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Abstract In this work, a rate-dependent model for the sim-
ulation of quasi-brittle materials experiencing damage and
randomness is proposed. The bi-scalar plastic damage model
is developed as the theoretical framework with the damage
and the plasticity opening for further developments. The gov-
erning physical reason of the material rate-dependency under
relatively low strain rates, which is defined as the Strain Delay
Effect, is modeled by a differential system. Then the descrip-
tion of damage is established by further implementing the
rate-dependent differential system into the random damage
evolution. To reproduce the evolution of plasticity under a
variety of stress conditions, a multi-variable phenomenolog-
ical plastic model is proposed and the description of plas-
ticity is then formulated. An explicit integration algorithm
is developed to implement the proposed model in the struc-
tural simulation. The model results are validated by a series
of numerical tests that cover a wide variety of stress condi-
tions and loading rates. The proposed model and algorithm
offer a package solution for the nonlinear dynamic structural
simulations.

Keywords Damage–plasticity model · Strain delay effect ·
Stochastic damage ·Multi-variable plasticity ·
Dynamic loading

X. Ren · J. Li (B)
School of Civil Engineering, Tongji University,
1239 Siping Road, Shanghai 200092, China
e-mail: lijie@tongji.edu.cn

X. Ren
e-mail: rxdtj@tongji.edu.cn

S. Zeng
Shanghai Jianke Engineering Consulting Co., Ltd.,
75 South Wanping Road, Shanghai 200032, China

1 Introduction

The quasi-brittle materials like concrete and rocks usually
exhibit highly complicated behaviors when experiencing
stresses. Indicated by the intrinsic heterogeneity of the mate-
rial meso-structure, the typical mechanical behaviors of con-
crete could be attributed into three aspects: the nonlinear-
ity, the randomness and the rate-dependency. After decades
of studies, one of the most used descriptions of the quasi-
brittle nonlinearity at present are the damage–plasticity mod-
els [11,15,16,21,38,47]. Both the damage variables and the
plastic deformations are included in these models to describe
the material softening and the residual strains, respectively.
By introducing the framework of thermodynamics and the
energy based representations, damage and plasticity could
be well organized in a class of unified theories. Currently
the damage–plasticity models have been used as the stan-
dard tools for the nonlinear numerical simulations of concrete
structures.

The other two aspects, e.g. randomness and rate-
dependency, have not been well considered in the existing
theories. Experiences indicate that the tested strain-strain
curves might be quite different even for the concrete speci-
mens prepared based on the same mixture ratios and the same
curing conditions. In many cases the randomness of concrete
is able to deviate the nonlinear responses dramatically so that
it deserves careful considerations in the analytical model.
Krajcinovic [20] firstly introduced the conventional bundle
model to the modeling of random damage behavior of con-
crete, although their results were restricted to the mean value
evolution of damage. Kandarpa et.al. [17] investigated the
stochastic damage model and developed the standard devia-
tion of damage evolution. Li and Ren [23] further improved
the results of [17] and implemented the stochastic damage
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model into the energy based multiaxial damage–plasticity
framework.

It is well known that most of the engineering materials are
sensitive to the strain rates. Simultaneously, relatively high
strain rates could be detected for the engineering structures
subjected to the dynamic loads such as impact, explosion and
earthquake. In most cases, the difference becomes significant
when the rate changes [4]. The fact that concrete and other
materials are sensitive to the rate of loading has been inves-
tigated by decades of experiments [1,4,13,19,25,35,43–
45,49] and investigations [9–12,16,24,30–32,48]. The phys-
ical mechanisms of the strain-rate effect can be attributed
into two governing aspects: the viscous effect and the iner-
tial effect. The rate-dependency is governed by the iner-
tial effect at very high loading rate (ε̇ ≥ 100 s−1). For the
low and moderate strain rates (ε̇ < 100 s−1), the viscous
effect plays governing role. And the latter case has been con-
cerned more and more by civil engineers and researchers
in recent years. The milestone of the rate-dependent mate-
rial models was settled by Perzyna [30], who defined the
viscoplastic evolutions by the over-stress function. Starting
from this celebrated idea, the classical viscoplastic theory
was well developed. Following the Perzyna’s idea, the rate-
dependent damage models could be also extended from the
inviscid damage model. And the recently developed dynamic
damage models [9,11,16,32] are mainly following this
idea.

Based on the analysis of literatures, we have reached the
fact that the pragmatic rate-dependent constitutive models
with the appropriate description of the material randomness
and rate-dependency deserve further investigation. There-
fore, the present work concentrates on the rate-dependency of
concrete relying on the stochastic damage–plasticity frame-
work. In Chapter 2, the energy based framework of damage–
plasticity is developed, with the damage evolution as well as
the plastic evolution opening for further development. Chap-
ter 3 proposes a physics based model for the rate-dependent
damage evolutions. The material rate-dependency is defined
as the Strain Delay Effect (SDE) and described by the pro-
posed differential system. The plasticity of concrete is dis-
cussed in Chapter 4. A multi-variable description of plasticity
is proposed to consider the difference between the residual
strain evolutions under the tensile and the compressive stress
conditions, respectively. And the evolutionary functions of
the plastic strains are defined with the corresponding dam-
age variables involved. In Chapter 5, an explicit numerical
scheme is proposed for the present constitutive model. Within
the proposed scheme, the differential system defining the
rate-dependent damage evolution is simulated by the finite
difference method and the global convergence is defined by
the drift of damage criteria. The stabilities of the physical sys-
tem as well as the numerical system are analysed in Chapter
6. Chapter 7 validates the proposed model and algorithms by

a series of numerical tests. Finally, a number of conclusions
are draw in Chapter 8.

2 Representation of damage–plasticity

The material damage and plasticity could be unified in the
following form as the starting point of the plastic damage
constitutive model [47].

σ = (I− D) : E0 : (ε − ε p) (1)

where σ and ε are the second order stress tensor and strain
tensor, respectively; E0 is a fourth order tensor denoting the
initial undamaged elastic stiffness; D is the fourth order dam-
age tensor; and ε p is a second order tensor denoting the plas-
tic strain.

The proposed model is developed based on the strain
equivalence hypothesis [22]: the strain associated with a
damaged state under the applied stress is equivalent to the
strain associated with its undamaged state under the effective
stress.

The undamaged state undergoing the same strain as the
damage state defines the effective stress tensor as follows

σ = E0 : (ε − ε p) (2)

The strain equivalence hypothesis decouples the plastic dam-
age model shown in Eq. (1) and defines the solution of vari-
ables, such as the plastic strain, in the undamaged state.
Eq. (2) actually defines the plastic constitutive relationships
for the undamaged state. Hence the evolution of the plastic
strain, which is equivalent to the plastic strain undergoing
damage, should be governed by the stress of the undamaged
state, that is, the effective stress. Define the yield condition
and the evolution potential based on the effective stress, one
obtains the following effective stress space plasticity (ESP).
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε̇ p = λ̇
∂ F̃(σ ,κ)

∂σ

κ̇ = λ̇
[
h · ∂ F̃(σ ,κ)

∂κ

]

F(σ , κ) ≥ 0, λ̇ ≤ 0, λ̇F(σ , κ) = 0

(3)

where F and F̃ are the yield function and the plastic potential,
respectively; λ and κ are the plastic flow parameter and the
hardening parameter; and h denotes the vectorial hardening
function.

Based on the trivial derivations in plasticity theory, we
could obtain the rate form of the constitutive law as follows

σ̇ = E
ep : ε̇ (4)

where E
ep is the elastoplastic tangential stiffness.

Eqs. (2)–(4) define the effective stress space plasticity by
analog with the framework of the classical plastic theory.
This framework is often referred as the theoretical effective
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stress space plasticity (T-ESP). T-ESP offers a rigorous and
complete framework to describe the plastic evolution so that
it is often adopted in the theoretical development. However,
numbers of deficiencies may happen in its applications. The
physical background of the yield function F and the plas-
tic potential F̃ defined in the effective stress space are not
very clear. Expressed by the effective stress, F and F̃ are
also difficult to be measured experimentally. Moreover, the
numerical implementation of the T-ESP is also rather intri-
cate due to its mathematical structure. The return-mapping
algorithm [37] may be performed with numbers of itera-
tions at each integration points during each time-step, which
may be time-consuming during the simulation of large scale
structures. Therefore, the phenomenological plastic models
are also proposed and widely used to describe the plastic-
ity of concrete in a simple way but with sound experimen-
tal support. Chapter 4 of the present paper works on this
side.

Substituting Eq. (2) into Eq. (1) yields the damage consti-
tutive law as follows

σ = (I− D) : σ (5)

where the effective stress σ has been solved in the undam-
aged state. The fourth order damage tensor D degrades the
effective stress applied on the undamaged material. To solve
D, two aspects should be carefully considered. First of all,
the general fourth order tensor is too complex and unneces-
sary, so that the structure of the damage tensor should be well
simplified. Second, the damage criterion which governs the
evolution of damage tensor should be pre-defined.

Despite the anisptropic damage represented by the second
order tensor, the present paper adopts the bi-scalar damage
representation as follows

D = D+P
+ + D−P

− (6)

where D+ and D− are the tensile and the compressive dam-
age scalars, respectively; P

+ and P
− are the fourth order

projective tensors, which project D+ and D− to the corre-
sponding tensile and compressive stress states, respectively.
As shown in Eq. (6), the damage tensor is split into two
components. Thus the evolution of damage should be gov-
erned by the evolutions of the corresponding eigen-damages
as well as the rotation of the basis defined by the projective
tensor.

Technically, damage is the continuum measure of material
degradation induced by cracks and defects in the sub-scale.
As the cracks and defects are initiated and driven by the
applied stress, damage should be governed by the stress also.
However, stress is not an appropriate variable to drive the
damage evolution because of the strain softening even under
monotonic loading. To address this issue and also to remain
the form of stress in the damage criterion, the effective stress
is usually adopted. To consider the tensile damage and the

compressive damage in a separate way, the effective stress
split [11,47] is introduced as follows:

σ = σ+ + σ− (7)

where the tensile effective stress and the compressive effec-
tive stress are
⎧
⎨

⎩

σ+ = P
+ : σ =∑

t H(σ̂ t )σ̂ t p(t) ⊗ p(t)

σ− = P
− : σ =∑

t [1− H(σ̂ t )]σ̂ t p(t) ⊗ p(t)
(8)

and the projective tensors
⎧
⎨

⎩

P
+ =∑

t H(σ̂ t ) p(t) ⊗ p(t) ⊗ p(t) ⊗ p(t)

P
− = I− P

+ (9)

where σ̂ t and p(t) are the t-th eigenvalue and eigenvector of
the effective stress tensor, respectively. And the Heaviside
function reads

H(x) =
{

0 x ≤ 0

1 x > 0
(10)

As shown in Fig. 1, the eigen-based effective stress split
defines the tensile stress state and the compressive stress
state respectively. The projective tensors P

+ and P
−, which

define the eigen-tensors of the fourth order damage tensor,
are expressed by the principal directions of effective stress.
Thus the proposed damage model is a kind of equivalent
form to the rotating angle shear model [14] because the rota-
tion of the principal effective stress yields the rotation of the
principal damage.

The evolutions of the tensile damage D+ and the com-
pressive damage D− should be governed by the correspond-
ing stress states. Meanwhile, the irreversible thermodynam-
ics suggests the energy conjugated force as the driven force
(criterion) of the internal variable. Thus by proposing the
expression of Helmholtz free energy (HFE)

Ψ = (1− D+)Ψ+0 + (1− D−)Ψ−0 (11)

the energy conjugated quantities of the tensile and the com-
pressive damages, which are defined as the damage release
rates, are
⎧
⎨

⎩

Y+ = − ∂Ψ
∂ D+ = Ψ+0

Y− = − ∂Ψ
∂ D− = Ψ−0

(12)

The initial HFEs Ψ+0 and Ψ−0 could be further split into the
elastic part and the plastic part. We have
⎧
⎨

⎩

Ψ+0 = Ψ e+
0 + Ψ

p+
0

Ψ−0 = Ψ e−
0 + Ψ

p−
0

(13)
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Fig. 1 Effective stress decomposition

The elastic parts

Ψ e±
0 = 1

2
σ± : εe = 1

2
σ± : E−1

0 : σ (14)

and the plastic parts [16]

Ψ
p±

0 ≈
∫

σ± : dε p (15)

Wu et al. [47] neglected the tensile plastic HFE Ψ
p+

0 and
introduced the Drucker–Prager plastic model for the com-
pressive HFE Ψ

p−
0 . They derived the approximate explicit

expressions of the damage release rates as follows

⎧
⎪⎪⎨

⎪⎪⎩

Y+ ≈ 1
2E0

[
2(1+ν0)

3 3J
+
2 + 1−2ν0

3 (I
+
1 )2 − ν0 I

+
1 I
−
1

]

Y− ≈ b0

(

α I
−
1 +

√

3J
−
2

)2 (16)

where I
±
1 are the first invariants of the tensile and the com-

pressive effective stresses σ±, respectively; and J
±
2 are the

second invariants of s±, which is the deviatoric components
of effective stresses. E0 and ν0 are the Young’s modulus and
the Poisson’s ratio of the initial undamaged material; and b0

is also a material parameter. The parameter α is related to the
biaxial strength increase as follows

α =
fbc
fc
− 1

2 fbc
fc
− 1

(17)

where fc and fbc are the uniaxial compressive strength and
the biaxial compressive strength, respectively. It is observed
from Eq. (16) that the developed tensile damage release rate
Y+ is governed by the elastic energy and the developed com-
pressive damage release rate Y− is governed by the plastic
energy.

Moreover, the damage evolutions are defined by the
energy release rates as follows

D± = G±(r±Y ), r±Y = max
τ∈[0,t]{Y

±(τ )} (18)

where the monotonic functions G±(·) are the damage evolu-
tion functions; and the damage thresholds r±Y denote the max-
imum values of Y± throughout the whole loading process
[0, t]. Based on the damage release rate dependent damage
evolution and the damage consistent condition, Li and Ren
[23] further developed the damage evolution driven by the
energy equivalent strain as follows

D± = G±(r±e ), r±e = max
τ∈[0,t]{ε

e±(τ )} (19)

where the energy equivalent strain
⎧
⎪⎨

⎪⎩

εe+ =
√

2Y+
E0

εe− = 1
E0(1−α)

√
Y−
b0

(20)

Under uniaxial loading, the energy equivalent strains are
reduced to the uniaxial strain while the damage evolutions
are reduced to the uniaxial damage evolution as follows

D± = G±(r±e ), r±e = max
τ∈[0,t](ε

e±
τ ) (21)

It is observed that the multiaxial damage evolution Eq. (19)
is consistent with the uniaxial damage evolution Eq. (21).
The damage evolution functions G±(·) could be determined
by the uniaxial testing data or the theoretical development in
the sub-scale.

The evolutionary models for the damage and the plasticity
are developed in Chapter 3 and Chapter 4, respectively.

3 Damage evolution

To consider the material rate-sensitivity, the rate dependent
damage evolutions could be developed based on the invis-
cid damage evolutions shown in Eq. (19). By introducing
the rate-dependent energy equivalent strain εe±

r , the rate-
dependent damage evolutions are
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Fig. 2 Physical based rate-dependent model

⎧
⎪⎪⎨

⎪⎪⎩

D± = G±(r±d )

r±d = maxτ∈[0,t]{εe±
r (τ )}

R±(εe±
r , ˙̄εe±

r , εe±, ˙̄εe±
) = 0

(22)

Based on the Perzyna’s theory [30], Ren and Li [32] proposed
the phenomenological expression of the differential operator
R±. In the present work, an alternative model is proposed
based on the concept of Stefan effect.

Stefan [42] and Reynolds [34] investigated the problem of
two separating plates with a thin viscous film in-between. The
solution of this problem indicated the linear dependencies
between the applied forces and the separating velocity of the
plates. Thereafter, the findings was defined as Stefan effects
and widely used to describe the material rate-dependencies.
The derivation of the Stefan effect could be found in Appen-
dix A. In the proposed model, we consider that the material
rate-sensitivity comes from the Stefan effect.

We assume that the rate-dependency is induced by the
water (including the void water and the crystal water) within
concrete. As shown in Fig. 2, two parts are considered in the
model. Part I represents the elastic part of concrete specimen
and Part II is the combination of the solid matrix and the vis-
cous fluid. We obtain the following equation after analyzing
the model shown in Fig. 2.
⎧
⎨

⎩

ε1 = σ
E1

ε2 = σ−σv

E2

(23)

where σ is the uniaxial stress; ε1 and ε2 are the strains of
Part I and Part II, respectively; and E1 and E2 are the elas-
tic parameters of Part I and Part II, respectively. Based on
the discussion of the Stefan effect in Appendix A, the vis-
cous stress representing the rate effect of the model could be
expressed as follows

σv = Aε̇2 (24)

The viscous coefficient A has been defined in Appendix A.
Based on Eqs. (23) and (24), the overall strain of the model
could be expressed as

εr = ε1 + ε2 = σ

(
1

E1
+ 1

E2

)

− σv

E2
(25)

For the quasi-static loading, we have σv → 0. Eq. (25)
reduces to

ε = ε1 + ε2 = σ

E0
(26)

where 1
E0
= 1

E1
+ 1

E2
defines the equivalent uniaxial elastic

parameters E0. It is also observed that εr is the rate dependent
strain of the system shown in Fig. 2 and ε is the quasi-static
strain. And according to Eq. (25) we could further define εv =
σv

E2
as the viscosity induced strain decrease. Manipulating

Eqs. (23)– (26) yields the following first order differential
system
{

γa ε̇2 + (αn + βn)ε2 = αnεr

γa ε̇2 + βnεr = βnε
(27)

where the coefficients

γa = A

E0
, αn = 1+ n, βn = 1+ n

n
, n = E1

E2
(28)

By giving the static strain ε, the rate-dependent strain εr and
the strain of Part II ε2 could be solved by the dual system
shown in Eq. (27). It is indicated that εr is needed to further
calculate the rate-dependent damage, and particularly ε2 is
an internal variable which memorizes the strain history.

The numerical algorithm to solve Eq. (27) under general
loading conditions will be developed in Chapter 5. The closed
form solution of Eq. (27) reads
⎧
⎪⎨

⎪⎩

ε2 = εr − βnε
αn+βn

εr = βne
− βn t

γa

γa(αn+βn)

∫
e

βn t
γa

[
γa ε̇ + (αn + βn)ε

]
dt + C1e−

βn t
γa

(29)

where C1 is a constant related to the initial conditions. Con-
sidering the constant rate loading ε = ε̇t and the initial con-
dition (ε(0) = 0, εr (0) = 0), the solution Eq. (29) further
gives

εr = ε − εv (30)

where the viscous strain

εv = αnγa

βn(αn + βn)

(

1− e−
βn t
γa

)

ε̇ (31)

The closed form solution shown in Eqs. (30) and (31)
could verify the simulating results of the numerical scheme.

The development of damage evolution function is refer
to [17] and [23]. The stochastic damage evolution functions
under static loading are expressed as follows
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D =
∫ 1

0
H [ε −Δ(x)]dx (32)

where Δ(x) is the 1-D micro-fracture strain random field;
x is the spatial coordinate of the random field. And it is
observed that ε is an constant subjected to spatial integra-
tion. By replacing the static strain ε with the dynamic strain
εr , we have the rate-dependent stochastic damage evolution
as follows

D =
∫ 1

0
H [εr −Δ(x)]dx =̂ G(εr ) (33)

Consider that Δ(x) is a homogeneous log-normal random
field. Let λ and ζ be two distribution parameters which denote
the mean value and the standard deviation of the correspond-
ing normal random variable Z(x) = ln Δ(x), respectively.
And the auto-correlation coefficient function for Z(x) is as
follows

ρz(y) = e−ξ |y| (34)

where ξ is the correlation parameter. Then the mean value
and the standard deviation of damage evolutions expressed
in Eq. (33) could be solved. The mean value reads

d = μD = Φi

(
ln εr − λ

ζ

)

=̂ g(εr ) (35)

and the standard deviation reads

V 2
D = 2

∫ 1

0
(1− y)Φi i

(
ln εr − λ

ζ
,

ln εr − λ

ζ

∣
∣
∣
∣ ρz(y)

)

dy

−μ2
D (36)

where functions Φi and Φi i are the cumulative probability
functions of the 1-D and the 2-D standard normal distribu-
tions, respectively. For the deterministic analysis, the mean
value evolution Eq. (35) is adopted and the damage variable
is denoted by the lower case variable d.

Before implementing the developed uniaxial rate-
dependent damage evolutionary model [Eqs. (27)–(36)] into
the multiaxial framework, the following aspects should be
emphasized:

– Due to the essential differences between the behaviors of
quasi-brittle materials under tension and compression,
two groups of equations with similar expressions but dif-
ferent parameters are developed to reproduce the tensile
damage and the compressive damage, respectively. And
the superscripts+ and− are adopted to denote the quan-
tities related the tensile and the compressive damages as
appropriate.

– The strains mentioned in the proposed method are refer-
eed to the elastic strain. And the additional plastic strains
will be modeled in the next section. By substituting the
energy equivalent strain εe± into Eqs. (27) as the static
strain ε, the rate-dependent energy equivalent strain εe±

r

could be solved as εr . Thereafter the dynamic damage
thresholds r±d could be determined by considering the
maximum values of εe±

r over the entire loading process.
Further substituting r±d into the damage evolution func-
tions Eqs. (33) and (35), the stochastic as well as the
deterministic damages could be obtained.

4 Multi-variable plasticity

As discussed in Chapter 2, the T-ESP exhibits numbers
of deficiencies in application. Hence a phenomenological
model to describe the ESP is developed in the present chapter.

On one hand, the proposed phenomenological plastic
model should be also defined in the effective stress space to
take the advantage of the ESP. On the other hand, the plastic
strain is usually defined as a function of strain in experimen-
tal studies. Thus we consider that the evolution of plastic
strain is proportional to the evolution of elastic strain, which
is closely related to the effective stress. One obtains

ε̇ p = f p ε̇
e (37)

Besides the damage, the evolutions of plastic strain are also
rather different under tension and compression. Thus the split
of plastic strain rate is introduced as follows
⎧
⎪⎪⎨

⎪⎪⎩

ε̇ p = ε̇ p+ + ε̇ p−

ε̇ p+ = f +p ε̇e+ = f +p E
−1
0 : ˙̄σ+

ε̇ p− = f −p ε̇e− = f −p E
−1
0 : ˙̄σ−

(38)

The scalars f ±p are considered as functions of the correspond-
ing damage variables D±. We define the plastic theory shown
in Eq. (38) as multi-variable plasticity because more than one
plastic strain tensors are considered. By systematic investiga-
tions of experimental data, we propose the following expres-
sions

f ±p = f ±p (Ḋ±, D±) = H(Ḋ±)ξ±p (D±)n±p (39)

where ξ±p and n±p are material parameters fitted by the exper-
imental data; and the Heaviside function H(·) defines the
associate evolutions between damage and plasticity. As dis-
cussed in Chapter 3, the inevitable randomness of damages
could be described by a random field. Thus the plastic evo-
lutions are also random and related to the stochastic dam-
age evolutions. On the other hand, the coupling between the
randomness of damage and the nonlinearity of plastic evolu-
tion yields extremely complicated solutions of the total stress
strain relationship Eq. (1). Thus a reduced form of the plastic
evolution Eq. (39) is proposed as follows by using the mean
values of damage (denoted by the lower case character d±).

f ±p = f ±p (Ḋ±, d±) = H(Ḋ±)ξ±p (d±)n±p (40)
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By combining Eqs. (38) and (40), we obtain the governing
equation of plastic evolution as follows

ε̇ p = H(Ḋ+)ξ+p (d+)n+p E
−1
0 : ˙̄σ+

+ H(Ḋ−)ξ−p (d−)n−p E
−1
0 : ˙̄σ−

= H(Ḋ+)ξ+p (d+)n+p E
−1
0 : Q+ : ˙̄σ (41)

+ H(Ḋ−)ξ−p (d−)n−p E
−1
0 : Q− : ˙̄σ

The definition of the effective stress rate projective tensors
[11] is

˙̄σ± = Q
± : ˙̄σ (42)

It is clear that Q
± are rather different from the effective stress

projective tensors P
±. By referring to [47], the present paper

gives the expression of them as follows
⎧
⎪⎨

⎪⎩

Q
+ = P

+ + 2
∑

3t=1

t∑

s=1

〈σ̂ t 〉−〈σ̂ s 〉
σ̂ t−σ̂ s

p(ts) ⊗ p(ts)

Q
− = I−Q

+
(43)

where the second order symmetric tensor

p(ts) = 1

2
( p(t) ⊗ p(s) + p(t) ⊗ p(s)) (44)

where the superscripts t and s in brackets denote the orders
of the eigenvalues or the eigenvectors of the effective stress.
And the Macaulay brackets

〈x〉 = |x | + x

2
(45)

To determine the elasoplastic tangential stiffness tensor,
the differentiation of Eq. (2) yields

σ̇ = E0 : (ε̇ − ε̇ p) (46)

Combining Eqs. (41) and (46) gives
[
I+ H(Ḋ+)ξ+p (d+)n+p Q

+ + H(Ḋ−)ξ−p (d−)n−p Q
−] : σ̇

= E0 : ε̇ (47)

Hence the elasoplastic tangential stiffness tensor reads

E
ep =

[
I+ H(Ḋ+)ξ+p (d+)n+p Q

+

+ H(Ḋ−)ξ−p (d−)n−p Q
−]−1 : E0 (48)

The rate-dependency of plasticity is not explicitly included
in the proposed plastic model. However, due to the rate
dependencies of damage evolutions, the plastic evolution is
technically related to the strain rates. Furthermore, although
the linear rate-dependency is defined by Eq. (27), the pro-
posed plastic damage model exhibits strong nonlinearities
dependent to the strain rate. The reason could refer to the
nonlinear dependency between the damage and the plasticity
proposed in the present work.

Further define the plastic stress and plastic stress rates as
follows
{

σ p± = E0 : ε p±

σ̇ p± = E0 : ε̇ p± (49)

Recall Eqs. (38) and (40), we have

σ̇ p± = H(Ḋ±)ξ±p (d±)n±p ˙̄σ± (50)

Thus Eq. (46) could be recast into the following form

σ̇ = E0 : ε̇ − σ̇ p+ − σ̇ p− (51)

Theoretically, the plastic stress σ p± are equivalent to the
plastic strain ε p±. But Eq. (51) suggests that σ p± works bet-
ter with the effective stress and yields very concise expres-
sions. Thus the numerical scheme is developed in the form
of plastic stress.

5 Numerical scheme

At each integration point of the structural finite element
model, the unknown stress increments should be calculated
by the constitutive model during each time-step. As shown in
the previous chapters, the proposed constitutive relationship
defines a strong nonlinear system made up of a set of coupled
nonlinear equations. Thus the numerical implementation of
the proposed model should be carefully considered to guaran-
tee the accuracy and the stability of the structural simulation.
The existing numerical schemes for the computation of the
material inelasticity could be concluded as follows:

– The implicit methods are generally unconditionally sta-
ble. Hence a relatively long time step could be adopted
so that less numbers of time step is needed. And another
attractive aspect indicates that the results of the implicit
method automatically satisfy the yield condition. On the
other hand, these methods need iterations to solve the
resulting implicit equations. The internal iterations may
diverge for the strain softening problem or other ill-
conditioned cases. And the second derivatives of the yield
functions, which are rather complicated for the general
forms of the yield functions, are required to calculate the
algorithm consistent tangential tensor.

– The explicit methods are conditionally stable. Thus they
require rather small time steps to avoid intolerable errors,
so that a large number of time steps are needed. And the
results of these methods may not satisfy the yield con-
dition to the predefined tolerance. However, the explicit
methods offer an extremely simple but robust compu-
tations in each time step. No iteration is needed and the
order of derivatives remains to one. Moreover, the explicit
methods fit the parallel code very well and is able to
achieve excellent efficiency for the parallel computation.
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In the present paper, an explicit scheme is developed to
implement the proposed rate-dependent damage–plasticity
model. Denote the subscript form xk as the quantities at the
k-th time step. And the finite difference is defined by Δxk =
xk+1− xk . By giving the values of the state variables and the
internal variables in the k-th time step and also the strain in
the (k+1)-th step, the proposed scheme approaches the values
of the state variables and the internal variables in the (k+1)-th
step.

We start with the elastic trial. By freezing the evolutions
of plasticity and damage, the trial solution of the effective
stress as follows

σ trial
k+1 = E0 : εk+1 − σ

p
k (52)

Then the trial solutions of the damage energy release rates
(Y±)trial

k+1 and the energy equivalent strains (εe±)trial
k+1 could be

explicitly determined. The rate dependent energy equivalent
strains could be solved by the finite difference discretization
of Eqs. (27) as follows
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ±a
[
(ε±2 )k+1 − (ε±2 )k

]

+ (α±n + β±n )(ε±2 )k+1Δtk = α±n (εe±
r )k+1Δtk

γ±a
[
(ε±2 )k+1 − (ε±2 )k

]

+β±n (εe±
r )k+1Δtk = β±n (εe±)k+1Δtk

(53)

Cast into matrix expression, we obtain
[
γ±a + (α±n + β±n )Δtk −α±n Δtk

γ±a β±n Δtk

]{
(ε±2 )k+1

(εe±
r )k+1

}

=
{

γ±a (ε±2 )k

γ±a (ε±2 )k + β±n (εe±)k+1Δtk

}

(54)

An inversion gives
{

(ε±2 )k+1

(εe±
r )k+1

}

=
⎡

⎢
⎣

γ±a
γ±a +β±n Δtk

α±n β±n Δtk
(α±n +β±n )(γ±a +β±n Δtk )

γ±a
γ±a +β±n Δtk

γ±a β±n +(α±n +β±n )Δtkβ±n
(α±n +β±n )(γ±a +β±n Δtk )

⎤

⎥
⎦

{
(ε±2 )k

(εe±)k+1

}

(55)

Substituting the trial energy equivalent strains (εe±)trial
k+1 into

the discrete system Eq. (54), the trial rate-dependent energy
equivalent strains (εe±

r )trial
k+1 and the trial internal energy

equivalent strains (ε±2 )trial
k+1 could be solved. Thus the trial

damage criteria gives

(R±)trial
k+1 = |(εe±

r )trial
k+1| − |(r±d )k | (56)

If

(R±)trial
k+1 ≤ 0 (57)

Fig. 3 Damage criterion intersection

the elastic state holds. We obtain

D±k+1 = D±k , σ
p
k+1 = σ

p
k

(r±d )k+1 = (r±d )k, (ε±2 )k+1 = (ε±2 )k, σ k+1 = σ trial
k+1

σ k+1 = σ k+1 − D+k+1σ
+
k+1 − D−k+1σ

−
k+1 (58)

For (R±)trial
k+1 > 0, the damage and the plasticity evolve.

The explicit methods usually require special attentions to the
case that the effective stress point changes from the elastic
stage to the nonlinear stage (Fig. 3).

The current time-step includes an elastic sub-step follow-
ing by a nonlinear sub-step. And different governing equa-
tions hold for different sub-steps, respectively. If the state
variables in the nonlinear domain are directly predicted by
the starting point located in the elastic domain, the abnormal
errors would happen during the calculation. Thus the transi-
tion point should be determined beforehand. Then the inte-
gration could be performed through two sub-steps with corre-
sponding starting points and governing equations. As the time
increments are usually very small for the explicit schemes to
guarantee the overall numerical stability, we could linearize
the load path within the time increment into a straight path
without loss of much accuracy. Sloan et al. [39], Soan [40]
systematically investigated the explicit methods for the plas-
tic models and proposed the Pegasus algorithm to find the
intersection point of a straight loading path. In the present
work, the Pegasus algorithm developed for damage model is
shown in Algorithm 1. Actually, the elastic sub-step could be
also finished during the execution of the Pegasus algorithm
with the damage and the plasticity remain unchanged.

By starting at the end of the elastic sub-step, we evaluate
the evolutions of damage and plasticity based on the forward
Euler scheme. By recalling Eqs. (47) and (48), the forward
Euler scheme gives

T
ep
k+λ : (σ k+1 − σ k+λ) = E0 : (εk+1 − εk+λ)

= σ trial
k+1 − σ k+λ (59)
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begin
Initialization with
λ±0 ← 0; λ±1 ← 1;
R±0 ← |(εe±

r )k | − |(r±d )k |; R±1 ← |(εe±
r )trial

k+1| − |(r±d )k |;
/*interations to solve the intersection point */
for i ← 1 to MAXITS do

λ± ← λ±1 − R±1
R±1 −R±0

(λ±1 − λ±0 );

εk+λ± ← εk + λ±(εk+1 − εk);
tk+λ± ← tk + λ±(tk+1 − tk);
Calculate (εe±

r )k+λ± and (εe±
2 )k+λ± by Eqs. (54);

R±
λ± ← |(εe±

r )k+λ± | − |(r±d )k |;
if |R±

λ± | ≤ RTOL then
break;

end
if R±

λ± R±0 < 0 then
λ±1 ← λ±; R±1 ← R±

λ± ;
else

λ±0 ← λ±; R±0 ← R±
λ± ;

end
end

end
if |R±

λ± | ≤ RTOL then
σ k+λ± ← σ k + E0 : (εk+λ± − εk);
σ k+λ± ← σ k+λ± − D+k σ+k+λ± − D−k σ−k+λ± ;
else

exit with error message;
end

end
end

Algorithm 1: Pegasus algorithm

Further manipulation yields

T
ep
k+λ : σ k+1 = σ trial

k+1 − (I− T
ep
k+λ) : σ k+λ (60)

where the fourth order tensor T
ep at the k-th step is

T
ep
k+λ = I+ θ

p+
k Q

+
k+λ + θ

p−
k Q

−
k+λ (61)

and the plastic factors are

θ
p+
k = H

[
(D+)trial

k+1 − D+k
]
ξ+p

[
d+k

]n+p

θ
p−
k = H

[
(D−)trial

k+1 − D−k
]
ξ−p

[
d−k

]n−p (62)

Recall Eq. (38), the plastic stress could be determined by

σ
p
k+1 = σ

p
k + θ

p+
k

(
σ+k+1 − σ+k+λ+

)

+ θ
p−
k

(
σ−k+1 − σ−k+λ−

)
(63)

Then the energy equivalent strains (ε±2 )k+1, (ε±)k+1 and
(ε±r )k+1 could be explicitly calculated. The damage criteria

⎧
⎨

⎩

(r+d )k+1 = sgn{(r+d )k}max{|(ε+r )k+1|, |(r+d )k |}
(r−d )k+1 = sgn{(r−d )k}max{|(ε−r )k+1|, |(r−d )k |}

(64)

and the damage variables
⎧
⎨

⎩

(D±)k+1 = G±
[
(r±d )k+1

]

(d±)k+1 = g±
[
(r±d )k+1

] (65)

Finally the stress

σ k+1 = (I− Dk+1) : (E0 : εk+1 − σ
p
k+1)

= (I− Dk+1) : (σ trial
k+1 + σ

p
k − σ

p
k+1) (66)

The time steps without elastic sub-step could be considered as
the particular case of the elastic-nonlinear step with λ± = 0.

The inconsistency induced by the extrapolation could be
observed for the effective stress. Recalling Eq. (60), we find

σ k+1 = (T
ep
k+λ)

−1 :
[
σ trial

k+1 − (I− T
ep
k+λ)σ k+λ

]

�= C0 : εk+1 − σ
p
k+1 =̂ σ̃ k+1 (67)

Thus the drift of damage criteria is

R̃±k+1 = |ε±r (σ̃ k+1)| − |(r±d )k+1|
= |ε±r (σ̃ k+1)| − |r±d (σ k+1)| �= 0 (68)

If the drift exceeds the tolerance, the global convergence of
the explicit algorithm will be lost. Thus the criteria to control
the global convergence of the numerical simulation should
be put as follows

|R̃±k+1| ≤ GTOL (69)

According to Reference [39], the suitable values of the global
tolerance GTOL are typically in the range 10−6–10−9.

The complete explicit algorithm for the proposed damage–
plasticity model is summarized in Algorithm 2.

6 Stability analysis

6.1 Physical stability analysism

The regularization operator R± in Eq. (22) represents the
material rate-dependency by slowing down the evolutions of
damages D± under dynamic loading. It has been extensively
investigated that the damage induced softening may yield
strain localization, which is usually referred as the damage
induced instability. On the other hand, the strain rate in the
strain localized domain is basically larger than that in the rest
part of solid. Thus the damage evolution in the strain local-
ized domain would be slowed down much more when the
rate-dependency is taken into account. This effect could be
considered as a localization limiter. Needleman first showed
that the material rate-dependency can remove the instability
[26]. In the present work, the regularization operator R± also
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begin
Initialization with σ 0, σ 0, ε0, σ p

0 , (ε±2 )0, D±0 , d±0 , (r±d )0, R̃±0 ;
for k ← 0 to Nk do

/*elastic trial */
σ trial

k+1 ← E0 : εk+1 − σ
p
k ;

Calculate (εe±)trial
k+1 ;

Calculate (εe±
r )trial

k+1 and (εe±
2 )trial

k+1 by Eqs.(54);
(R±)trial

k+1 ← |(εe±
r )trial

k+1| − |(r±d )k |;
if (R±)trial

k+1 ≤ 0 then
/*pure elastic step */
D±k+1 ← D±k ; σ

p
k+1 ← σ

p
k ; (r±d )k+1 ← (r±d )k ;

(ε±2 )k+1 ← (ε±2 )trial
k+1; σ k+1 ← σ trial

k+1;
σ k+1 ← σ k+1 − D+k+1σ

+
k+1 − D−k+1σ

−
k+1;

R̃±k+1 ← (R±)trial
k+1;

return ;
end
/*Nonlinear correction */
if R̃±k < −GTOL then

Perform Algorithm 1 to determine λ±;
else

λ± ← 0;
end

end
σ k+1 ← (T

ep
k+λ)

−1 : [σ trial
k+1 − (I− T

ep
k+λ)σ k+λ

]
;

σ
p
k+1← σ

p
k+θ p+

k

(
σ+k+1−σ+k+λ+

)
+θ p−

k

(
σ−k+1−σ−k+λ−

)
;

(r+d )k+1 ← sgn{(r+d )k}max{|(ε+r )k+1|, |(r+d )k |};
(r−d )k+1 ← sgn{(r−d )k}max{|(ε−r )k+1|, |(r−d )k |};
(D±)k+1 ← G±

[
(r±d )k+1

]
; (d±)k+1 ← g±

[
(r±d )k+1

]
;

σ k+1 ← (I− Dk+1) : (E0 : εk+1 − σ
p
k+1);

σ̃ k+1 ← E0 : εk+1 − σ
p
k+1;

R̃±k+1 ← |ε±r (σ̃ k+1)| − |r±d (σ k+1)|;
/*check global convergence */
if |R̃±k+1| > GTOL then

exit with error message;
end

end
end

Algorithm 2: Explicit algorithm

Fig. 4 Uniaxial bar problem in dynamic tensile

introduces a kind of non-locality for the spatial damage prop-
agation, which may relieve the instability in the simulation
of softening solids.

For simplicity, researchers [5,26,27,46] usually investi-
gated the stability of the dynamically damaged system based
on the uniaxial bar problem in tension, as shown in Fig. 4.

The equation of motion for the uniaxial bar problem reads

∂σ

∂x
= ρ

∂2u

∂t2 (70)

with ρ the density of the material, σ the axial stress and
u the axial displacement, x and t are spatial and temporal
coordinates, respectively.

The equation of continuity reads

ε = ∂u

∂x
(71)

where ε denotes the uniaxial strain.
And the constitutive equation in 1-D is

σ = (1− D)E0(ε − ε p) (72)

where D is the uniaxial damage, E0 is the undamaged
Young’s modulus, and ε p is the plastic strain. For simplic-
ity, we only consider the tensile loading bar and neglect the
compressive damage in this discussion.

For the rate independent system, the damage are directly
defined as the function of uniaxial elastic strain εe, we have

D = G(εe) , εe = ε − ε p (73)

Moreover, the differentiation of Eq. (72) gives

∂σ

∂x
= (1− D − D′εe)E0

(
∂ε

∂x
− ∂ε p

∂x

)

(74)

Recalling the plastic model proposed in the former part,
we have the standard first order expression of the governing
equations for the rate independent system as follows
⎧
⎪⎪⎨

⎪⎪⎩

(1− D − D′εe)E0

(
∂ε
∂x − ∂ε p

∂x

)
− ρ ∂v

∂t = 0

∂ε
∂t − ∂v

∂x = 0

f p(D) ∂ε
∂t − [1+ f p(D)] ∂ε p

∂t = 0

(75)

where the velocity v = ∂u
∂t .

Consider the strain rate dependent damage evolutions, we
have the damage evolution

D = G(εr ) (76)

The rate dependent strain εr is governed by Eq. (27) with the
total strain ε replaced by the elastic strain εe. In this case, the
differentiation of Eq. (72) gives

∂σ

∂x
= (1− D)E0

(
∂ε

∂x
− ∂ε p

∂x

)

− D′E0
∂εr

∂x
(77)

Therefore, the standard first order expression of the govern-
ing equations for the rate dependent system is as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− D)E0

(
∂ε
∂x − ∂ε p

∂x

)
− D′E0ε

e ∂εr
∂x − ρ ∂v

∂t = 0

∂ε
∂t − ∂v

∂x = 0

f p(D) ∂ε
∂t − [1+ f p(D)] ∂ε p

∂t = 0

γa
∂e2
∂t − αn

∂εr
∂t = −(αn + βn)e2

γa
∂e2
∂t + βn

∂εr
∂t − βn

(
∂ε
∂t − ∂ε p

∂t

)
= 0

(78)

where e2 = ∂ε2
∂t .
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According to the theory of partial differential equation
[29], the quasi-linear PDE could be expressed in the follow-
ing form

P(U)
∂U
∂t
+Q(U)

∂U
∂x
= R(U) (79)

Consider the generalized eigenproblem as follows

WT(P − λQ) = 0T ⇒ |P − λQ| = 0 (80)

Eq. (79) is hyperbolic if all the eigenvalues of Eq. (80) are
real, which means the travelling wave occurs within the 1-
D bar. On the other hand, if the complex eigenvalues are
solved for Eq. (80), the wave could not travel within the bar
and the deformation would concentrate in a local part [5,46].
Then the system loses its stability and the strain localization
occurs.

By solving the eigenvalue problem for the rate indepen-
dent system expressed in Eq. (75), we have the following
expression of eigenvalues:
⎧
⎪⎨

⎪⎩

λ = ±√ ρ
∂σ
∂ε

∂σ
∂ε
= (1−D−D′εe)E0

1+ f p(D)

(81)

It is observed from Eq. (81) that the stability of the rate inde-
pendent system Eq. (75) is governed by the tangential stiff-
ness ∂σ

∂ε
. If the material appears to be softening, the negative

tangential stiffness leads to the loss of stability. This con-
clusion also agrees with the celebrated work of Bazant and
Belytschko [2].

The eigenvalues of the the rate-dependent system expres-
sed by Eq. (78) could solved as follows
⎧
⎪⎨

⎪⎩

λ = ±
√

ρ

Ẽ

Ẽ =
(

1−D− β
α+β

D′εe
)

E0

[1+ f p(D)]γ

(82)

A comparison between Eqs. (81) and (82) gives

1− D − β

α + β
D′εe > 1− D − D′εe (83)

Thus we could conclude that the rate-dependent system
expressed by Eq. (78) is more stable than the rate indepen-
dent system expressed in Eq. (75). On the other hand, Eq. (78)
is conditionally stable, which means the instability could be
relieved but not be totally removed by the rate-dependence
model introduced in the present work. The further improve-
ments of the stability is undoubtedly an interesting topic, and
the next step-forward in this direction will be reported in our
forthcoming works.

6.2 Numerical stability analysis

Beside the physical stability, the numerical stability espe-
cially for the time integration scheme is worthwhile to know.

In the present work, the numerical stability is discussed in
the structural level and the material level respectively.

Considering the structural system discretized by the finite
element method, we have the governing ODE as follows
{

Ma + Cv + f int = fext

a = ü, v = u̇
(84)

where M and C are the mass matrix and the damping matrix,
respectively; u, v and a are the displacement vector, the veloc-
ity vector and the acceleration vector, respectively; f int and
fext are the internal force vector and the external force vector,
respectively.

To solve the ODE Eq. (84) in an explicit way, the central
difference method is usually applied. We have the following
scheme [3]

– First partial update of velocity

vn+ 1
2
= vn + 1

2
(tn+1 − tn)an (85)

– Update displacement

dn+1 = dn + (tn+1 − tn)vn+ 1
2

(86)

– Compute acceleration

an+1 =M−1
(

fext
n+1 − f int

n+1 − Cvn+ 1
2

)
(87)

– Second partial update of velocity

vn+1 = vn+ 1
2
+ 1

2
(tn+1 − tn)an+1 (88)

The numerical stability in the structural level is governed
by the following condition [3]

Δt = αNLΔtcrit (89)

The critical time step Δtcrit could be expressed as

Δtcrit = 2

ωmax
≤ min

e

le
ce

(90)

where ωmax is the maximum natural frequency of the lin-
earised system; le and ce are the characteristic length and
wave speed in element e. The phenomenological coefficient
αNL is introduced to account for the destabilizing effect of
nonlinearities. The suggested values are 0.80 ≤ αNL ≤ 0.98.
On the other hand, although the material damage, plasticity
and rate dependency may yield slower wave speed than the
linear elastic material, Belytschko et al [3] suggested that
the critical time step evaluated by Eq. (90) should not be
increased.
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In the material level, the proposed numerical scheme in
Sect. 5 could offer exact simulating results in the elastic load-
ing stage and the unloading stage. Thus the pure nonlinear
loading steps are considered in the discussion of numerical
stability. For simplicity, we still consider the uniaxial tension.
Recall Eq. (63), the plastic strain in the k + 1 step reads

ε
p
k+1 = ε

p
k + θ

p+
k (εk+1 − εk) (91)

Perform Eq. (91) recursively and assume at the starting point
ε1 = ε

p
1 = 0, we have

ε
p
k+1 =

k∑

i=1

θ
p+

i (εi+1 − εi )

≤ θ
p+
k

k∑

i=1

(εi+1 − εi ) = θ
p+
k εk+1 (92)

Expression Eq. (92) indicated that the numerically solved
plastic strain is bounded. Thus the proposed scheme is uncon-
ditionally stable for the computation of plastic strain.

Then we should compute the (εe±
r )k+1 based on Eq. (55).

The stability of Eq. (55) is governed by the transforma-
tion matrix on the right hand side. By solving the eigenvalue
equation of the transformation matrix in Eq. (55), we have
the eigenvalues
⎧
⎨

⎩

λ1 = 1

λ2 = γ±a β±n
(α±n +β±n )(γ±a +β±n Δtk )

∈ (0, 1)
(93)

Hence it is indicated that Eq. (55), with which (εe±
r )k+1 could

be numerically solved, is unconditionally stable.
The last step is to solve the stress by Eq. (66). For the

simple uniaxial tension case, we have

σk+1 = (1− dk+1)E0
(
εk+1 − ε

p
k+1

)

= {
1− g±

[
(r±d )k+1

]}
E0

(
εk+1 − ε

p
k+1

)
(94)

It is observed that all the terms on the RHS of Eq. (94) are
bounded. Thus we find that the proposed numerical scheme
in material level is unconditional stable. All that we need
is to pay attention to the numerical convergence which is
governed by Eq. (69).

In the end, we reach the conclusion that the numerical
stability is governed by the structural level. Thus during the
numerical simulation, the critical time step is only confirmed
by Eq. (89).

7 Numerical tests

To learn the performance of the proposed model, we perform
a series of numerical tests under various of loading condi-

Table 1 Model parameters for uniaxial tests

Tension Compression

Elasticity E0(35GPa), ν(0.18)

Biaxial strength increase N/A fbc
fc

(1.16)

Static random damage λ+(5.3) λ−(7.6)

ζ+(0.6) ζ−(0.6)

ξ+(20) ξ−(10)

Dynamic damage γ+a (12) γ−a (1.5)

n+(0.0002) n−(0.0005)

Plasticity ξ+p (0.6) ξ−p (0.4)

n+p (0.1) n−p (0.1)

Fig. 5 Stress–strain curves under compression

tions. Except particular statement, the time step is chosen to
be 10−6 s in the following numerical simulations.

7.1 Uniaxial tests

Numbers of model parameters (Table 1) are introduced in
the proposed model to describe the properties of concrete.
The bracketed values in Table 1 are chosen for the numerical
simulations of uniaxial tests.

7.1.1 Monotonic static tests

Zeng et al. [50] carried out systematic experiments for the
uniaxial and confined stress-strain performances of concrete.
The mean values and the standard deviations (STD) of stress
strain curves are characterized based on the testing data. On
the other hand, the stochastic damage evolutions adopted in
the present work yield the model results of the mean value
and the standard deviations of stress strain curves. As shown
in Fig. 5, the simulated mean value curve agrees well with
the experimental results. The results of the standard devia-
tion deserve further improvements, although they also show
certain trends of the experimental results.
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Fig. 6 Dynamic increase factor under tension

Fig. 7 Dynamic increase factor under compression

Fig. 8 Stress–strain curves subjected to different strain rates

7.1.2 Uniaxial dynamic behaviors

The numerical results of the dynamic increase factor, which
is defined by the dynamic strength over static strength, are
plotted in Figs. 6 and 7 against the collected existing exper-
imental results [6,8,19,25,41,45,49]. The main trend of the
increase of strength under fast loading is well reproduced.

Fig. 9 Plastic strain of concrete under compression

Fig. 10 Cyclic stress–strain curve under quasi-static loading

Meanwhile, the distributed domain of the testing data is also
banded by the calculated Mean ± 3 × STD curves.

The stress–strain curves under different loading rates are
shown in Fig. 8. The stress strengthening induced by the
material rate-dependency is adequately reproduced. And the
transitions of the stress–strain curves across different loading
rates are smooth and convergent.

7.1.3 Cyclic tests

When subjected to the cyclic or the repeated loading, con-
crete often experiences residual strain, which is described by
the proposed plastic model. The simulated results are plot-
ted in Fig. 9 against the experimental data [7,18]. The total
strain ε and the plastic strain ε p are normalized by the peak
strain ε0 of the total stress–strain curve. And it is indicated
that the model results agree well with the experiential data.
The proposed plastic model works well in reproducing the
residual strain of plain concrete.

The numerical tests for the concrete specimen under uni-
axial cyclic loading are performed. The results are plotted in
Figs. 10 and 11. The typical nonlinear behaviors of concrete,
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Fig. 11 Cyclic stress–strain curve under dynamic loading (ε̇ =
1.0 s−1)

Fig. 12 Biaxial test set-up

Table 2 Model parameters for biaxial tests

Tension Compression

Elasticity E0(37.6GPa), ν(0.20)

Biaxial strength increase N/A fbc
fc

(1.30)

Static random damage λ+(4.92) λ−(7.70)

ζ+(0.30) ζ−(0.30)

Plasticity ξ+p (0.6) ξ−p (0.4)

n+p (0.1) n−p (0.1)

e.g. the strength softening, the residual strain, the degrada-
tion of stiffness, and the stiffness change between compres-
sion and tension, could be easily located on the simulated
curves. And the hysteretic cycles could be also found, which
dissipate energy throughout the unloading-reloading loops.
The other interesting point is shown in the dynamic curve
(see Fig. 11). We could find that the curve is smoothed at the

(a)

(b)

(c)

(d)

Fig. 13 Biaxial tests. a Uniaxial compression, b ε1 : ε2 = 1.0 : 0.1, c
ε1 : ε2 = 1.0 : 0.4, d ε1 : ε2 = 1.0 : 1.0

123



Comput Mech (2015) 55:267–285 281

Fig. 14 Experimental set-up of
RC beam

transition points linking the loading curve and the unloading
curve by the rate-dependency.

7.2 Biaxial tests

The results of biaxial compressive experiments carried out by
Ren and coworkers [33] are simulated to verify the multiaxial
performance of the proposed model. The experimental set-
up for the biaxial tests is shown in Fig. 12. The behaviors of
high performance concrete specimens, with the dimension of
150×150×50 mm, subjected to uniaxial and biaxial loading
were experimentally investigated. The loads are applied by
the top and left loading platens. And the strain rates were set
to be less than 10−5 s−1 to simulate the static loading condi-
tion. To avoid the friction between concrete and steel platen,
two slice of Teflon antifriction sheets are inserted into each
contact surface. The uniaxial and biaxial compressive com-
plete stress–strainstrain curves were obtained under strain
control loading scheme. The tested stress is calculated by the
applied force divided by the sectional area. And the tested
strain the calculated by the relative displacement between
correspond loading platens divided by the length of the spec-
imen.

Due to the lack of reliable biaxial dynamic tests of con-
crete, only the static testing results are simulated in the
present work. The bracketed values in Table 2 are chosen
for the numerical simulations of biaxial tests. We assume
the specimen is uniformed stressed because of the Teflon
antifriction sheets. Thus only a single element is adopted to
simulate the specimen. The simulated average stress–strain
curves for the biaxial tests are shown in Fig. 13. The results
in Fig. 13 are acceptably accurate up to the peak and in the
first stage of the softening branch, but they diverge from the
experimental curve in the late stage of the test. It suggests that
the tail of the adopted average damage evolution functions
in Eq. (35) may deserve further improvement.

7.3 Impact tests of RC beams

Saatci and Vecchio [36] performed experiments for the shear
mechanisms of RC beams in University of Toronto Structural
Laboratories. The experimental program consisted of two
phases: static tests and impact tests. Thereafter, the exper-
imental results were numerically simulated in the work of

Table 3 Simulated specimens

Specimen Transverse reinforcement
ratio (%)

loading pattern

SS0a 0 Static

SS0b 0 Impact

SS1a 0.1 Static

SS1b 0.1 Impact

Table 4 Model parameters

Tension Compression

Elasticity E0(35GPa), ν(0.20)

Biaxial strength increase N/A fbc
fc

(1.16)

Static random damage λ+(4.2) λ−(7.1)

ζ+(0.45) ζ−(0.6)

ξ+(20) ξ−(10)

Dynamic damage γ+a (6) γ−a (1.5)

n+(0.0002) n−(0.0005)

Plasticity ξ+p (0.6) ξ−p (0.4)

n+p (0.1) n−p (0.1)

Ozbolt and Sharma [28]. The experimental set-up is shown
in Fig. 14. The length of the beam is 4,880 mm, while the
span is 3,000 mm. The overhangs were designed to amplify
the inertia effect of the beam under impact loading. The upper
supports were devised to prevent the uplift of the specimen.
All specimens were doubly reinforced with two longitudinal
reinforcing bars (nominal diameter=29.9 mm) on each side.
And the closed stirrups (nominal diameter=7.01 mm) were
used as transverse reinforcement. A 38 mm clear cover was
provided between the beam surface and the steel bars.

Four beams (Table 3) of the experiments are simulated
based on the proposed model. The bracketed values in Table 4
are chosen for the numerical simulations of RC beams. The
drop-weight for the specimens SS0b and SS1b was 211 kg
and the impact velocity is 8.0 m/s. Our numerical simula-
tions are performed based on ABAQUS platform with our
proposed damage model implemented by VUMAT.

The simulated damage contours, which actually indicate
the crack patters of the beams, are shown in Fig. 15. The
shear failure patterns could be clearly observed. The simu-
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Fig. 15 Simulated contours of
tensile damage D+. a SS0a, b
SS0b, c SS1a, d SS1b

Table 5 Simulated maximum reactions for the beams (KN)

Specimen SS0a SS0b SS1a SS1b

Experiment [36] 98 149 305 356

Ozbolt and Sharma [28] 112 158 346 372

Proposed model 101 145 267 313

lated maximum reactions of the beams are shown in Table 5.
Agreements could be found among the experimental results
of Saatci and Vecchio [36], the simulated results of Ozbolt
and Sharma [28] and the simulated results of the proposed
model.

8 Conclusions

Based on the theoretical developments and the numerical
simulations in the present paper, numbers of conclusions
could be given as follows:

– The typical nonlinear properties of concrete, including
the strain softening, the residual strain, the unilateral
effect and the hysteretic cycles, could be properly repro-
duced by the proposed model. Thus the structural nonlin-
ear simulation performed based on the proposed model
may capture the salient features of structural perfor-
mance.

123



Comput Mech (2015) 55:267–285 283

– By giving the scattering region of the testing data, the ran-
domness of concrete is also reproduced by the proposed
model. This aspect still deserve further investigations,
which may develop the appropriate descriptions of the
structural randomness and offer possible methods for the
nonlinear structural reliability analysis.

– An explicit algorithm is developed for the numerical
implementation of the proposed model in structural
analysis. The algorithm tolerates excessive localization
of strain and damage due to its robustness, but its global
convergence requires particular attentions.

– The description of the material rate-dependency in the
present work agrees well with experimental results.
Moreover, a rather interesting point is detected. Although
a linear differential system is proposed to develop the
rate-dependent damage evolution, the nonlinear dynamic
increase of material strength has been achieved due to the
nonlinear coupling between the damage and the plastic-
ity, which still deserves special attention in the upcoming
study.

– Last but not the least, the rate-dependency not only
enhances the material strength but also improves the
material behaviors in a series of details. As shown by
the numerical results, the transition points of the cyclic
stress–strain curves are polished by the rate-dependency.
Moreover, the increase of smoothness for the stress–
strain curves may enhance the convergence of simulation
and relieve the localization of deformation.
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Appendix: Derivations of Stefan effect

In a viscous fluid, the stress σi j is often decomposed into the
pressure p and the shear stress τi j as follows

σi j = τi j − pδi j (95)

where δi j is the Kronecker delta. The constitutive law for the
incompressible Newtonian fluid reads

τi j = μ(vi, j + v j,i ) (96)

where μ is the viscosity and vi is the velocity in the i-th
direction. And the incompressibility reads

vk,k = 0 (97)

The equilibrium without body forces and inertia effects
reads

σi j, j = 0 (98)

Fig. 16 Model problem of Stefan effect

Substituting Eq. (95) into Eq. (98) and using Eqs. (96) and
(97), we have

μvi, j j = p,i (99)

Combining Eqs. (97) and (99) and expanding the tensor
expressions into regular expressions, we have the following
governing equation for the incompressible Newtonian inertia
free flow.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ

(
∂2v1
∂x2

1
+ ∂2v1

∂x2
2
+ ∂2v1

∂x2
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∂2v2
∂x2

1
+ ∂2v2

∂x2
2
+ ∂2v2

∂x2
3

)

= ∂p
∂x2

μ

(
∂2v3
∂x2

1
+ ∂2v3

∂x2
2
+ ∂2v3

∂x2
3

)

= ∂p
∂x3

∂v1
∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0

(100)

The model problem to solve the Stefan effect is shown
in Fig. 16. Two parallel, circular plates with radius R that
are separated by a Newtonian (incompressible) liquid with
viscosity μ and thickness h. The next step is to obtain the
expression of the force Fv applied on the plates by solving
Eqs. (100) with the boundary conditions shown in Fig. 16.

As the model problem is axisymmetric, Eqs. (100) could
be casted into the following form.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ
(

∂2vr
∂r2 + 1

r
∂vr
∂r + ∂2vr

∂z2 − vr
r2

)
= ∂p

∂r

μ
(

∂2vz
∂r2 + 1

r
∂vz
∂r + ∂2vz

∂z2

)
= ∂p

∂z

∂vr
∂r + vr

r + ∂vz
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(101)

[34] further assumes
⎧
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= 0,

∂p
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(102)

Subtstuting Eq. (102) into Eq. (101) yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ∂2vr
∂z2 = dp

dr

∂p
∂z = 0

∂vr
∂r + vr

r + dvz
dz = 0

(103)

123



284 Comput Mech (2015) 55:267–285

The first equation in Eqs. (103) suggests the solution of vr in
the following form

vr = z(z − h)

2μ

dp

dr
(104)

Substituting Eq. (104) into the third equation of Eqs. (103),
we obtain

dvz

dz
= − z(z − h)

2μ

(
d2 p

dr2 +
1

r

dp

dr

)

(105)

An integration from 0 to h with respect to z gives

h3

12μ

(
d2 p

dr2 +
1

r

dp

dr

)

= vz |z=h = ḣ (106)

The solution of Eq. (106) could be expressed as follows

p(r) = 3μḣ

h3 r2 + C1 ln r + C2 (107)

Considering the conditions that p(R) = p0 and p(0) is
bounded, we further have

p(r) = p0 − 3μḣ

h3 (R2 − r2) (108)

By integrating the additional pressure over the plate, we have
the force induced by the viscosity

Fv =
∫ R

0
2πr

[
p0 − p(r)

]
dr = 3μπ R4

2h3 ḣ (109)

Considering the following expressions of stress and strain

σv = Fv

π R2 , ε̇ = ḣ

h
(110)

Eq. (109) further reads

σv = Aε̇, A = αSμ

γ 2
h

(111)

where the shape coefficient αS = 3
2 and the aspect ratio

γh = h
R for circular plates. Although derived considering the

circular plate, Eqs. (111) offers the general form of viscous
coefficients A. And it is also observed that the aspect ratio γh

plays a very important role for the rate-dependency between
stress and strain rate besides the viscosity μ.
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