituting C(εh) instead of C(εh + ε̃) (see [7,8,15]). Next
a model needs to be chosen for ε̃. Following the idea of
Orthogonal Subscale Stabilization (OSS), we assume that
the subgrid strain is proportional to the orthogonal projec-
tion of the coarse scale residual, that is, the strain residual
(rε := ε(uh) − εh) is introduced, and

ε̃ = τεP
⊥ (rε) (10)

here P⊥ indicates the orthogonal projection operation (such
that P⊥(•) = I − P(•) and P⊥(εh) = 0) and τε is the
algorithmic stabilization parameter, theoretically defined as

τε = cε

h

L
(11)

with cε, h and L being an “arbitrary” algorithmic constant,
the element size and the characteristic length of the compu-
tational domain respectively. For simplicity, in the case of
constant meshes it is customary to take a constant value of
the stabilization parameter[8,15]. In this work typical values,
in the range 0.1–0.5, were considered in all the examples.
Taking into account such definition, Eq. (10) gives

ε̃ = τε(rε − P(rε))

= τε(ε(uh) − εh − P(ε(uh)) + P(εh))

= τε(ε(uh) − P(ε(uh))) (12)

Replacing into Eq. (6a) and simplifying we obtain

εh = P(ε(uh)) (13a)

εstab = (1 − τε)εh + τεε(uh) (13b)
∫

�

ρwh · ühd� +
∫

�

∇swh :
(

C(εh) :
(

εstab
))

d�

=
∫

�

wh · bhd� +
∫

∂�

wh · thd� (13c)

which define the stable discrete problem to be solved. Note
that the term added in Eq. (13b) to secure a stable solution
decreases rapidly upon mesh refinement, since ||ε(uh) −
ε|| → 0.

123



546 Comput Mech (2015) 55:543–559

2.2.1 Remark: projection operations

It is interesting to make a short remark about the practical
meaning of the orthogonal projection operator. A projector
P is a linear operator which takes a variable defined in a given
space and gives the best representation of such variable in the
target space. As a requirement, a projector must comply with
the property P ( y) = P (P ( y)) which tells that the projec-
tion of a projected value is the projected value itself. A non-
orthogonal projection of y onto the FE space is nothing more
than its FE discretized value, that is, yh = P( y). Clearly the
“best” FE approximation of a finite element value is the value
itself, hence yh = P( yh) is trivially verified. If we take into
account the intuitive definition of projection and we take as
“best” a least-square approximation, we can readily see that
the projected value yh can be obtained as

∫

�

wh · (

yh − y(x)
)

d� = 0 (14)

which gives rise to a discrete problem of the type

∫

�

wh · yhd� =
∫

�

wh · y(x)d� (15)

we recognize on the left side a mass-like operator M̆, so that
such operation can be understood as

M̆ yh =
∫

�

wh · y(x)d� (16)

If mass lumping techniques are applied to M̆ a diagonal
matrix is defined with each diagonal term representing the
nodal area of the corresponding node of the FE mesh. Under
such assumption, the projection operator can be approxi-
mated as an area-weighted smoothing of the original variable.
By definition, the orthogonal projection of the variable is the
part of the variable that is orthogonal to the FE space, that is,
the part that can not be represented onto this space. We can
define constructively the orthogonal projector as the opera-
tor that takes away from the projected variable everything
that can be represented in the FE space. Since the projection
operator is linear, this is done as

P⊥ ( y) := y − P( y) = y − yh (17)

with this definition is immediately verified that

P⊥P( yh) = P( yh) − P(P( yh)) = yh − yh = 0 (18)

thus proving the orthogonality.

3 Large deformation case

To handle large deformations, the strain ε (u) needs to
be defined as a large strain measure. A natural possibility
is to define it as the Almansi strain as ε (u) := 1

2

(∇u + ∇ t u
+∇u∇ t u

)

where the the gradients are computed with respect
to the deformed configuration. The discrete system can then
be obtained by integrating Eq. (9) onto the current (deformed)
configuration �t , as normally done in Updated Lagrangian
approaches.

An equivalent formulation can be obtained by integrat-
ing on the reference (undeformed) domain �0, provided that
appropriate conjugate strain measures are employed. The
equivalent Total Lagrangian formulation can be obtained fol-
lowing the traditional procedure described e.g. in [16]. We
followed here this approach in writing our system.

Introducing the Cauchy-Green strain (CG) measure

E = 1

2
(FT F − I) (19)

and a properly defined elasticity tensor C we can compute
the second Piola-Kirchhoff (PK2) stress S = C (E, S) : E
which completes the informations needed for the evaluation
of all terms of interest. The vector of internal forces f 0

int can
be obtained as

f 0
int =

∫

�0

BT
0 Sd�0 (20)

where, F := ∂x
∂ X

is the deformation gradient. Strain varia-

tions can be computed on the basis of the operators B0, in the
undeformed configuration, and B, in the deformed domain.

Matrix B0 (used in the Total Lagrangian approach) is com-
posed of submatrices, each associated with a node I . For
a particular node I , the sub-matrix B I

0 is written in Voigt
form as:

B I
0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂ NI

∂ X

∂x

∂ X

∂ NI

∂ X

∂y

∂ X
∂ NI

∂y

∂x

∂Y

∂ NI

∂Y

∂y

∂Y
∂ NI

∂ X

∂x

∂Y
+ ∂ NI

∂Y

∂x

∂ X

∂ NI

∂ X

∂y

∂Y
+ ∂ NI

∂Y

∂y

∂ X

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(21)

For the Updated Lagrangian case, the corresponding matrix
is Bt :

B I
t =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂ NI

∂x
0

0
∂ NI

∂y
∂ NI

∂y

∂ NI

∂x

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(22)

Table 1 summarizes the values of the corresponding terms in
Total Lagrangian and Updated Lagrangian approaches.
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Table 1 Entities measures in both reference �0 and deformed �t configuration for irreducible and mixed formulation

Entity Integration domain �

Total lagrangian �0 Updated lagrangian �t

Strain (CG) E(uh) := 1
2 FT F − I (AL) e (uh) := 1

2

(

I − F−T F−1
)

Projection
∫

�0
γ h · (Eh − E(uh)) d�0 = 0

∫

�
γ h · (eh − e(uh)) d� = 0

Stabilized strain Estab = (1 − τε)Eh + E(uh) estab = (1 − τε)eh + e(uh)

Stress (irreducible) (PK2) S = C0 : E Cauchy σ = C : e

Stress (mixed) (PK2) Sstab = C0 : Estab Cauchy σ stab = C : estab

External forces f ext
0 = ∫

∂�0
W h · Td�0 f ext = ∫

∂�
wh · td�

Internal forces (irreducible) f int
0 = ∫

�0
BT

0 Sd�0 (Voigt Notation) f int = ∫

�
BT

t σd� (Voigt Notation)

Internal forces (mixed) f int
0 = ∫

�0
BT

0 Sstabd�0 (Voigt Notation) f int = ∫

�
BT

t σ stabd� (Voigt Notation)

Fig. 1 Central differences
scheme

As a final remark, we would like to observe how, in the
Total Lagrangian case, it is natural to express the projection
operator in terms of E as
∫

�0

γ h · (Eh − E(uh)) d�0 = 0 (23)

This choice is not exactly equivalent to projecting the
Almansi strain (AL) e in the deformed domain, but rather
corresponds to a slightly different definition of the projec-
tion operator. In other words, the corresponding projection
operation in the deformed configuration is written as
∫

�

γ h · (eh − e(uh)) d� = 0 (24)

4 Explicit transient integration

To integrate the dynamic balance equation, a time-marching
algorithm is needed. Implicit strategies with unconditional
stability balance the cost of solving large sparse linear sys-
tems with the possibility of using large time steps. Explicit
solvers are usually considered advantageous in addressing
very short transient phenomena or very high non-linearities.

For the case of the mixed displacement-strain formula-
tion no time derivative is present for the strains, making less
straightforward the definition of an explicit technique. The

aim of the next section is to propose a feasible, completely
explicit, algorithm for the time integration. Within the same
section we also prove that the stability limit for the proposed
explicit algorithm is not worse (and generally better) than
for the corresponding irreducible formulation. To do this we
first recall the standard time integration procedure, and then
we develop the integration procedure applied to the mixed
formulation described herein.

4.1 Standard formulation in explicit dynamics (irreducible
problem)

A commonly used algorithm in the time integration of pro-
blems in structural dynamics is the Central Differences(CD)
time marching scheme. As shown in Fig. (1), the essential
idea of the CD is that the dynamic equilibrium is written at
time n so to allow the evaluation of the mid-step velocity and
successively of the displacements.

If we consider the discrete dynamic equilibrium problem
in the form

Müh(t) + Du̇h(t) + f int (uh, t) = f ext (t) (25)

where M and D are the mass and damping matrices, assumed
diagonal, f int (u) and f ext are the nodal vector of internal
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and external forces, and ü, u̇ and u are the accelerations,
velocities and displacements respectively.

Assuming at time step �t , the straightforward application
of the CD to Eq. (25) leads to the procedure

• Compute the acceleration ün = u̇n+ 1
2 −u̇n− 1

2

�t• Evaluate internal and external forces
• Compute the mid-step velocity by solving

u̇n+ 1
2

= [2M + �t D]−1[(2M − �t D)u̇n− 1
2

+2�t ( f ext
n − f int

n (un))
]

• Compute end-of-step displacements as un+1 = un +
�t u̇n+ 1

2

where subscripts n and n + 1 are used to indicate quantities
at time t = tn or t = tn+1. Note that the inverse of the sum
of damping D and mass matrices M is straightforward since
they are both taken as diagonal. The critical time step is given
by the Courant limit, which is the time necessary for a sound
wave to cross the smallest element in the mesh [17]. For the
undamped case this critical time step is given by

�tcr ≤ 2

ωmax
(26)

where ωmax is the maximum eigenvalue associated to the sys-
tem’s stiffness matrix. The frequencies of the discrete system
are bounded by the maximum frequency, ωe

max of the indi-
vidual elements. A useful approximation is given by.

ωe
max ≈ 2ce

le
min

; le
min = min

e
{he} (27)

where ce is the elastic dilational wave speed and le
min is the

smallest characteristic element size in the finite element mesh
corresponding to the smallest distance between any two ele-
ment nodes in the discretized model. Therefore, the critical
time is finally expressed as:

�tcr ≈ le
min

ce
(28)

4.2 Mixed formulation in explicit dynamics

If we now focus on the mixed strain-displacement formula-
tion, the discrete equation of motion (25) is replaced by

Müh(t) + Du̇h(t) + f int (εstab, t) = f ext (t) (29)

which differs from Eq. (25) in that the internal forces depend
on εstab, i.e

f int (εstab) =
∫

�

BT σd� =
∫

�

BT C : εstabd� (30)

Taking into account the definition of εstab given in Eq. (13b)
and replacing it into Eqs. (30), (29) can be rewritten as a set
of two equations:

Müh(t) + Du̇h(t) +
f int (t)

︷ ︸︸ ︷

K τ uh + GT
τ εh = f ext (t) (31a)

Ğuh − M̆εh = 0 (31b)

where (31a) represents the modified dynamic equilibrium
and (31b) tells that εh shall be the projection of ε(u). In
Eqs. (31b), M̆ is a diagonal mass matrix associated to the
strain field (needed for the computation of the orthogonal
projection of the strain variable); Gτ and Ğ are the discrete
symmetric gradient operators and K τ is the standard stiffness
matrix. For any pair of nodes A and B in one element, these
matrices can be written as

M̆
AB = δAB

(

B
∑

∫

�e

NT
A N Bd�

)

(32)

G AB
τ = (1 − τε)

∫

�e

BT
AC(εh B)N Bd� (33)

Ğ
AB =

∫

�e

BT
A N Bd� (34)

K AB
τ = τε

∫

�e

BT
AC(εh)BBd� (35)

where δAB is the Kronecker delta (δAB = 1 for A = B,
δAB = 0 if A �= B).

It is convenient to rewrite Eqs. (31a) and (31b) as
(

M 0
0 0

) (

ü
0

)

+
(

D 0
0 0

) (

u̇
0

)

+
(

K τ GT
τ

Ğ −M̆

) (

u
εh

)

=
(

f ext

0

)

(36)

Since this form will make easier eigenvalue computations in
the calculation of the critical time step. For this reason we
introduce the matrices

K mixed : =
(

K τ GT
τ

Ğ −M̆

)

(37)

Mmixed : =
(

M 0
0 0

)

(38)

which we will use in the next section. Written in this form, the
discrete system is very similar to the one developed for the
irreducible case, except that two independent unknowns vari-
ables, i.e, the nodal displacement field uh and the nodal strain
field εh are now considered. We can however observe that
since M̆ is diagonal and Eq. (31b) does not present any time
dependence, we can formally express the continuous strain as

a function of the displacements field as, εh = M̆
−1
τ Ğu and

substitute it into the equilibrium Eq. (31a). By introducing
the new symbol

K := K τ + GT
τ M̆

−1
τ Ğ (39)
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we can thus rewrite Eq. (31a) in terms of displacements only
in the equivalent form

Müh(t) + Du̇h(t) + K uh = f ext (t) (40)

the resulting time integration procedure can be then devel-
oped similarly to the irreducible case as

• Compute the acceleration ün = u̇n+ 1
2 −u̇n− 1

2

�t .
• Evaluate on every element the discontinuous strain ε(u).
• Evaluate the strain εh = P(ε(u))) ,that is, εh =

M̆
−1
τ Ğu.

• Compute internal forces taking into account the stabilized
strain.

• Compute the mid-step velocity by solving

u̇n+ 1
2

= [2M + �t D]−1[(2M − �t D)u̇n− 1
2

+2�t ( f ext
n − f int

n (un, εstab
n ))].

• Compute end-of-step displacements as un+1 = un +
�t u̇n+ 1

2
.

We remark that, since the computation of the projections is
very cheap, the cost per time step of the proposed scheme
is very similar to that of the original irreducible algorithm,
making it very interesting in view of the accuracy advantage
guaranteed by the mixed formulation. In the next subsection
we discuss the critical time step for the proposed algorithm,
considering first a 1D case, for which an analytical estimate is
obtained. We then consider a 2D mesh and provide a numer-
ical verification of the formula.

Before proceeding we would also like to point out that the
form used in writing the discrete system obtained is slightly
different from the one employed in [7], in that in the current
approach the M̆ is purely diagonal. The approach we follow
stems out of using a nodal integration rule in the calculation
of the projection and by noticing that the resulting mass term
is block diagonal and can thus be solved analytically block by
block to make it diagonal. We also observe that this approach
is not appealing for the implicit case since it results in a non-
symmetric matrix.

4.3 Stability of the explicit mixed formulation

4.3.1 1D mixed bar problem

Let us consider the one-dimensional problem in Fig. (2).
This corresponds to a bar with unit cross section, discretized
using two elements of length h. Constant material properties
Young’s modulus E and density ρ are assumed. The degrees
of freedom of displacement u1 and u3 are fixed for the nodes
1 and 3. For irreducible case, the system’s fundamental fre-
quency is given by:

Fig. 2 One-dimensional bar example

Fig. 3 2D case test a 2D case test for stability analysis b 2D case test
for checking second order time accuracy

ωirre =
√

2E

ρh2 (41)

It is possible to compute analytically the eigenvalues of the
mixed problem by evaluating the eigenvalues of the corre-
sponding discrete system. Here A and B represent the local
nodes corresponding to the two ends of a 1D bar element. The
same linear interpolation function N are used for the strain
and displacement fields. Applying the mixed formulation, the
local mixed stiffness matrix K AB

mixed of a bar mixed element
is a 4×4 matrix composed by terms affecting degrees of free-
dom of displacements and strains. The sub-matrices M̆,Ğ,
Gτ and K τ defined in (32–35) for a bar mixed element are

M̆
AB = h

2

(

1 0
0 1

)

(42)

K AB
τ = τε

E

h

(

1 −1
−1 1

)

(43)

Ğ
AB = 1

2

(−1 −1
1 1

)

(44)

G AB
τ = E(1 − τε)

2

(−1 −1
1 1

)

(45)

The mass matrix for each mixed bar element is trivially
computed as

M AB = ρh

2

(

1 0
0 1

)

(46)

Accordingly, the local mixed stiffness matrix K mixed of a
bar element is the assembly of these matrices. Hence, using
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Fig. 4 Variation of normalized frequency with stabilization parameter

Fig. 5 Variation of normalized time step with stabilization parameter

the expression in Eq. (37), it can finally express the mixed
local stiffness matrix of a bar element

K AB
mixed =

⎛

⎜

⎜

⎜

⎜

⎝

Eτε

h
−Eτε

h
E(τε−1)

2 − Eτε

2
−Eτε

h
Eτε

h
E(τε−1)

2 − E(τε−1)
2

− 1
2 − 1

2 − h
2 0

1
2

1
2 0 − h

2

⎞

⎟

⎟

⎟

⎟

⎠

(47)

Assembling the elemental contribution of both K mixed and
Mmixed and fixing the displacements of node 1 and 3, we
can obtain the relevant natural frequencies by solving

det (K mixed − λMmixed) = 0

ω2
mixed = λ (48)

Therefore, after some algebra we obtain the following ana-
lytical expression for the first frequency of the mixed system:

ωmixed =
√

E(1 + τε)

ρh2 (49)

As expected the irreducible solution (see Eq. (41)) can be
recovered for τε = 1 (which is the limit case at which only
the discontinuous strain is taken into account).

4.3.2 2D case

Consider now a 2D benchmark example, described in Fig.
(3a) to verify numerically that the 1D predictions also apply
to the 2D case. The model is a unit square 1 × 1 and is dis-
cretized in four elements. The corner nodes are fixed. Density
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Fig. 6 Time error mixed explicit formulation

Fig. 7 3D dimension view of
cantilever beam

ρ, Young’s modulus E , thickness t and Poisson ratio ν are
100 kg, 106 N/m2, 1 m and 0.3 respectively. As the above
example, a modal analysis is performed for irreducible and
mixed formulation.

The plot of ωmixed/ωirre, for varying values of the stabi-
lization parameter is given in Fig. (4). Here ω represents here
the highest frequency in the system. As predicted by the the-
oretical analysis, the system becomes more and more flexible
as the stabilization parameter decreases, to reach a minimal
frequency of about half that of the original irreducible model
when the stabilization parameter approaches zero. The imme-
diate implication is that the critical time step for the explicit
dynamic analysis is greater for the mixed formulation than
for the irreducible one. The numerical experiments shown in
Fig. (5) show that, the estimated gain for the two-dimensional
case is even more favourable than for the one-dimensional
case.

The simple mesh considered here is also suitable to veri-
fy that second order time accuracy is retained by the modi-
fied algorithm. To verify this fact, we slightly modify the
boundary conditions and consider the settings shown in Fig.
(3b). A dynamic analysis is performed, comparing the mixed
and the irreducible formulation. Since a Lagrangian approach
is followed, the spatial error and the time integration error

Table 2 Material and Geometric data for the dynamic analysis of the
cantilever beam

Material and geometric data Value (N − m)

Young’s modulus E 2.0 GPa

Poisson’s ratio υ 0.2

Density ρ 1,000.00 Kg/m3

Length l 5.00 m

Cross section A 0.25 m2

Inertia I 2.604167 × 10−3 m4

Thickness t 0.25 m

Gravity g 9.80665 m/s2

are decoupled. We can hence compute a reference solution
employing an extremely small time step. We then compute
the solution using different time steps and sample the values
of displacement and strain at the point A of Fig. (3b) at the
time instant t=0.4 s. By comparing the results to the reference
we can then plot (in logarithmic scale) the error as a function
of the employed time step size. Since the curve �t2 shown
in Fig. (6) is parallel to the error plot, the graph proves the
expected convergence rates.
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Fig. 8 Boundary conditions for
small deformations in cantilever
beam and section cuts

Fig. 9 Finite element mesh of
cantilever beam model. Mesh A

Fig. 10 Finite element mesh of
cantilever beam model. Mesh B

Fig. 11 Finite element mesh of
cantilever beam model. Mesh C

Table 3 Discretization data for Mesh A, B and C

Discretization data

Mesh type Number of nodes Number of elements

Mesh A 255 400

Mesh B 909 1, 600

Mesh C 3,417 6,400

4.4 Numerical accuracy of the mixed formulation

In this section the accuracy of the proposed mixed explicit
formulation is assessed in the application to a real transient
dynamic problem, in both small and large deformations. The
test case consists of a cantilever beam with the geometri-
cal dimensions described in the Fig. 7 and Table 2. The
displacements are completely constrained at the left side.
Material parameters are given in Table 2. In order to obtain
comparable results, the same time step was employed for
the mixed and irreducible approaches. A reference solution
was computed employing a very dense finite element mesh
(and consequently a very small time step). Calculations are
performed with the Multi-physics finite element program
KRATOS [18,19], developed at the International Center for
Numerical Methods in Engineering (CIMNE). Pre and post-
processing is done with GiD, also developed at CIMNE [20].

4.4.1 Dynamic cantilever beam. Small deformations case.

We begin by considering a small deformation case. Accord-
ing to Bernoulli’s beam theory, the maximum static deflec-
tion δst

max of a cantilever beam under its own weight occurs at

its free end (Eq. 50a). Under the same assumptions, the first
natural frequency ω1 of the same beam is given in Eq. 50b.

δst
max = umax = ρg Al4

8E I
(50a)

ω1 = 1.8752

√

E I

ρ Al4 (50b)

For the dynamic case, the maximum dynamic deflection
δdin

max is expected to be exactly twice the value of the maxi-
mum static deflection. For the test we consider three different
structured triangle meshes A, B and C depicted in the Figs.
9, 10 and 11 respectively. Details of discretization are shown
in the Table 3.

The analytical maximum static deflection δst
max and the

first natural frequency ω1 is 18.3875 mm and 28.705 rad/s
respectively. The corresponding period T of this frequency
is 0.219 s. A linear step-by-step dynamic analysis is done
using C D for both irreducible and mixed formulation. The
results of the analysis are depicted in Figs. 12, 13 and 14.
They correspond to absolute values of vertical displacement
(displacement Y direction) evolution at free end (point Q in
Fig. 8). As expected, for values of τε in the typical range
0.1-0.5, at any given mesh resolution, the mixed formula-
tion is slightly more accurate than the irreducible one. This
is true both in terms of phase accuracy and in terms of stiff-
ness. Interestingly, depending on the value of the stabilization
parameter the structure can be either too flexible or too stiff
compared to the analytical solution, which is not unexpected
since a mixed-formulation may converge from either side. As
expected, as the mesh is refined, all formulations converge
to the reference solution.
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Fig. 12 Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh A

Fig. 13 Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh B

As a remark we observe that as shown in previous works[7,
8,15], where the static case was explored, the explicit mixed
formulation is always (independently on the τε) more accu-
rate than the irreducible formulation on a given mesh.

4.4.2 Dynamic cantilever beam. Large deformations case

As a second example, we consider the same settings and
increase by a factor 100 the applied load (100 times higher

gravity load), thus triggering a large deformation response.
The results shown in Figs. 15, 16 and 17 depicts the dis-
placement of the tip (intended as the center point of the
rightmost face) for the three meshes identified as A, B
and C .

As it can be expected convergence is guaranteed, even
for large deformations cases using a mixed-explicit Total
Lagrangian approach. It is also interesting to compare the
irreducible and mixed formulations Green-Lagrange strain
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Fig. 14 Step-by-step dynamic analysis using both irreducible and mixed explicit formulation for mesh C

Fig. 15 Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh A

distributions over two different cross sections as shown in
Fig. 8.

The strain distribution in the middle-right section and at
the constraint is shown in Figs. 18 and 19 for mesh A, 20 and
21 for mesh B and 22 and 23 for mesh C .

As the images suggest, and in accordance to the theory,
the strain spatial convergence is faster for the mixed formu-
lation than for the irreducible one. Note that already for the
structured non-symmetric coarse mesh (mesh A), the distri-

bution of strains in the section gives sensibly better results
with respect to the irreducible one. The strain distribution
also appears to converge faster to the reference result as the
mesh is refined.

Applying the mixed formulation, in Figs. 24, 25 and 26
we observe how the imposed load excites the first, sec-
ond and third modes of the beam. As expected, if a finer
discretization is used more vibration modes appear in the
analysis.
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Fig. 16 Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh B

Fig. 17 Step-by-step dynamic analysis using both irreducible and mixed CD scheme for mesh C

Since the stability analysis developed is only valid for
the linear case, we experimentally increased the time step
used in the analysis until the method failed, so to approxi-
mate the largest possible time step. The results are shown
in Table 4 together with the time step for one-dimensional
mixed and irreducible case. We approximate the length of the
triangular element le as the half-root square of the quadrilat-
eral area closed by the triangle, i.e; le = 1

2

√
bh. As we can

note, even for large deformation case the time step used in
the mixed-explicit formulation is larger than irreducible one,
closely following the predictions in Fig. 5. Specifically we
numerically verify that the stable time step for this exam-
ple is at least a factor of 1.43 larger for the mixed formu-
lation than for the original irreducible one, which repre-
sents a very important performance gain for the proposed
formulation.
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Fig. 18 Section A normal and shear strain distribution at maximum displacement for mesh A

Fig. 19 Section B normal and shear strain distribution at maximum displacement for mesh A

Fig. 20 Section A normal and shear strain distribution at maximum displacement for mesh B

5 Conclusion

This paper presents the formulation of a stable, OSS based,
mixed explicit strain/displacement formulation for the solu-
tion of linear and non-linear problems is solid mechanics. In
the work we describe a simple algorithm allowing the explicit
time integration of such mixed formulation. The resulting

explicit scheme retains second order accuracy in time and
has a favourable stability estimate when compared to the
irreducible formulation. The numerical results also show how
the results obtained compare favourably in terms of accuracy
with the corresponding irreducible formulations at any mesh
resolution. The advantage is particularly evident in the strain
predictions.
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Fig. 21 Section B normal and shear strain distribution at maximum displacement for mesh B

Fig. 22 Section A normal and shear strain distribution at maximum displacement for mesh C

Fig. 23 Section B normal and shear strain distribution at maximum displacement for mesh C

Fig. 24 First vibration mode of
the cantilever beam in mesh C
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Fig. 25 Second vibration mode
of the cantilever beam in
mesh C

Fig. 26 Third vibration mode
of the cantilever beam in
mesh C

Table 4 Maximum �tmax for analysis in irreducible and mixed formulation

Critical �tmax computed

Mesh type �tmax irreducible 1D (s) �tmax irreducible (s) �tmax mixed 1D (s) �tmax mixed (s) Factor

Mesh A 1.76e−04 5.30e−05 2.38e−04 7.585e−05 1.43

Mesh B 8.83e−05 2.55e−05 1.19e−04 3.795e−05 1.49

Mesh C 4.41e−05 1.07e−05 5.95e−05 1.80e−05 1.68
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