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Abstract A finite strain theory for electro-chemo-me-
chanics of lithium ion battery electrodes along with a mono-
lithic and unconditionally stable finite element algorithm
for the solution of the resulting equation systems is pro-
posed. The chemical concentration and the displacement
fields are introduced as independent variables for the formu-
lation diffusion-mechanics coupling. The electrochemistry
of the surface reaction kinetics is imposed at the bound-
ary in terms of the Butler–Volmer kinetics. The intrinsic
coupling arises from both stress-assisted diffusion in elec-
trodes and ion mass flux induced volumetric deformation. We
demonstrate the theoretical modeling aspects and algorithmic
performance through representative initial boundary value
problems. The proposed finite strain theory is especially
well suited for electrode materials like silicon which exhibit
large volume changes during lithium insertion/ extraction.
We demonstrate the inadequacy of small-strain theories for
diffusion-mechanics coupling in silicon based anode materi-
als. The proposed numerical algorithm shows excellent per-
formance, demonstrated for 2D and 3D representative numer-
ical examples.
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1 Introduction

In addition to being the leading energy storage systems in
portable electronic devices, the advent of the electro vehicles
(EVs) and hybrid electro vehicles (HEVs) has increased the
popularity of lithium-ion batteries tremendously. Main chal-
lenge in the use of lithium ion batteries in EVs and HEVs
is the limited lifetime along with need for high capacity
electrode materials. The conventional batteries might per-
form up to around several hundred electro-chemical cycles
which is far from being feasible for HEV and EV applica-
tions. In the recent years, silicon has emerged as a promis-
ing candidate for anode material in Li-ion batteries thanks
to its highest capacity among all known anode materials
and low discharge potential [15]. However, the theoretical
capacity of silicon cannot be fully utilized due to the high
volume changes along with concentration gradients, lead-
ing to cracking and pulverization during electro-chemical
cycles [9].

A typical Li-ion battery consists of anode, cathode, sepa-
rator, and current collectors as depicted in Fig. 1. The anode
consists of graphite, silicon or carbon where the latter is usu-
ally embedded into polymer binder. The cathode is an oxide
compound embedded in a PVDF binder which is continu-
ously interconnected enabling electron transfer to the current
collector. The separator consists of electrolyte, e.g. a lithium
salt, and a porous polymer, e.g. polyolefin. During charging
process, Li-ions are extracted from positive electrode mate-
rial through oxidation reactions and travel from cathode to
anode through the separator and intercalates into anode par-
ticles together with the electrons arriving through charging
device connecting the current collectors. The reactions are
reversed during the discharge process.

The chemo-mechanical response of Li-ion batteries is crit-
ical in battery performance due to the complex interplay
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Fig. 1 Schematic of a charging process of a Li-ion battery, consisting
of current collectors, anode, cathode and separator. a Onset of charging
in the discharged state and b fully charged state. Li+ ions are extracted
from the metal-oxide and travel from the active cathode material to

the anode through the electrolyte. The extraction of Li-ions from the
cathode induces large volume shrinkage of the particles, causing highly
inhomogeneous stress fields and fracture

between mechanical degradation and electro-chemical per-
formance [22]. Lithium insertion into and extraction from the
electrode particles during the electrochemical cycles leads to
volume changes. Stresses generated due to the gradients of
lithium concentration under high insertion/extraction rates
or under repeated cycles lead to micro-cracks resulting in
comminution of compund oxide particles in the electrode
particles. In LiMn2O4 (LMO) cathodes, volume change is
around 6.5 % whereas in negative electrode such as Si, this
amount of swelling might be as high as 400 %. We refer to
the seminal work of Doyle, Fuller & Newman [17] for the
description of intercalation kinetics of Li-ions into electrode
particles. This theory is further advanced by Christensen &
Newman [13,14] and Zhang, Sastry & Shyy [33,34], Chris-
tensen [12] to include diffusion mechanics coupling (DMC)
at small strain setting. The chemo-mechanical coupling is
based on the diffusion of lithium ions under concentration
and pressure gradients where the mechanical deformation
results from the volumetric strains induced from ion concen-
tration change. In these contributions, the potentiodynamic
surface ion flux kinetics is generally described in terms of
Butler–Volmer-type reaction kinetics. Cheng & Verbrugge
[10], Deshpande, Cheng & Verbrugge [16], and Golmon et
al. [20] applied small strain DMC theories for the inves-
tigation of the effect of size, geometry and surface struc-
ture on the stress generation and stress based crack analy-
sis during lithiation and delithiation. Du et al. [19] have
employed a surrogate-based analysis by using the diffusion-
mechanics coupling in order to investigate the influence
of cycling rate, geometry and material parameters in order
to maximize the battery performance. Seo et al. [27] sim-

ulated three dimensional realistic LMO particle geome-
tries obtained from atomic force microscopy. An alterna-
tive approach for Li-ion intercalation-deintercalation kinet-
ics is the use of Cahn–Hilliard-type [7,8] phase-field mod-
els for electrode particles showing phase segregation. Cahn–
Hilliard-type diffuse-interfaces approach has been applied
to Li-ion electrodes by Bazant and co-workers [6,31]. The
extension of this approach to a thermodynamically consis-
tent model of chemo-mechanics of Li-ion electrodes which
accounts for swelling and phase segregation has been pro-
posed by Anand [1]. For and alternative derivation of Cahn–
Hilliard-type diffuse-interface approach in terms of micro-
force balance, we refer to Gurtin [21] and the recent work by
Miehe, Hildebrand & Böger [24] on its variational structure.
A framework of chemo-elasticity at finite strains, account-
ing standard and gradient-enhanced Cahn–Hilliard-type dif-
fusion, was outlined recently by Miehe, Ulmer & Mau-
the [25] based on a rigorous construction of variational
potentials.

Understanding the mechanisms leading to capacity fade
in silicon based negative electrodes and the microstructural
design methodoligies accomodating large volume changes
without pulverization is currently an active field of research
[32]. The material suffers significantly from cracking result-
ing from large stresses generated during electro-chemical
cycles. We refer to the excellent review of Kasavajjula et al.
[23] on the methods adopted for reducing the capacity fade
and improving durability in silicon-based anodes. Experi-
mental measurements carried out by Sethuraman et al. [29]
show significant stress-potential coupling in silicon which
can be modeled by including stress dependence of chemical
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potential. The dependence of elastic constants on the concen-
tration level have been quantified by Sethuraman et al. [28].
Also, significant plastic flows driven by deviatoric stresses
occur during lithiation and delithiation of silicon [11,30,35].
The tailored design of battery structures from nano- to micro-
scales is crucial for the commercialization of silicon based
anode systems. Albeit tremendous efforts in the development
of theories for coupled chemo-mechanics of battery elec-
trodes, there is still a lack of rigorous finite strain theory for
the canonical description of diffusion-mechanics coupling.
Recently, Bower, Guduru & Sethuraman [5] have proposed a
brief finite strain theory for a whole lithium-ion battery cell
incorporating electrical, chemical and mechanical fields and
inelastic phenomena. They applied the theory for the valida-
tion of stress potential coupling and plastic flow in silicon
anode in 1D.

In this work, we formulate a thermodynamically consis-
tent finite strain model for stress assisted diffusion and dif-
fusion induced swelling phenomena in Li-ion battery elec-
trodes, and construct details of its numerical implementa-
tion. To this end, we confine ourselves to the modeling of
anodic and cathodic electrode particles and omit the ther-
mal and electric fields in our treatments as well as rate-
independent mechanical response. Furthermore, we focus
on the description of nonlinear chemo-elasticity for the
bulk response, and neglect at this stage inelastic effects
and phase segregation phenomena. The global and the local
forms of the balance equations and the dissipation inequal-
ity governing the coupled chemo-mechanics are introduced.
On the numerical side, a robust and modular numerical
scheme for the resulting partial differential equations is pro-
posed. The electro-chemical reaction kinetics is incorpo-
rated into the model via Butler–Volmer-type surface flux.
The proposed finite strain theory is especially well suited
for electrode materials like silicon which exhibit large vol-
ume changes during lithium insertion/extraction. However,
the proposed framework is general and can be applied
to various anode/cathode particles. The small strain the-
ory of Sastry et al. [33,34] is recovered in the limiting
case.

The paper is organized as follows: in Sect. 2, we start our
investigations by introducing the primary fields governing
the finite elasticity and the species diffusion. In Sect. 3, we
introduce a particular set of constitutive relations describing
the mechanical stresses and the mass flux of Li-ions in agree-
ment with the postulates of the dissipation principle. The
electro-chemistry of surface reactions in terms of Butler–
Volmer kinetics is discussed in Sect. 4. Section 5 presents
a compact recipe for the time–space discretization of the
resulting partial differential equations and the solution based
on Galerkin-type finite element formulation. We investigate
Lix Si anode and Lix Mn2O4 cathode particles as benchmark
examples in Sect. 6.

2 Finite elasticity coupled with species diffusion

2.1 The primary fields and their gradients

The boundary-value-problem for the modeling of diffusion
in elastic solids is a coupled two-field problem, characterized
by the deformation field of the solid and the concentration
of the Li-ions which diffuse through the solid

ϕ :
{

B0 × T → Bt ⊂ R3

(X, t) �→ x = ϕ(X, t)
c :

{
B0 × T → R
(X, t) �→ c(X, t)

(1)

The deformation field ϕ maps at time t ∈ T points X ∈ B0 of
the reference configuration B0 ⊂ R3 onto points x ∈ Bt of
the current configuration Bt ⊂ R3. The concentration field c
represents at a point of the solid the number of lithium ions
with respect to the volume of the undeformed configuration,
see Fig. 2. The gradients of these fields define the material
deformation gradient and the material concentration gradi-
ent

F := ∇ϕ and F := ∇c (2)

respectively. The deformation gradient F itself, its cofactor
cof[F] = det[F]F−T and its Jacobian J : = det[F] charac-
terize the deformation of infinitesimal line, area and volume
elements

dx = Fd X , da = cof[F]d A , dv = det[F]dV . (3)

The deformation map ϕ is constrained by the condition J : =
det[F] > 0 in order to ensure non-penetrable deformations.
Furthermore, let g, G ∈ Sym+(3) be the standard metrics of
the current and reference configurations B0 and Bt . Then

C := FT g F and c := F−T G F−1 (4)

h·n= h̄σ ·n= t̄ ∂Bh
0∂Bt

0

∂Bc
0∂Bϕ

0

nn X ∈ B0X ∈ B0

cϕ

ϕ=ϕ̄ c = c̄

deformation field concentration field

Fig. 2 Multifield initial boundary value problem of chemo-mechanics.
The boundary ∂B0 of the solid is decomposed into Dirichlet and
Neumann-type boundaries ∂Bϕ

0 ∪ ∂Bt
0 for mechanical problem and

∂Bc
0 ∪ ∂Bh

0 for diffusion problem, respectively
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are convected current and reference metrics, often denoted
as right and left Cauchy–Green tensors, respectively. The
spatial concentration gradient is obtained from a parame-
trization of the concentration field by the spatial coordinates
x = ϕ(X, t), yielding the relationship

f := ∇xc(x, t) = F−T F . (5)

2.2 Stress tensors, species flux vectors and chemical
potential

2.2.1 Stress tensors

Consider a part P0 ⊂ B0 cut out of the reference configura-
tion B0 and its spatial counterpart P ⊂ Bt , with boundaries
∂P0 and ∂Pt , respectively. The total stress vector t acts on
the surface element da ⊂ ∂Pt on the deformed configura-
tion and represents the force that the rest of the body Bt \ Pt

exerts on Pt through ∂Pt . Cauchy’s stress theorem defines
the traction to depend linearly on the outward surface normal

t(x, t; n) := σ (x, t)n (6)

through the total Cauchy stress tensor σ . Now consider the
identity Td A = tda by scaling the (true) spatial force tda
by the reference area element d A. This induces the definition
of the nominal stress tensor P by setting

Pd A = σda with P := (Jσ )F−T , (7)

where the area map (3)2 was inserted. Here, σ̃ := Jσ is
denoted as the total Kirchhoff stress and S := F−1σ̃ F−T as
the symmetric Lagrangian stress.

2.2.2 Species flux vectors

Consider a species outflux h through the surface element da
of ∂Pt in the current configuration, that depends linearly on
the outward normal

h(x, t; n) := h(x, t) · n (8)

through the spatial species flux vector h. A modified species
flux H is then defined by the identity Hd A = hda, i.e. by
scaling by the infinitesimal reference area d A. This induces
the definition of the a material species flux by setting

H · d A = h · da with H := F−1(Jh) , (9)

where we made use of the area map (5)2. In what follows,
we denote h̃ := Jh as the Kirchhoff-type species flux.

2.2.3 Electrochemical potential

The flux of the species, i.e. the Li-ions, is driven by the gra-
dient of a chemical potential field. It is a scalar field

μ :
{

B0 × T → R
(X, t) �→ μ(X, t)

(10)

parametrized by the material coordinates X ∈ B0. Alter-
natively, we may parametrize the chemical potential by the
spatial coordinates x = ϕ(X, t).

2.3 General equations in finite elasticity coupled with
diffusion

2.3.1 Global equations

The general equations which drive the coupled deformation-
diffusion problem are formulated as balances for a part
Pt ⊂ Bt of the deformed configuration. The diffusion of
Li-ion species through the elastically deforming solid is a
solid-species-mixture. No mass production due to chemical
reactions is assumed. As a consequence, separate balances
for the mass of the solid and the species may be formulated.
The conservation of solid mass reads∫
Pt

ρ dv =
∫
P0

ρ0 dV , (11)

where ρ(x, t) and ρ0(X) are the solid density fields of the
current and the reference configurations, respectively. With
regard to the transport of Li-ions, the part Pt ⊂ Bt is consid-
ered as a control volume. The conservation of species then
reads

d

dt

∫
Pt

ρc dv = −
∫

∂Pt

h da (12)

in terms of the Li-ion concentration c(x, t) defined in (1) and
the spatial species out-flux h(x, t) introduced in (8). When
neglecting inertia effects, the conservations of linear and
angular momentum of the part Pt ⊂ Bt degenerate to the
equilibrium conditions∫

∂Pt

t da +
∫
Pt

ργ dv = 0 and∫
∂Pt

x × t da +
∫
Pt

x × ργ dv = 0, (13)

where γ (x, t) is a given body force field.

2.3.2 Local equations

Pulling back these integrals to the reference configuration by
using the volume map (3)3, inserting the definitions (6)–(9)
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for the traction t and the species out-flux h, using the Gauss
theorem and the standard localization argument, we end up
with the four conservation equations

1. Solid mass ρ0 = ρ J
2. Li-ion species ρ0ċ = −Div[H ]
3. Linear momentum Div[P] + ρ0γ = 0
4. Angular momentum skew[P FT ] = 0

(14)

defined on the reference configuration B0 for the quasi-
static problem under consideration. Recall in this context the
Piola transformations Div[H ] = Jdiv[h̃/J ] and Div[P] =
Jdiv[σ̃/J ], which allow to express the above material diver-
gence terms as spatial divergence terms of the Kirchhoff-
type species flux h̃: = Jh and the Kirchhoff stress tensor
σ̃ : = Jσ . Furthermore, note that the last equations simply
states the symmetry of the Cauchy stress σ . Then, the con-
servation equations in the Eulerian setting read

1. Solid mass ρ0 = ρ J
2. Li-ion species ρ0ċ = −Jdiv[J−1h̃]
3. Linear momentum Jdiv[J−1σ̃ ] + ρ0γ = 0
4. Angular momentum skew[σ̃ ] = 0

(15)

per unit undeformed volume.

2.4 Principle of irreversibility and constitutive equations

2.4.1 Dissipation principle

The formulation of the constitutive equations must be con-
sistent with a principle of irreversibility, consistent with the
second axiom of thermodynamics. Let Ψ be the free energy
density per unit mass stored at a spatial point x ∈ Bt of
the mixture, consisting of the solid and the Li-ion species.
Then, if irreversible processes such as the Li-ion transport
are involved, the evolution of the energy in the part Pt ⊂ Bt

must be less than the power of the chemo-mechanical exter-
nal actions on Pt . This is expressed by the global dissipation
postulate

d

dt

∫
Pt

ρΨ dv ≤
∫

∂Pt

t · v da +
∫
Pt

ργ · v dv −
∫

∂Pt

μh da .

(16)

The first two terms on the right side is the mechanical power
due to tractions and body forces, where v := ϕ̇ ◦ ϕ−1 is the
spatial velocity field. The last term characterizes the out-flux
of energy due to the Li-ion species transport, based on the
chemical potential μ introduced in (10). Pulling back these
integrals to the referece configuration with the volume map
(3)3, inserting the definitions (6)–(9) for the traction t and

the species out-flux h, using the Gauss theorem, the standard
localization argument and inserting the balance equations
(14) gives the local dissipation postulate

ρ0D := P : Ḟ + μρ0ċ − ρ0Ψ̇ − H · ∇μ ≥ 0 . (17)

For dissipative transport problems in elastic solids, this eqa-
tion can be splitted up into a part due to local actions and a
part due to diffusion

ρ0Dloc := P : Ḟ + μρ0ċ − ρ0Ψ̇ = 0

ρ0Ddif := H · G ≥ 0. (18)

where we introduced the negative material gradient G of the
chemical potential with spatial counterpart g

G := −∇μ and g := −∇xμ = F−T G (19)

in analogy to (5).

2.4.2 Objective free energy function

The constitutive equations are constructed such that the
above dissipation conditions (17) are a priori satisfied for
all processes. Assuming a local theory of the grade one, free
energy is assumed to depend on the primary variables (1) and
its first gradients

Ψ = Ψ̃ (ϕ,∇ϕ, c,∇c; X) . (20)

Demanding invariance of Ψ̃ with respect to rigid deformation
superimposed on the current configuration ϕ+ = Qϕ+ c for
all translations c(t) and rotations Q(t) ∈ SO(3), as well as
consistency with the dissipation principle (18)1, we obtain
the reduced form

Ψ = Ψ̂ (C, c; X) (21)

in terms of the right Cauchy–Green tensor C defined in (4).
Note that within the framework of standard diffusion con-
sidered here, Ψ cannot be a function of ∇c due to (18)1.
Insertion into (17)1 then gives the consitutive equations

5. Nominal stresses P = ρ0∂FΨ̂ (C, c; X)

6. Chemical potential μ = ∂cΨ̂ (C, c; X)
(22)

consistent with the dissipation principle (16).

2.4.3 Objective and convex dissipation potential

In order to prescribe the flux of the species, we define an
objective dissipation potential that depends on the negative
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gradient of the chemical potential defined in (19)

Φ = Φ̂(G; C, c, X) (23)

at a given objective state {C, c} of deformation and concen-
tration. Then the species flux vector is defined by the consti-
tutive equation

7. Flux of species H = ∂GΦ̂(G; C, c, X) (24)

The dissipation inequality (18) is then satisfied if Φ̂ is a con-
vex function with respect to the argument G.

2.5 The boundary conditions for the coupled problem

In order to be able to solve the coupled system general and
constitutive equations (14), (22) and (24) we have to pos-
tulate boundary conditions for the solid-species-mixture. To
this end, the surface ∂B0 of the reference configuration is
decomposed into mechanical and chemical parts

∂B0 = ∂Bϕ
0 ∪ ∂Bt

0 and ∂B0 = ∂Bc
0 ∪ ∂Bh

0 , (25)

respectively, with ∂Bϕ
0 ∩ ∂Bt

0 = ∅ and ∂Bc
0 ∩ ∂Bh

0 = ∅. We
postulate Dirichlet- and Neumann-type boundary conditions
for the mechanical problem

ϕ = ϕ̄(X, t) on ∂Bϕ
0 and σ n = t̄(x, t) on ∂Bt

t , (26)

and for the chemical Li-ion diffusion problem

c = c̄(X, t) on ∂Bc
0 and h ·n = h̄(x, t) on ∂Bh

t , (27)

with prescribed deformation ϕ̄, traction t̄ , ion concentration
c̄ and species outflux h̄, respectively. A particular role in the
application to the Li-ion batteries is played by the Li-ion
flux h̄ on the surface Bh

t of the current configuration. It is
constitutively described by Butler–Volmer-type surface flux
and will be explained in Sect. 4.

3 Constitutive modeling of the coupled bulk response

In order to get a more compact notation, we drop in what
follows the explicit dependence of the constitutive functions
Ψ̂ and Φ̂ on the position X ∈ B0 and consider a homogeneous
domain B0 of the solid. We outline in what follows a simple
isotropic model for the coupled response of bulk. It is built
onto the following ingredients.

3.1 The construction of an energy storage function

3.1.1 Contributions to the free energy

The free energy storage in the bulk is assumed to splitted
up into a part due to elastic distortions and a part due to the
Li-ion concentration. Hence, we split the function (21) into
two parts

Ψ̂ (C, c) = Ψ̂e(C, c) + Ψ̂c(c) , (28)

where Ψ̂e governs the coupling effect caused by the swelling
of the solid due to the concentration of Li-ions.

3.1.2 Multiplicative split of deformation gradient

In order to describe the swelling due to an increase of Li-ion
concentration, we decompose the deformation gradient into
a part Fc due to the swelling and a stress producing part Fe.
The latter is then defined by

Fe:=F F−1
c with Fc:= Ĵ 1/3

c (c)1 (29)

Hence, the swelling is assumed to be isotropic and assumed
to be governed by the constitutive function for the volume
expansion

Jc = Ĵc(c) = 1 + Ω(c − c0) (30)

where the material parameter Ω is the molar volume of the
solute, i.e. the volume occupied by a mol of Li-ions. c0 is the
Li-ion concentration of a reference state. With this assump-
tion at hand, the stress producing elastic right Cauchy–Green
tensor Ce: = FT

e gFe is a function

Ce = Ĉe(C, c) = Ĵ−2/3
c (c)C (31)

of the current metric tensor C and the concentration c.

3.1.3 Elastic stored free energy

With the definition of the elastic right Cauchy–Green tensor
at hand, we assume the elastic stored energy function in (28)
to have the specific form

Ψ̂e(C, c) = Ψ̃e(Ĉe(C, c)) , (32)

which is assumed to be isotropic i.e. Ψ̃e( QCe QT ) = Ψ̃e(Ce)

for all Q ∈ SO(3). Hence, the function depends on the
invariants of the elastic right Cauchy–Green tensor

Ψ̃e(Ce; G)= Ψ̃e(tr[(Ce G−1)], tr[(Ce G−1)2], tr[(Ce G−1)3]),
(33)
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where the traces are taken with the standard metric G
of the reference configuration. The last ground invariant
tr[(Ce G−1)3] is conveniently replaced by the Jacobian of
the elastic deformation map Je: = det Fe = (det Ce)

1/2.
In order to make things concrete, we consider for the model
problem a compressible Neo-Hookean function of the form

ρ0Ψ̃e(Ce; G)= λ

2
ln2(Je)+ μ

2
[tr[(Ce G−1)]−2 ln Je] (34)

with the explicit representation of the elastic Jacobian

Je = Ĵe(J, c) = J Ĵ−1
c (c) . (35)

λ and μ are related to the classical Lamé parameters of the
linear theory of elasticity.

3.1.4 Chemical stored free energy

The chemical contribution to the stored energy (28) is
assumed to have the simple form

Ψ̂c(c) = Rθ0cmax[c̄ ln c̄ + (1 − c̄) ln(1 − c̄)] , (36)

where c̄ = c/cmax, is the normalized concentration, cmax is
the maximum concentration, R is the gas constant and θ0 the
absolute reference temperature.

3.1.5 Free energy of the mixture

The total free energy of the mixture for the model problem
under consideration contains the elastic and chemical contri-
butions (34) and (36), i.e.

ρ0Ψ̂ = λ

2
ln2( Ĵe) + μ

2
[tr[(Ĉe G−1)] − 2 ln Ĵe]

+ρ0 Rθ0[c̄ ln c̄ + (1 − c̄) ln(1 − c̄)]
(37)

where the functions Ĉe(C, c) and Ĵe(J, c) are given in (31)
and (35).

3.2 The dissipation function for the species transport

What remains is the constitutive definition of the dissipa-
tive transport of Li-ions, i.e. the specification of the dissi-
pation function Φ̂ in (14). We assume isotropic response
Φ̂( QG; QC QT , c) = Φ̂(G; C, c) for all Q ∈ SO(3) an
assume the dependence on the coupled invariant of the neg-
ative material gradient G of the chemical potential and the
current metric in its representation C in the reference con-
figuration

Φ̂(G; C, c) = Φ̃(tr[(G ⊗ G)C−1], c) , (38)

that models a transport law based on spatial gradient of the
chemical potential. We assume the concrete function

Φ̂ = c̄(1 − c̄)
M

2
tr [(G ⊗ G)C−1] (39)

which is quadratic with respect to the gradient G. Here, the
parameter M is the mobility of the Li-ions. Thermodynamic
consistency with the dissipation principle (16) is guaranteed
if the potential Φ̂ is convex with respect to the gradient G.
This is achived for the thermodynamical restrictions

M ≥ 0 and c ≥ 0 (40)

on the material parameter M and the concentration field c,
which are ensured in the subsequent treatments.

3.3 Summary of the constitutive equations

With the above two basic functions (37) and (39) for the free
energy storage Ψ̂ and the dissipation potential Φ̂ at hand, we
may evaluate the constitutive functions (22) and (24) for the
nominal stresses P , the chemical potential μ and the ion flux
H . Taking into account the relationships

2∂C Ψ̂e = J−2/3
c (2∂Ce Ψ̂e) and

∂cΨ̂e = −Ω J−1
c

1

3
tr[(2∂C Ψ̂e)C], (41)

which account for the multiplicative decomposition, and
using the standard derivative

ρo2∂Ce Ψ̂e = λ ln JeC−1
e + μ(G−1 − C−1

e ) , (42)

we find the closed-form constitutive expressions

P = λ ln(J Ĵ−1
c )g−1 F−T

+μ[ Ĵ−2/3
c FG−1 − g−1 F−T ]

μ = Rθ0 ln c̄
1−c̄ + Ω J−1

c p
H = −c̄(1 − c̄)MC−1∇μ

= −DC−1[∇ c̄ + c̄(1 − c̄)J−1
c Ω

Rθ0
∇ p]

(43)

with p: = − 1
3 tr[P FT g] for the model problem under con-

sideration. Therein, the diffusion coefficient D = M Rθ0

is introduced. Recalling the relationships σ̃ = P FT and
h̃ = FH for the Kirchhoff stress and the Kirchhoff-type
species flux, the above equations read in the Eulerian setting

σ̃ = λ ln(J Ĵ−1
c )g−1 + μ[ Ĵ−2/3

c c−1 − g−1]
h̃ = −Dg−1[∇x c̄ + c̄(1 − c̄)J−1

c Ω

Rθ0
∇x p]. (44)
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Here p := − 1
3 tr[σ̃ g] is the Kirchhoff stress pressure and

c−1 = FG−1 FT = b is often denoted as the Finger tensor.
These two equations give the most transparent insight in the
constitutive response of bulk response. The stresses σ̃ are
defined by a compressible Neo-Hookean function in terms of
an elastic Jacobian defined in terms of the volume expansion
Ĵc due to swelling defined in (30). The transport h̃ is driven
by the spatial gradient of the concentration c and the pressure
p from their higher towards lower levels.

4 Constitutive modeling of the coupled surface response

In this section, we discuss the electrochemical surface reac-
tion kinetics governing the Neumann-type surface flux of
Li-ions. For more details on the derivations presented here,
we refer to Doyle et al. [17] and Newmann & Thomas-Alyea
[26]. The Lithium-ion flux through the boundary of the elec-
trode particles is controlled by the kinetics of oxidation and
reduction reactions on the surface of electrode particles. The
redox reaction

Li H ⇐⇒ Li1−nH + nLi+ + ne− . (45)

takes place in the electrode particles due to Li+ insertion into
the host material H, e.g., manganese oxide Mn2O4, cobalt
oxide CoO2, iron phosphate FePO4 for cathode and sili-
con Si, and graphite C6 for anode. The rates of anodic and
cathodic chemical reactions are defined as the Arrhenius type
energy activated equations

aa = kacR exp
(

− Ea

RT

)
and

ac = kccO exp
(

− Ec

RT

)
. (46)

Here, ka and kc are the reaction rate constant, whereas cR and
cO are the concentrations of the anodic and cathodic reactants
on the surface. The parameters R and T are the universal gas
constant and absolute temperature. Defining the activation
energies Ea and Ec in terms of the chemical potential V , the
Faraday constant F , the transfer symmetry factor β and the
valence of Li-ions n

Ea = −(1 − β)nFV and Ec = βnFV (47)

and inserting them into (46) yields

aa = kacR exp
( nF

RT

(
1 − β

)
V

)
and

ac = kccO exp
(

− nF

RT
βV

)
. (48)

The forward and backward electrochemical reactions occur
simultaneously with net rate of reactions

a = aa − ac . (49)

At equilibrium state, the net rate of reaction vanishes. Evalu-
ating a = 0, one obtains a form of the Nernst equation, which
relates the equilibrium potential Veq to the concentration of
the reactants

Veq = RT

nF
ln

(kccO

kacR

)
. (50)

The chemical potential is decomposed into the equilibrium
potential and a surface overpotential ηs

V = Veq + ηs . (51)

By inserting (51) into (49) and by making use of (50), one
obtains the reaction rates

aa = kacR

(kccO

kacR

)(1−β)

exp
( nF

RT

(
1 − β

)
ηs

)
and

ac = kccO

(kccO

kacR

)−β

exp
(

− nF

RT
βηs

)
. (52)

Furthermore, the concentrations cO = camb(cmax − c) and
cR = c are introduced in terms of the Li-ion concentrations in
the electrolyte camb and the maximum Li-ion concentration
in the electrode cmax. The net reaction rate reads

a = kc1−β
amb (cmax − c)1−βcβ

×
(

exp

(
nF

RT
(1 − β)ηs

)
− exp

(
− nF

RT
βηs

))
(53)

with k = kβ
a k1−β

c . The net reaction is taken as the constitutive
function for the surface flux boundary condition (8), i.e.

a := h(x, t; n) = h1(c) · h2(ηs) (54)

which is decomposed into a concentration dependent

h1(c) = kc1−β
amb (cmax − c)1−βcβ (55)

and a overpotential activated term

h2(ηs) = exp
( nF

RT
(1 − β)ηs

)
− exp

(
− nF

RT
βηs

)
(56)

for the surface of a cathode particle. The sensitivity of h1

and h2 with respect to the symmetry factor β is depicted in
Fig. 3.
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Fig. 4 a Open circuit potential
for Si15Li4, b applied potential
over time, c overpotential over
time, and d normalized
concentration profile across the
radius
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5 Time–space discretization and solution algorithms

5.1 Time-discrete field variables in incremental setting

We consider a finite time increment [tn, tn+1], where τn+1 :=
tn+1 − tn > 0 denotes the step length. All fields at time tn

are assumed to be known. The goal then is to determine the
fields at time tn+1. In order to keep the notation compact,
subsequently all variables without subscript are evaluated at
time tn+1. An algorithm for the update of the concentration
field c in the increment [tn, tn+1] can be based on the time-
discrete form of the balance equation (14)2
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Table 1 Material parameters
for Li15Si4 No. Parameter Unit Value Description Eqn.

1 λ N/mm2 4.3 × 104 Lamé constant (43)1

2 μ N/mm2 3.97 × 104 Shear modulus (43)1

3 Ω mm3/mol 3.5 × 103 Partial molar volume of Li-ion (30)

4 cmax mol/mm3 3.0 × 10−4 Max. Li-ion concentration in electrode (55)

5 c0/cmax – 2.1 × 10−5 Initial Li-ion concentration in electrode (57)

6 cl/cmax – 0.96 Li-ion concentration in electrolyte (55)

7 k mm5/2/mol1/2·s 1.9 × 106 Reaction rate constant (55)

8 β – 0.5 Symmetry factor (47)

9 D mm2/s 1.0 × 10−8 Diffusion coefficient (43)3

10 v mV/s −0.245 Sweep rate (51)

11 θ0 K 293 Temperature (43)

1.0

0.0

(a) (b) (c) (d)

Fig. 5 Normalized Li-ion concentration c/cmax on the deformed mesh at times a t = 1,000 s, b t = 2,000 s, c t = 3,000 s, and d t = 4,000 s.
Dotted circle denotes the undeformed circular disk

ρ0ċτ = −Div[H τ ] (57)

in terms of the algorithmic expressions

ċτ (c) := 1

τ
(c − cn) and

H τ (∇ϕ,∇2ϕ, c,∇c): = (1 − α)Hn + αH . (58)

Here, α ∈ [0, 1] is an algorithmic parameter which gives for
α = 1 the backward Euler scheme and for α = 1/2 the trape-
zoidal rule. Note carefully that these algorithmic expressions
are functions of the deformation field ϕ and the concentration
field c and its gradients at the disctrete time tn+1. Observe,
that the flux is a function of the second gradient of the defor-
mation field as a consequence of its dependence on the gra-
dient of the pressure ∇ p, see (43)3. In order to avoid the
difficulty of using higher-order finite element interpolations
for the deformation field, we propose a semi-implicit scheme,
see (68) below.

5.2 Weak form of the time-discrete equations

For the quasi-static problem under consideration, the update
of the deformation and concentration field in a typical time
increment is governed by the balance of momentum (14)3,
evaluated at the current time tn+1, and the algorithmic form
(57) for the balance of the Li ion species. Now define the
two test functions fields X �→ δϕ(X) and X �→ δc(X) for
the deformation and the concentration fields on the reference
domain X ∈ B0, which satisfy the homogeneous form of the
Dirichlet conditions

δϕ ∈ Wϕ
0 : = {δϕ | δϕ = 0 on ∂Bϕ

0 } and

δc ∈ Wc
0 : = {δc | δc = 0 on ∂Bc

0}. (59)

Then, a standard Galerkin procedure gives the weak forms
of the two governing equations of the coupled deformation-
diffusion problem

Gτ
ϕ(ϕ, c; δϕ)=

∫
B0

[P : δF−ρ0γ · δϕ] dV −
∫

∂Bt
t

t̄ · δϕ da=0 ,
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Fig. 6 Radial Cauchy and first
Piola Kirchhoff stresses across
the cross-section at times a t =
1,000 s, b t = 2,000 s, c t =
3,000 s, and d t = 4,000 s
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Gτ
c (c, ϕ; δc)=

∫
B0

[H τ · δG−ρ0ċτ δc] dV−
∫

∂Bh
t

h̄ · δc da =0,

(60)

where the notation δF: = ∇δϕ and δG = −∇δc was used.
Note that these two coupled weak forms are functions of the
deformation ϕ and concentration c at the current time tn+1.

5.3 Space–time-discrete finite element formulation

Now consider a standard finite element discretization of the
spatial domain B0 of the reference configuration and Neu-
mann surfaces ∂Bt

t and ∂Bh
t of the current configuration. We

write

B0 =
Ne⋃

e=1

Be
0 , ∂Bt

t =
N t

s⋃
st =1

∂Bt st

t , ∂Bh
t =

N h
s⋃

sh=1

∂Bh sh

t

(61)

where Ne is the number of bulk finite elements, N t
s and N h

s
the numbers of surface finite elements for the mechanical
tractions and the species flow, respectively. The discretization

by bulk elements Be
0 ⊂ B0 in the reference configuration is

based on the finite element shapes

ϕh(X) = Ne
ϕ(X)dϕ

ch(X) = Ne
c(X)dc

and
∇ϕh(X) = Be

ϕ(X)dϕ

∇ch(X) = Be
c(X)dc

(62)

in terms of the matrices Ne
ϕ and Ne

c of bulk shape functions
and their derivatives Be

ϕ and Be
c. Here, dϕ and dc are the

space–time-discrete values of the deformation and the con-
centration at typical nodal points of the finite element mesh.
The discretization of the Neumann surfaces by surface ele-
ments ∂Bt st

t ⊂ ∂Bt
t and ∂Bh sh

t ⊂ ∂Bh
t is based on the finite

element shapes

ϕh(x) = Ns
ϕ(x)dϕ and ch(x) = Ns

c(x)dc (63)

in terms of the matrices Ns
ϕ and Ns

c of surface shape func-
tions. Insertion of shapes (62) and (63) into the time-discrete
weak form (60) and applying standard arguments gives the
coupled algebraic system
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Fig. 7 Tangential Cauchy and
first Piola Kirchhoff stresses
across the cross-section at times
a t =1,000 s, b t = 2,000 s,
c t = 3,000 s, and d t = 4,000 s
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Rϕ(dϕ, dc) =
Ne

A
e=1

∫
Be

0

[BeT
ϕ P − NeT

ϕ ρ0γ ]dV

−
N t

s

A
st =1

∫
∂Bt st

t

NsT
ϕ t̄ da = 0 ,

Rc(dϕ, dc) =
Ne

A
e=1

∫
Be

0

[BeT
c H τ − NeT

c ρ0ċτ ]dV

−
N h

s

A
sh=1

∫
∂Bh sh

t

NsT
c h̄ da = 0 . (64)

This is a coupled systems for the determination of the nodal
deformation and concentration values dϕ and dc at the cur-
rent time tn+1.1

1 Explicit definition of pressure gradient: C0 continuous shape functions
are poor in the computation of the pressure gradient term, which is
needed for the computation of Li+ ion flux (44)2. In order to overcome
this difficulty, we propose a semi-implicit finite element scheme based
on an explicit definition of the pressure gradient, in a sense of a selective
staggered scheme. Here, we employ a projection algorithm that allows

Footnote 1 continued
a straightforward computation of the gradient in terms of C0-shapes.
To this end, an additional negative pressure field p is introduced and
locally defined by the residual

r: = p+ 1

3
trσ̃ n = 0 (65)

in terms of the stress σ̃ n at time tn , yielding the weak and incremental
form

Gp =
∫

B
δp · rdV = 0 and ΔGp

ext =
∫

B
δpΔpd A . (66)

Introducing the C0 element interpolation ph(X) = Ne
p(X)dp consistent

with (62), one obtains the finite element residual and tangent matrix

Rp =
Ne

A
e=1

∫
∂Bel

Ne
prdV and Kpp =

Ne

A
e=1

∫
∂Bh

el

Ne T
p Ne

p dV . (67)

in addition to (64). Then, the pressure gradient is locally approximated
by

∇ p(X): = Be
p(X)dp (68)

and constant within the times step [tn, tn+1] under consideration. The
semi-implicit schme that uses this approximation is very robust.
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Fig. 8 a Circular disk of radius
r = 5 µm, b normalized
concentration at depicted points
over time, c radial Cauchy stress
σr at depicted points, and
d tangential Cauchy stress σθ on
the surface
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5.4 Solution of the coupled algebraic finite element system

The algebraic system (64) can be solved by standard meth-
ods for the solution of nonlinear equations. Introducing the
compact notation for the global degrees and the residual of
the finite element mesh

d: = [dϕ dc]T and R: = [Rϕ Rc]T , (69)

we write the algebraic problem (64) in the form

R(d) = 0 . (70)

A canonical solver is the Newton-Raphson iterations based
on the updates

d ⇐ d − [D R(d)]−1 R (71)

until convergence is achieved in the sense ||R|| < tol. It is
based on a full linearization of the nonlinear algebraic system
based on the monolithic tangent D R(d).

6 Representative numerical examples

In this section, we apply the finite strain theory of diffusion-
mechanics for Li-ion electrodes outlined in Sect. 3 to rep-
resentative model problems. Two class of materials will be
considered during the numerical investigations. In the first
example we treat a silicon anode electrode particle Li15Si4,
which is reported to show significant volume changes dur-
ing intercalation. The second and the third examples will
investigate deintercalation of LiMn2O4 cathode electrode
particles of circular and ellipsoidal disk shapes and random
geometries. Traction-free mechanical boundary conditions
are assumed on the particle surfaces. The chemical boundary
conditions at the particle surfaces follows the Butler–Volmer
electro-chemical reaction kinetics as outlined in Sect. 4.
The Li+ intercalation into the anode and the deintercalation
from the cathode correspond to the charging process of the
battery.
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Fig. 9 a Open circuit potential
for Li Mn2O4, b applied
potential over time,
c overpotential over time, and
d normalized concentration
profile across the radius
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Table 2 Material parameters
for Li Mn2O4

No. Parameter Unit Value Description Eqn.

1 λ N/mm2 5.769 × 103 Lamé constant (43)1

2 μ N/mm2 3.846 × 103 Shear modulus (43)1

3 Ω mm3/mol 3.497 × 103 Partial molar volume of Li-ion (30)

4 cmax mol/mm3 2.37 × 10−5 Max. Li-ion concentration in electrode (55)

5 c0/cmax – 0.996 Initial Li-ion concentration in electrode (57)

6 cl/cmax – 0.0422 Li-ion concentration in electrolyte (55)

7 k mm5/2/mol1/2·s 1.9 × 106 Reaction rate constant (55

8 β – 0.5 Symmetry factor (47)

9 D mm2/s 0.22 × 10−6 Diffusion coefficient (43)3

10 v mV/s 0.4 Sweep rate (51)

11 θ0 K 293 Temperature (43)

6.1 Circular and elliptic disks under potentiodynamic
control

6.1.1 Potentiodynamic charging process of Li15Si4 anode
particle

Silicon anode electrodes are particularly attractive due
to their high theoretical gravimetric and volumetric stor-

age capacity, but suffer significantly from large stresses
associated with concentration gradients. The conventional
approaches to diffussion-mechanics coupling utilize small
strain deformation theory Christensen & Newman [13,14],
Golmon et al. [20] and Seo et al. [27]. In order to justify the
use of the finite strain theory for diffusion-mechanics cou-
pling, a circular disk of radius r = 5 µm is investigated. The
equilibrium open circuit potential (OCP) curve
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Table 3 Parameters p(i, j) of open circuit potential function Uocp for
LMO

{ij} Value {ij} Value {ij} Value

11 0.993 × 1011 31 2.2360 51 0.3508

12 −0.472 × 101 32 0.9681 52 0.9893

13 0.9835 33 0.1422 53 0.229 × 10−1

21 0.378 × 101 41 0.3192 61 0.133 × 1011

22 0.5541 42 0.9671 62 0.8074

23 0.3205 43 0.491 × 10−1 63 0.1586

Uocp(c) ∼= −4.76(c/cmax)
6 + 9.34(c/cmax)

5

−1.8(c/cmax)
4 − 7.13(c/cmax)

3

+5.8(c/cmax)
2 − 1.94(c/cmax) + 0.62 (72)

for silicon is taken from Sethuraman et al. [29]. The approx-
imation (72) to the OCP is depicted in Fig. 4a. The material
parameters for silicon anode are given in Table 1, see also
Golmon et al. [20] and Bower & Guduru [4]. The anode par-
ticle is initially in deintercalated state. A potentiodynamic
loading with sweep rate 0.245 mV/s is applied for t =2,000 s
and the applied potential is kept constant, see Fig. 4b. No

mechanical loading is applied during the charging process.
The overpotential ηs computed on the surface and the con-
centration profiles across the radius at various stages of the
simulation are shown in Fig. 4c, d. During potentiodynamic
charging process Li-ions intercalate into the electrode par-
ticles in anode which is described by the Butler–Volmer
kinetics in the sense of Doyle et al. [17,18] as outlined in
Sect. 4. The competition between the time scales associated
with intercalation kinetics and the diffusion kinetics deter-
mine the stress peaks. The higher the concentration gra-
dient, the greater are the stresses generated. The normal-
ized Li+ concentrations contours on the deformed config-
uration of the circular disk at times t =1,000 s, t =2,000 s,
t =3,000 s, and t =4,000 s are shown in Fig. 5. The
undeformed configuration is also drawn with dotted lines
in order to emphasize the large volumetric expansion asso-
ciated with the intercalation process. Figs. 6 and 7 depict
the radial and tangential stress profiles at times t =1,000 s,
t =2,000 s, t =3,000 s, and t =4,000 s, respectively.
The radial and the tangential components of the Cauchy
stresses

σr = σ : n ⊗ n and σθ = σ : t ⊗ t (73)

Fig. 10 a Tangential stress
contours at the peak time t =
1,236 s. b Concentration versus
time and c radial stress σr
versus time at the center and
d tangential stress σθ versus
time at the surface of the
circular disk
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Fig. 11 a, b Radial and c,
d tangential components of the
Cauchy and the first Piola
Kirchhoff stresses across the
cross-section at peak times a,
c t = 885s and b, d t =1,231 s
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are obtained by projecting the stresses in the normal n and
tangential t directions. Similarly, the radial and tangential
components of the first Piola Kirchoff stresses P = Jσ F−T

read

Pr = P : n ⊗ n and Pθ = P : t ⊗ t . (74)

The Cauchy stress and the first Piola–Kirchhoff stress
show significant deviations from one another as the volume
increases underlining the inadequacy of the small strain kine-
matics in the stress computations. This fact justifies the neces-
sity of the proposed finite strain chemomechanics model for
the analysis of electrode materials exhibiting large volume
changes during intercalation and deintercalation cycles.

The variation of concentration, radial and tangential
stresses over time at the points shown in Fig. 8a are depicted
in Fig. 8b–d, respectively. One can clearly observe that
he generated stresses relax under potentiostatic conditions.
Hence, the applied sweep rate and the resulting overpoten-
tial are the determinant factors in the intercalation induced
stresses generation. The computed radial and tangential
stresses far beyond the theoretical strength for the the silicon.

In reality, silicon shows significant plastic yielding and finaly
cracking as reported in Bower & Guduru [4] and Baggetto et
al. [2]. Further experimental data is necessary for the charac-
terization of the material parameters governing the mechan-
ical deformation and the diffusion process. The diffusion
coefficient is taken to be constant, which might as well be
taken as a function of the concentration level or the state of
charge. However, the results shown qualitatively agree well
with those presented in the literature.

6.1.2 Potentiodynamic charging process of LiMn2O4

cathode particle

The first example is reinvestigated for the deintercalation of
Li+ ions into Mn2O4 cathodic host material. We refer to
Zhang et al. [33,34] for similar investigations in the small
strain setting. The investigation aims at the investigation
of discrepancy between the small strain and finite strain
approaches to diffusion-mechanics coupling phenomena. In
order to study the deintercalation induced stress generation
in LMO cathode particles, we devise a representative circu-
lar disk of radius r = 5 µm with initially in fully discharged
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Fig. 12 Lix Si anode: variation
of maximum a, c tangential and
b, d radial Cauchy stresses with
respect to the aspect ratio rx/ry
for constant rx = r0, constant
ry = r0 and constant area
A = n A0
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state c0 = 0.996cmax is charged with a linear applied poten-
tial V = vt with a constant sweep rate v, see Fig. 9b. The
natural boundary conditions for ion outflux at the surface of
the disk are modeled through the Butler–Volmer kinetics. The
material parameters are taken from references Zhang et al.
[33,34] and are listed in Table 2. The OCP is approximated
with the exponential function

Uocp(c) ∼=
6∑

i=1

Ui
ocp(c) with

Ui
ocp(c) = p(i, 1) exp(−[(c − p(i, 2))/p(i, 3)]2) , (75)

where the parameters p(i, j) with i = {1, 6} and j = {1, 3}
are depicted in Table 3. The charging process in the cath-
ode leads to deintercalation of Li-ions from the cathodic
electrode. During potentiodynamic charging process Li-
ions deintercalate from the electrode particles in cathode
under following the Butler–Volmer kinetics. The competi-
tion between the time scales associated with deintercalation
kinetics and the diffusion kinetics determine the stress peaks.
The higher the concentration gradient, the greater are the
stresses generated. The higher gradients are caused by the
variation in the overpotential as depicted in Fig. 9c. Fig-

ure 10a depicts the tangential stress contours corresponding
to the peak time t =1,236 s. The variation of concentration,
radial stresses at the center, and the tangential stresses on
the surface over time is shown in Fig. 10b–d. The radial and
tangential stress profiles across the radius at the peak times
t = 885 s and t =1,236 s are shown in Fig. 11. The Cauchy
and first Piola Kirchhoff stresses coincide which justifies
the use of small strain theory for the diffusion-mechanics
coupling in Li Mn2O4 cathode particles. The stress profiles
obtained across the radius are similar to those obtained for
silicon. It is to be mentioned that the sign of the radial and
tangential stresses is reversed due to the reversal of the con-
centration gradients during deintercalation simulation.

6.1.3 Optimization of elliptic electrode particles

In this example, we analyse an elliptic disk representing the
Lix Si and Lix Mn2O4 electrode particles, respectively. The
peak stress sensitivity with respect to (i) particle area, (ii)
aspect ratio α = rx/ry of the elliptic disk for constant rx , con-
stant ry and constant disk area A will be investigated, respec-
tively. The circular disk of radius r0 = 5 µm considered in
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Fig. 13 Lix Mn2O4 cathode:
variation of maximum a,
c tangential and b, d radial
Cauchy stresses with respect to
the aspect ratio rx/ry for
constant rx = r0, constant
ry = r0 and constant area
A = n A0
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Fig. 14 a Geometry and mesh of the particle, b normalized Li-ion concentration c/cmax contours and c maximum principal stress σmax corre-
sponding to the peak at time t =1,231 s

the previous example for LMO cathode is reinvestigated for
various aspect ratios in the range 1 ≤ α ≤ 2. The material
parameters are taken to be identical to the previous exam-
ple and are depicted in Tables 1 and 2 for silicon and LMO
electrodes, respectively. The results obtained for silicon and
LMO are depicted in Figs. 12 and 13, respectively. The sen-

sitivity of the peak stresses with respect to particle volume
and aspect ratio show the same trends for silicon anode and
LMO cathode although the curves are obtained from inter-
calation simulation in the former case and from deinter-
calation simulaton in the latter case. The maximum radial
stresses occur at the center of the ellipsoidal disk whereas
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Fig. 15 a Li-ion concentration versus time on the particle surface. b, c Maximum principal stress σmax versus time at various points on the surface
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Fig. 16 Quarter of a hollow cylinder: Geometry, boundary conditions and finite element discretization
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Fig. 17 Tangential Cauchy stresses (in MPa) developed in the hollow disk of silicon. Plots of the deformed mesh at times a t = 0s, b t = 1,000 s,
c t = 1,500 s, and d t = 2,000 s

the maximum tangential stresses occur at the oblate surface
where the distance to the center is minimum. The maximum
stresses are depicted at the peak time throughout the whole
(de)intercalation process. For the circular disk the peak times

are t =1,145 s (silicon) and t =1,236 s (LMO) and slightly
vary as the aspect ratio changes. For constant rx = r0 the ry

decreasas for increasing aspect ratio α. The maximum radial
stresses decrease monotonically with increasing aspect ratio,
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Fig. 18 Octant of a hollow sphere: Geometry, boundary conditions and finite element discretization
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Fig. 19 Tangential Cauchy stresses (in MPa) developed in hollow sphere of silicon. Plots of the deformed mesh at times a t = 0s, b t = 1,000 s,
c t = 1,500 s, and d t = 2,000 s

see Figs. 12 and 13a. The maximum tangential stresses, how-
ever, slightly increase with increasing aspect ratio followed
by a monotonous decrease when rx is kept constant, see
Figs. 12 and 13b. For constant ry = r0 the rx increases pro-
portional to aspect ratio α and the maximum radial stresses
first increase and then start to decrease monotonically after a
peak at α ≈ 1.2. The maximum tangential stresses monoton-
ically increase with increasing aspect ratio. For constant area
A = A0 the rx increases and ry decreases for increasing
aspect ratio α. The maximum radial stresses monotonically
decrease with increasing aspect ratio. The maximum tangen-
tial stresses first increase, reach a maximum value around
α = 1.5 and then monotonically decrease with increasing
aspect ratio. In order to investigate the sensitivity of the peak
stresseses with respect to particle size, we repeat our simu-
lations for various surface area A = n A0. As surface area
A increases/decreases, the maximum radial and tangential
stresses also increase/decrease as depicted in Figs. 12 and
13c, d.

6.2 Simulation of a realistic electrode particle geometry

In the last example, we investigate a realistic two dimen-
sional particle geometry taken from the SEM images of
LMO battery cathode documented in Bohn [3, p. 78]. Due to
the lack of information, we analyze the image in 2D under
plane-strain assumption. The geometry and the mesh used
for the simulation is depicted in Fig. 14a. We use 5,808 two-
dimensional four node standard displacement elements and
303 one-dimensional line elements in order to impose the
Butler–Volmer kinetics at the boundary. The normalized con-
centration contours and the maximumum in-plane principal
stress contours are depicted at the peak time t =1,231 s in
Fig. 14b,c. Compared to the ideal circular disk the maximum
stresses at the surfaces are considerably higher in real parti-
cles due to surface irregularities and kinks. Although the area
of the particle is slightly less than the circular disk investi-
gated in Sect. 6.1.2, the maximum stresses computed at the
surface kinks go upto twice as high as those measured on

123



Comput Mech (2015) 55:303–325 323

Fig. 20 Hollow disk of silicon:
a Maximum tangential stresses
over time and b concentration
profile. Hollow sphere of
silicon: c Maximum tangential
stresses over time and
d concentration profile
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the surface of the circular disk. In Fig. 15a–c, the maximum
stresses at surface kinks depicted on the mesh in Fig. 14a
are plotted over time. Since the normalized concentrations
on the surface are indifferent they have been depicted as a
single curve in Fig. 15a.

6.3 Simulation of three-dimensional electrode particles

In this section, we analyze three-dimensional hollow cylin-
der and a hollow sphere. The geometry, boundary conditions
and the finite element discretization for the hollow cylinder is
depicted Fig. 16. The inner and outer surfaces are subjected
to Neumann-type boundary conditions where the Butler–
Volmer equation is applied at the outer surface and the inner
surface is kept flux-free. Due to symmetry, one quarter of the
hollow cylinder is discretized along with symmetry preserv-
ing Dirichlet-type boundary conditions at the intersection
surfaces. No mechanical tractions are applied to the inner
and outer surfaces. The initial relative concentration and the
material parameters used for the problem are depicted in
Table 1. The snapshots of the reference and deformed config-
urations at various times of intercalation process are given in
Fig. 17. The tangential Cauchy stresses and the relative Li-ion
concentration at the outer surface are depicted in Fig. 20a, b,

respectively. The monolithic solution algorithm shows excel-
lent performance thanks to the fully implicit global time inte-
gration. The hollow cylinder shows significantly less stresses
compared to the full cylinder.

Recently, Cui and coworkers [32] have proposed use of
interconnected silicon hollow nanosphere as a candidate for
commercial anode with long cycle life. They have achieved
an initial capacity of 2,725 mA hg−1 with less than 8 %
capacity degradation every hundred cycles. In order to jus-
tify the use of hollow nanospheres as anodic particles, we
have analyzed the chemomechanical behavior under poten-
tiodynamic charging process. A hollow sphere with outer
radius r = 1 µm, where the geometry, boundary conditions
and the finite element discretization are depicted in Fig. 18, is
investigated. The reference and the deformed configuration
of the material are depicted at various stages of intercalation
process in Fig. 19. The tangential Cauchy stresses and the rel-
ative Li-ion concentration at the outer surface are depicted
in Fig. 20c,d, respectively. Three orders of reduction in the
tangential stresses are quantified, which are well below the
yielding or fracture stresses reported for lithium. The sim-
ulations carried out justify the use of tailored microstruc-
tures. In circumstances where the decrease in size is limited
due to the problems associated with electrical conductivity
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and SEI formation, the presented theory shows promising
results.

7 Conclusion

We proposed a theoretical and computational framework for
coupled diffusion-mechanics of Li-ion battery electrodes at
finite strains. It is suitable for the analysis of diffusion of
Li-ions during intercalation into and deintercalation from
the electrode particles. A convenient semi-implicit finite ele-
ment implementation for the proposed theory was developed.
The framework is very well suited for electrode materials
exhibiting large volume changes during charge-discharge
cycles. The numerical investigations clearly demonstrated
the necessity of the finite strain theory for the diffusion-
mechanics coupling in Li-ion electrodes. The surface electro-
chemistry governing the oxidation and reduction reaction
kinetics was implemented through surface elements, utiliz-
ing Butler–Volmer kinetics in terms of nonlinear Neumann-
type boundary conditions. The analysis carried out on silicon
anode particles show significant deviations between the nom-
inal and true stresses, justifying the necessity of the proposed
finite-strain theory. The suggested semi-implicit finite ele-
ment algorithm, where the pressure field is discretized as an
independent field variable and the concentration and defor-
mation fields are solved via a monolithic update scheme,
is very robust. The representative boundary value exam-
ples show promising results towards future investigations
on micro-structure optimization of silicon particles for more
durable and high-performance silicon based anodes for EV
applications. Future investigations will cover extensions to
inelastic bulk response, phase segregation and fracture.
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