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Abstract Mortar finite element methods provide a very
convenient and powerful discretization framework for geo-
metrically nonlinear applications in computational contact
mechanics, because they allow for a variationally consistent
treatment of contact conditions (mesh tying, non-penetration,
frictionless or frictional sliding) despite the fact that the
underlying contact surface meshes are non-matching and
possibly also geometrically non-conforming. However, one
of the major issues with regard to mortar methods is the
design of adequate numerical integration schemes for the
resulting interface coupling terms, i.e. curve integrals for
2D contact problems and surface integrals for 3D contact
problems. The way how mortar integration is performed cru-
cially influences the accuracy of the overall numerical proce-
dure as well as the computational efficiency of contact eval-
uation. Basically, two different types of mortar integration
schemes, which will be termed as segment-based integration
and element-based integration here, can be found predomi-
nantly in the literature. While almost the entire existing liter-
ature focuses on either of the two mentioned mortar integra-
tion schemes without questioning this choice, the intention
of this paper is to provide a comprehensive and unbiased
comparison. The theoretical aspects covered here include
the choice of integration rule, the treatment of boundaries
of the contact zone, higher-order interpolation and frictional
sliding. Moreover, a new hybrid scheme is proposed, which
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beneficially combines the advantages of segment-based and
element-based mortar integration. Several numerical exam-
ples are presented for a detailed and critical evaluation of the
overall performance of the different schemes within several
well-known benchmark problems of computational contact
mechanics.

Keywords Contact · Mortar finite element methods ·
Numerical integration · Finite deformations

1 Introduction

Computational contact analysis of strongly nonlinear sys-
tems is a fundamental aspect of many problem classes in engi-
neering and applied sciences. Robust discretization schemes
for such scenarios have been a field of extensive research
over the last years. Today, mortar methods are undoubtedly
the most preferred choice for robust finite element discretiza-
tion in computational contact mechanics. The mortar finite
element approach was originally introduced in the context
of domain decomposition techniques [3] and its main fea-
ture is the imposition of interfacial constraints in a weak
(weighted) sense instead of a strong, pointwise enforcement
as in collocation methods (e.g. node-to-segment approach).
Hence, mortar contact formulations can also be interpreted
as a special kind of segment-to-segment approach [41]. The
first mortar contact formulations can be found in the regime
of small deformations, see [2,24]. These algorithms have
been successfully extended to finite deformations with and
without frictional effects, see e.g. [30,36,37,55]. Equally
important for the overall performance of the resulting contact
formulation is the method of constraint enforcement. Well-
known approaches are the penalty, augmented Lagrange and
Lagrange multiplier method. In this contribution, we start
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Fig. 1 The two most commonly used integration schemes for mortar
methods: segment-based integration (left) and element-based integra-
tion (right)

from a Lagrange multiplier based constraint enforcement,
which initially results in an increased number of primary
unknowns but guarantees the exact fulfillment of the discrete
contact constraints. The disadvantage of an increased system
size can be avoided by employing so-called dual Lagrange
multiplier shape functions based on a special biorthogonal-
ity condition, see [31,32]. The contact constraints are then
equivalently reformulated within so-called nonlinear com-
plementarity functions (NCP), and the entire nonlinear sys-
tem is solved using a semi-smooth Newton method [4,16].
Thus, our approach yields a solution algorithm that is closely
related, yet not entirely identical, to the one resulting from the
classical augmented Lagrange formulation [1,28] in combi-
nation with generalized Newton methods.

The mortar-typical weak definition of the contact con-
straints requires an integration of quantities of both involved
bodies over the discrete contact surface representation of one
of them (so-called slave side). Considering the most com-
monly used first-order elements, it becomes obvious that the
locally supported shape functions have kinks at the element
nodes and edges. Therefore, the in general non-matching
contact interfaces of the bodies inevitably lead to a numeri-
cal integration over discontinuities. The evaluation of these
integrals is one of the main challenges of mortar methods.
The most intuitive way to perform the integration is shown in
the left subfigure of Fig. 1 and is based on subdividing each
slave side contact element into segments having no discon-
tinuities within their domain, see for example [29,35]. This
procedure will be termed segment-based integration in the
following and can be carried out for two-dimensional prob-
lems with acceptable computational costs. However, it is both
intricate and costly for the three-dimensional case. Due to the
high complexity of implementation and the computational
cost of evaluation, a second commonly employed integration
method was suggested in [10,11] and is schematically shown
in the right subfigure of Fig. 1. Here, the occurring discon-
tinuities are ignored, and one tries to minimize the resulting
integration error by employing high-order integration rules.
Due to its elementwise procedure without subdividing the
element, this method is termed element-based integration.

Over the last years, the research focus shifted from the
fundamentals of mortar methods to special applications and
improvements of these methods, such as smoothing pro-
cedures [48] and isogeometric analysis [6,7,45,46]. How-

ever, all of these further investigations postulate just one
of the introduced integration methods as algorithmic basis
without considering possible drawbacks. To the best of the
authors’ knowledge, there exists only one previous contribu-
tion, which at least gives a short comparison of the two major
integration methods [9]. However, the focus there is mainly
on a simple two-dimensional patch test problem, and mortar
methods are not discussed. Therefore, the idea and new sci-
entific contribution of this paper is to finally provide a fair
and objective comparison of the two most commonly applied
integration approaches in the context of mortar contact for-
mulations with respect to the choice of proper integration
rules, their extension to quadratically interpolated elements,
their applicability for frictional problems as well as their fun-
damental properties in terms of accuracy and computational
efficiency. In addition, a novel combination of the two meth-
ods is suggested, which unifies the best features of both while
eliminating their shortcomings.

The paper is organized as follows: in Sect. 2, we provide a
fundamental description of the two body contact problem in
the context of finite deformation kinematics. The evaluation
of the mortar integrals is explained and illustrated in detail
for both integration methods in Sect. 3. In Sect. 4, a theoreti-
cal comparison of the two integration methods is given with
respect to some important aspects of contact problems. This
theoretical discussion will be evaluated and complemented
with quantitative and qualitative numerical results by means
of various examples in Sect. 5. Finally, some conclusions are
given in Sect. 6.

2 Problem setting

Throughout this paper, finite deformation unilateral contact
problems of two elastic bodies in 3D space are considered.
Thus, the underlying mechanical foundation consists of the
initial-boundary value problem (IBVP) of nonlinear elasto-
dynamics, the classical Karush–Kuhn–Tucker (KKT) condi-
tions of non-penetration and the frictional contact constraints
according to Coulomb’s law. The two-dimensional case, fric-
tionless unilateral contact as well as fully tied contact, also
commonly referred to as mesh tying, are contained in our gen-
eral problem statement as special cases, and will be studied in
some of the numerical examples in Sect. 5. Moreover, a gen-
eralization to multiple bodies and self contact, although not
considered here, would be rather straightforward and mostly
a matter of efficient search algorithms, see e.g. [53,54].

2.1 Strong formulation

The domains Ω
(i)
0 ⊂ R

3 and Ω
(i)
t ⊂ R

3, i = 1, 2, represent
two separate bodies in the reference and current configura-
tion, respectively. To allow for the usual Dirichlet and Neu-
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mann boundary conditions as well as contact interaction, the
surfaces ∂Ω

(i)
0 are divided into three disjoint subsets: Γ

(i)
u is

the Dirichlet boundary with prescribed displacements û(i),
Γ

(i)
σ is the Neumann boundary with given surface tractions

t̂
(i)
0 and Γ

(i)
c is the potential contact surface. Similarly, the

spatial surface descriptions ∂Ω
(i)
t are split into γ

(i)
u , γ (i)

σ and
γ

(i)
c . Retaining a customary nomenclature in contact mechan-

ics, Γ
(1)
c is referred to as slave surface and Γ

(2)
c as master

surface.
Based on the displacement vector u(i) = x(i) − X(i),

where reference and current configuration are denoted as
X(i) and x(i), respectively, the material deformation gradi-

ent F(i) = ∂x(i)

∂ X(i) can be introduced as fundamental nonlin-
ear deformation measure. Material nonlinearities are exem-
plarily considered by assuming existence of an isotropic
hyperelastic strain energy Ψ , with S = ∂Ψ

∂E and C = ∂2Ψ
∂E2 .

Herein, C is the fourth-order constitutive tensor, introducing
a possibly nonlinear relationship between the second Piola–
Kirchhoff stress tensor S and the Green–Lagrange strain ten-

sor E = 1
2

(
FT F − I

)
. The first Piola–Kirchhoff stress

tensor P is determined via the relationship P = FS.
On each subdomain Ω

(i)
0 the initial boundary value prob-

lem of finite deformation elastodynamics needs to be satis-
fied, viz.

DivP (i) + b̂
(i)
0 = ρ

(i)
0 ü(i) in Ω

(i)
0 × [0, T ], (1)

u(i) = û(i) on Γ
(i)
u × [0, T ], (2)

P (i) N(i) = t̂
(i)
0 on Γ (i)

σ × [0, T ], (3)

u(i)(t = 0) = û(i)
0 in Ω

(i)
0 , (4)

u̇(i)(t = 0) = ˆ̇u(i)
0 in Ω

(i)
0 . (5)

The contact constraints in normal direction are given in form
of the well-known KKT conditions, while frictional sliding
is formulated according to Coulomb’s law. Both sets of con-
ditions are stated here as follows:

gn ≥ 0, pn ≤ 0, pn gn = 0 on γ (1)
c × [0, T ], (6)

Φ := ‖tτ‖ − F|pn| ≤ 0, vτ,rel + β tτ = 0,

β ≥ 0, Φβ = 0 on γ (1)
c × [0, T ]. (7)

Here, gn represents the nonlinear gap function, which is a fun-
damental measure for proximity and penetration of the two
contacting bodies. Typically, the gap function is determined
by the so-called closest-point projection (CPP) procedure,
see e.g. [19] for a comprehensive review. In addition, a local
coordinate system consisting of the normal vector n and two
tangent vectors τ ξ and τ η is defined on the slave surface,
with the normal and tangential components of the slave side
contact traction t(1)

c being denoted as pn and tτ , respectively.

In (7), ‖ · ‖ denotes the L2-norm in R
3, F ≥ 0 is the friction

coefficient and β ≥ 0 is a scalar parameter. Finally, vτ,rel is
the relative tangential velocity of slave and master surfaces
and thus the primary kinematic quantity for frictional sliding
in tangential direction.

2.2 Weak formulation

For deriving a weak variational formulation, the solution
spaces U (i) and weighting spaces V(i) are defined as

U (i) =
{

u(i) ∈ H1(Ω) | u(i) = û(i) on Γu

}
, (8)

V(i) =
{
δu(i) ∈ H1(Ω) | δu(i) = 0 on Γu

}
. (9)

Moreover, the Lagrange multiplier vector λ = −t(1)
c , which

represents the negative slave side contact traction t(1)
c and

is supposed to enforce the contact constraints (6) and (7), is
chosen from the convex cone M(λ) ⊂ M given by

M(λ) =
{
μ ∈ M | 〈μ, v〉

γ
(1)
c

≤ 〈Fλn, ‖vτ‖〉γ (1)
c

,

v ∈ W with vn ≤ 0
}

. (10)

Herein, 〈·, ·〉
γ

(1)
c

stands for the scalar or vector-valued duality

pairing between H−1/2 and H1/2 on γ
(1)
c . Moreover, M is

the dual space of the trace space W(1) of V(1) restricted
to γ

(1)
c , i.e. M = H−1/2(γ

(1)
c ) and W(1) = H1/2(γ

(1)
c ),

where M and W(1) denote single scalar components of the
corresponding vector-valued spaces M and W . Thus, the
definition of the solution cone for the Lagrange multipliers
in (10) satisfies the conditions on λ of the Coulomb friction
law in a weak sense.

Based on these considerations, the weak saddle point type
formulation follows as: Find u(i) ∈ U (i) and λ ∈ M(λ)

such that

− δWkin,int,ext (u(i), δu(i)) − δWco(λ, δu(i)) = 0

∀ δu(i) ∈ V (i), (11)

δWλ(u(i), δλ) ≥ 0

∀ δλ ∈ M(λ). (12)

Herein, the kinetic contribution δWkin as well as the internal
and external contributions δWint and δWext to the overall
virtual work are defined as usual in nonlinear solid mechanics
and thus a detailed description is omitted here. Instead, only
the contact contribution δWco and the weak constraints δWλ,
including non-penetration and frictional sliding conditions,
are given in full length as

− δWco =
∫

γ
(1)
c

λ(δu(1) − δu(2) ◦ χ) dA, (13)
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δWλ =
∫

γ
(1)
c

(δλn − λn) gn dA−
∫

γ
(1)
c

(δλτ − λτ ) vτ,rel dA,

(14)

where χ : γ
(1)
c → γ

(2)
c defines a suitable mapping from

slave to master side of the contact surface. This mapping is
necessary since γ

(1)
c and γ

(2)
c cannot be guaranteed to be

identical for unilateral contact but may rather be geometri-
cally non-conforming. Note that the integral expressions in
the coupling bilinear forms δWco and δWλ would need to be
replaced by duality pairings 〈·, ·〉

γ
(1)
c

in order to be absolutely
mathematically concise. However, the integral diction in (13)
and (14) is preferred here due to readability. The equivalence
of the strong pointwise conditions given in (6) and (7) and
the corresponding variational inequalities in (14) can readily
be proven, see e.g. [50].

2.3 Mortar finite element discretization

For the spatial discretization of the unilateral contact prob-
lem (11) and (12), standard isoparametric finite elements
with first-order and second-order interpolation are employed.
This defines the usual finite dimensional subspaces U (i)

h and

V(i)
h being approximations of U (i) and V (i), respectively.

With the focus being on the finite element discretization of
the contact terms here, only the displacement and Lagrange
multiplier interpolations on Γ

(i)
c,h will be considered in the

following, with the subscript (·)h referring to a spatially dis-
cretized quantity. The displacement interpolation is given as

u(1)
h |

Γ
(1)

c,h
=

n(1)∑
k=1

N (1)
k d(1)

k , u(2)
h |

Γ
(2)

c,h
=

n(2)∑
l=1

N (2)
l d(2)

l . (15)

Herein, the total number of slave nodes on Γ
(1)
c,h is n(1), and

the total number of master nodes on Γ
(2)
c,h is n(2). Discrete

nodal displacements are given by d(1)
k and d(2)

l . The shape

functions N (1)
k and N (2)

l are defined with respect to the usual
finite element parameter space, commonly denoted as ξ (i) =
(ξ (i), η(i)) for three-dimensional problems (i.e. 2D contact
interfaces).

Discretization of the Lagrange multiplier vector λ is based
on a discrete Lagrange multiplier space Mh(λh) being an
approximation of M(λ). All details concerning the choice
of Mh(λh), and especially concerning the two most com-
mon families of standard and dual Lagrange multipliers, can
be found in the abundant literature on this topic. Exemplar-
ily, the reader is referred to [35,36] for standard Lagrange
multiplier interpolation and [17,49] for dual Lagrange mul-
tiplier interpolation within 3D mortar contact formulations.
For this contribution, it is of little importance which of the
two variants is employed and we will actually show numer-

ical examples for both in Sect. 5. Thus, only a very general
notation is given at this point:

λh =
m(1)∑
j=1

Φ j λ j , (16)

with the (standard or dual) shape functions Φ j and the dis-
crete nodal Lagrange λ multipliers λ j . The total number of
slave nodes carrying additional Lagrange multiplier degrees
of freedom is m(1). Typically for mortar methods, every slave
node also serves as coupling node, and thus in the majority
of cases m(1) = n(1) will hold. While this is also assumed
for all applications in this paper, we nevertheless point out
that it may be favorable to chose m(1) < n(1) in certain cases,
e.g. in the context of second-order finite element interpola-
tion, see [31,37,51].

Inserting the finite element discretizations (15) and (16)
into the weak formulation (13) allows to define the usual
mortar matrices D and M with nodal blocks

D[ j, k] = D jk I3 =
∫

γ
(1)
c,h

Φ j N (1)
k dγ I3 ,

j = 1, . . . , n(1), k = 1, . . . , n(1) , (17)

M[ j, l] = M jl I3 =
∫

γ
(1)
c,h

Φ j (N (2)
l ◦ χh) dγ I3,

j = 1, . . . , n(1), l = 1, . . . , n(2), (18)

with the identity I3 ∈ R
3×3. Moreover, χh : γ

(1)
c,h → γ

(2)
c,h

defines a discrete approximation of the actual contact map-
ping χ , see e.g. [8,33] and Sect. 3.

Similarly, space-discretized forms of the weak non-
penetration and frictional sliding constraints can be derived
by inserting (15) and (16) into (14). This yields the so-called
nodal weighted gaps g̃ j as well as the nodal relative tangen-
tial velocities (ṽτ,rel) j , i.e.

g̃ j = n j ·
⎡
⎣

n(2)∑
l=1

M[ j, l]x̄(2)
l −

n(1)∑
k=1

D[ j, k]x̄(1)
k

⎤
⎦ , (19)

(ṽτ,rel) j = (I − n j ⊗ n j )

·
⎡
⎣

n(2)∑
l=1

Ṁ[ j, l]x̄(2)
l −

n(1)∑
k=1

Ḋ[ j, k]x̄(1)
k

⎤
⎦ . (20)

Herein, n j is the discrete nodal normal vector at slave node j ,

and x̄(1)
k and x̄(2)

l represent the discrete nodal coordinates on
slave and master side, respectively. The discrete relative tan-
gential velocities (ṽτ,rel) j contain time derivatives of mortar
matrices, which are discretized in time by introducing a local
implicit time stepping procedure of backward Euler type:
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Ḋ[ j, k] ≈ D[ j, k](tn) − D[ j, k](tn−1)

Δt
,

Ṁ[ j, l] ≈ M[ j, l](tn) − M[ j, l](tn−1)

Δt
, (21)

with the discrete time increment Δt = tn − tn−1. This formu-
lation allows to satisfy the fundamental requirement of frame
indifference of the kinematic measures associated with fric-
tional sliding, see e.g. [13,55]. Multiplying (21) with the time
increment Δt yields the so-called discrete nodal slip incre-
ment

(ũτ,rel) j = (I − n j ⊗ n j )

·
⎡
⎣

n(2)∑
l=1

(
M[ j, l](tn) − M[ j, l](tn−1)

)
x̄(2)

l (22)

−
n(1)∑
k=1

(
D[ j, k](tn) − D[ j, k](tn−1)

)
x̄(1)

k

⎤
⎦ . (23)

All details concerning these derivations have been presented
in our previous contributions in [13,29,30].

Here, we directly proceed with the final semi-discrete
problem formulation resulting from mortar finite element
discretization, viz.

r := fkin(d̈) + fint (d) − fext + fc(d,λ) = 0, (24)

g̃ j ≥ 0 λn, j ≥ 0, λn, j g̃ j = 0, j = 1, . . . , n(1), (25)

Φ j := ‖(λτ ) j‖ − F|(λn) j | ≤ 0,

(ṽτ,rel) j + β j (λτ ) j = 0, β j ≥ 0 , Φ jβ j = 0,

j = 1, . . . , n(1). (26)

where λn, j and λτ, j are the normal and tangential compo-
nents of the discrete nodal Lagrange multiplier vector λ j .
The nonlinear force residual r comprises contributions from
kinetic, internal and external forces fkin(d̈), fint (d) and fext

as well as contact forces fc(d,λ), which are based on the mor-
tar matrices D and M. The discrete contact conditions also
depend on D and M, as can be seen from (19) and (20). Obvi-
ously, the essential computational task associated with mortar
finite element discretizations is the actual numerical integra-
tion of the mortar matrices D and M defined in (17) and (18).
All details on such numerical integration procedures can be
found in the main part of this paper, i.e. in Sect. 3.

2.4 Global solution algorithm

The semi-discrete problem formulation in (24)–(26) is even-
tually discretized in time using implicit time integration
schemes well-known from structural dynamics, such as the
generalized-α method or the generalized energy-momentum
method (GEMM), see e.g. [5,20,21,40]. A velocity-update
algorithm as proposed in [22] can be applied to assure both

Cnj

active

inactive

Cnj = 0

g̃j

znj

Fig. 2 Nodal NCP function Cnj for the normal direction (with cn = 1).
The constraints are fulfilled for Cnj = 0

energy conservation and exact constraint enforcement in
the context of contact interaction, while however sacrificing
second-order accuracy in time.

To solve the introduced contact-specific inequality con-
straints, which represent an additional source of nonlinearity
apart from geometrical and material nonlinearities, we follow
the idea of so-called primal-dual active set strategies and split
the set of all slave nodes S into an active set A and an inac-
tive set I. Furthermore, frictional contact requires to split the
active set A into sets of stick nodes H and slip nodes G. These
sets then allow for a reformulation of the discrete contact and
friction laws in (25) and (26) within equality constraints for
the corresponding nodal sets. To solve the final nonlinear
(and non-smooth) contact problem within each time step by
Newton–Raphson iterations, we re-interpret the primal-dual
active set strategy as semi-smooth Newton method and intro-
duce so-called nodal nonlinear complementarity (NCP) func-
tions, which are a mathematically equivalent replacement of
the two sets of inequality constraints in (25) and (26). The
NCP function for the normal constraints in (25) is exemplar-
ily shown in Fig. 2 and reads

Cnj (λ j , d) = λnj − max(0, λnj − cn g̃nj ), cn > 0. (27)

The normal contact constraints are exactly fulfilled if

Cnj (λ j , d) = 0. (28)

Here, it becomes obvious that the complementarity parame-
ter cn does not affect the accuracy of results, but only influ-
ences the convergence behavior of the semi-smooth Newton
method. For the tangential constraints in (26) we employ a
formulation introduced in [18] and extended to finite defor-
mation kinematics in [13]. A simplified 2D version of the
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Cτj = 0

slip

slip

stick

Cτj

zτj

ũτj

Fig. 3 Nodal NCP function Cτ j for the tangential direction (with cτ =
1). The constraints are fulfilled for Cτ j = 0

NCP function is illustrated in Fig. 3, and the full 3D version
reads

Cτ j (λ j , d) = max(F(λn, j − cn g̃nj ), ||λτ j + ct (ũτ,rel) j ||)λτ j

− F max(0, λn, j − cn g̃nj )(λτ j + ct (ũτ,rel) j ),

cn, ct > 0. (29)

As has been the case for the NCP function corresponding
to the non-penetration constraint (28), the solution of the
tangential constraints can be equivalently expressed as

Cτ j (λ j , d) = 0. (30)

Again, the complementarity parameters cn and cτ do not
have an influence the accuracy of results, but merely on the
convergence behavior of the semi-smooth Newton method.

For the sake of brevity, we do not discuss the resulting
global solution algorithm here, but the interested reader is
referred to the numerous recent contributions on this topic,
see e.g. [13,15,17,29,30]. A mathematically more rigor-
ous introduction to semi-smooth Newton methods for con-
strained optimization problems can be found in [1,4,16,38].

The major advantage of the proposed solution algorithm
is that all sources of nonlinearities, i.e. finite deformations,
nonlinear material behavior as well as frictional contact itself,
can be treated within one single iterative scheme. Numeri-
cal investigations, see e.g. [17,18,30,31], have shown that
the semi-smooth Newton approach allows for a very effi-
cient treatment of small deformation and finite deformation
contact problems, also including frictional sliding. Even for
relatively large step sizes and fine contacting meshes, the
correct active set is usually found after only a few Newton
steps. Once the sets remain constant, quadratic convergence

is obtained in the limit due to the underlying consistent lin-
earization.

3 Mortar integration

Accurately and efficiently computing the mortar matrices is
one of the main challenges of mortar contact algorithms. This
is due to the fact that evaluating the second mortar matrix M,
and thus also the weighted gap g̃n and the relative tangential
velocity ṽτ,rel , requires an integration over the slave contact
surface with an integrand containing quantities from both
master and slave side. In the case of non-matching meshes,
the integrand represents a non-smooth function which can-
not be evaluated exactly by using standard Gauss rules. This
non-smoothness stems from the locally supported Lagrange
polynomials on master and slave side having kinks at the
respective element nodes and edges. Over the last years, two
commonly used integration schemes have been established
to handle the problems mentioned above.

The first method is named segment-based integration
scheme in the following and its general idea was first out-
lined for the classical segment-to-segment contact formula-
tions [41,56]. Its application the context of 3D mortar con-
tact formulations was first proposed and elaborated in great
detail in [24,34]. Slight adoptions and extensions can for
example be found in [30,33,35–37]. The method is based on
the prevention of all possibly occuring discontinuities in the
integrand of mortar matrix M by creating smooth integrable
segments (see again Fig. 1). However, it causes consider-
able effort for implementation and computation. The second
method was firstly introduced in [10,11] and has been used
in many different contact specific contributions since then,
e.g. in [6,46,47]. In contrast to the segment-based method, it
completely ignores the occuring discontinuities and accepts
that the integration error may therefore increase signifi-
cantly. Nevertheless, the implementation effort and espe-
cially the associated computational costs are significantly
reduced. This is achieved by a slave element-wise evaluation
of the mortar integrals, which motivates the denomination as
element-based integration used in the following.

To our knowledge, all available contributions on mortar
based contact formulations just propagate one of the two
ideas without discussing possible shortcomings. Thus, this
is the first article that provides a fair and objective compari-
son of these two methods with regards to both accuracy and
computational efficiency. To establish a well-founded basis
for such a comparison, the actual process of performing mor-
tar integration is presented for both methods in the following.

3.1 Segment-based mortar integration

Keeping in mind the idea of integrating just smooth contri-
butions to mortar matrix M over the slave side, we require
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Fig. 4 Main steps of the
segment-based integration
scheme: construct an auxiliary
plane (top left), project slave
and master nodes onto the
auxiliary plane (top right),
perform polygon clipping
(bottom left), perform Delaunay
triangulation and integrate over
all created triangular integration
cells (bottom right)

proj. master
proj. slave
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enalpyrailixuaenalpyrailixua

enalpyrailixuaenalpyrailixua

x(1)
0 x(1)

0

n0 n0
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precise information concerning the position of the involved
discontinuities of the integrand. This information is obtained
by working with pairs of one slave and master element each.
In a first step, both slave and master nodes are projected onto
an auxiliary plane. Then, a polygon clipping algorithm is
applied in order to determine the overlap of the slave and
master element pair, i.e. the region where the integrands in
(17) and (18) are C1-continuous. The whole process is illus-
trated in Fig. 4 and summarized in the algorithm below. Of
course, the information which slave and master element pairs
have to be considered must first be obtained by an efficient
contact search algorithm, see e.g. [53,54].

Algorithm 1

1. Construct an auxiliary plane for numerical integration
based on the slave element center x(1)

0 and the corre-
sponding unit normal vector n0.

2. Project all n(1)
e slave element nodes x(1)

k , k = 1, . . . , n(1)
e

along n0 onto the auxiliary plane to create auxiliary slave
nodes x̃(1)

k .

3. Project all n(2)
e master element nodes x(1)

l , l = 1, . . . , n(2)
e

along n0 onto the auxiliary plane to create the projected
master nodes x̃(2)

l .
4. Perform polygon clipping in the auxiliary plane to find the

overlapping region of projected slave and master element.
Clipping algorithms are illustrated in more detail in [12].

5. Perform a decomposition of the clip polygon to define
easy-to-integrate subdomains which will be used for
numerical integration and are therefore called integration
cells. If no geometrical subdivision is performed, then the
polygon itself represents the sole integration cell.

6. Define nint integration points with coordinates ξ̃ g, g =
1, . . . , nint on each integration cell and find the corre-
sponding integration points ξ (1)

g and ξ (2)
g on the slave and

master element by an inverse mapping.

7. Perform numerical integration of D[ j, k] and M[ j, l], j =
1, . . . , n(1)

e , k = 1, . . . , n(1)
e and l = 1, . . . , n(2)

e on all
integration cells

D[ j, k] =
ncell∑

cell=1

⎛
⎝

nint∑
g=1

wgΦ j (ξ
(1)
g )N (1)

k (ξ (1)
g )Jcell(ξ

(1)
g )

⎞
⎠,

M[ j, l] =
ncell∑

cell=1

⎛
⎝

nint∑
g=1

wgΦ j (ξ
(1)
g )N (2)

l (ξ (2)
g )Jcell(ξ

(1)
g )

⎞
⎠,

where Jcell , cell = 1, . . . , ncell represents the integra-
tion cell Jacobian determinant and ncell is the number of
integration cells. Furthermore, n(i)

e is the number of the
displacement nodes associated with the slave or master
element.

The decomposition mentioned in step 5 is carried out to
create integration cells with well-known predefined integra-
tion rules. To our knowledge, all contributions in the available
literature that employ segment-based integration are using
some kind of triangulation to create triangular subdomains.
Here, the most efficient method is Delaunay triangulation as
illustrated exemplarily in Fig. 4. Some other possibilities to
create integration cells will be discussed in Sect. 4.1.

3.2 Element-based mortar integration

The element-based approach employs no information about
kinks of the mortar matrix integrands due to master side nodes
and edges. Therefore, no projection of the master nodes to
a slave-related integration domain is required. However, in
contrast to the segment-based approach, one may have to
deal with integration point projections onto nodes or edges
shared by several master elements. Such a projected integra-
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tion point has to be uniquely assigned to one of the corre-
spondent master elements. However, with the master element
displacement shape functions having no strong discontinu-
ities at nodes or edges, the master element to which boundary
or node the integration point is assigned can be chosen arbi-
trarily then. The entire integration procedure for the element-
based method is summarized below for one slave element and
nm corresponding master elements determined by a search
algorithm.

Algorithm 2

1. Define nint integration points ξ
(1)
int on the slave element

parameter space ξ (1).
2. Try to map ξ (1)

g from the slave element to the master ele-

ments to get ξ (2)
g . If the projection algorithm does not

converge for any involved master element or if the inte-
gration points lies outside all master element parameter
spaces, then this integration point is sorted out.

3. Perform numerical integration on the entire slave element
of D[ j, k] and M[ j, l], j = 1, . . . , n1

e , k = 1, . . . , n(1)
e

and l = 1, . . . , ñ(2)
e

D[ j, k] =
nint∑
g=1

wgΦ j (ξ
(1)
g )N (1)

k (ξ (1)
g )J (ξ (1)

g ),

M[ j, l] =
nint∑
g=1

wgΦ j (ξ
(1)
g )N (2)

l (ξ (2)(ξ (1)
g ))J (ξ (1)

g ),

where J represents the Jacobian determinant of the map-
ping from physical space to slave element parameter
space. In addition, ñ(2)

e describes the number of master
nodes associated with all involved master elements.

It can be seen that the slave element parameter space
equals the integration parameter space. Thus, no mapping
into an auxiliary space is required.

4 Theoretical comparison of the integration schemes

In this section, the two introduced integration methods are
compared with regards to their most important properties.
Hence, the advantages and the drawbacks of each scheme
are clearly demonstrated and discussed. Remember that all
following statements refer to three-dimensional contact prob-
lems.

4.1 Choice of integration rule

The first issue we want to highlight is the choice of a suit-
able integration rule. In principle, there are two different

Fig. 5 Triangulation methods: center-based triangulation (left), Delau-
nay triangulation (right)

approaches to perform a discrete numerical integration. First,
the position and the weighting of each integration point
could be calculated for each integration domain individu-
ally by using a moment-fitting related approach [26,27,52]
or by employing methods based on the divergence theorem
[42–44]. The second possibility is to use simple predefined
integration rules, for example Gauss-Legendre quadrature or
Gauss-Lobatto quadrature. Due to the fact that using some
algorithm for calculating the integration points for every inte-
gration domain individually requires a significantly higher
implementational and computational effort than using prede-
fined rules, only predefined quadrature rules are considered
in the following.

For the segment-based integration scheme the domain
resulting from the polygon clipping procedure (Algorithm 1,
step 4) is in general an arbitrary convex polygon. Thus, adopt-
ing common quadrature rules first requires some preparation
step, in which the polygon is divided into simply shaped
domains. The preferred methods for that are triangulation
approaches, especially Delaunay triangulation [23] or center-
based triangulation (both shown in Fig. 5). As can be seen,
using Delaunay triangulation creates the smallest possible
number of triangular integration cells, i.e. N − 2 triangular
cells for a convex polygon with N vertices. Here, it should be
noted that the Delaunay triangulation is not a unique proce-
dure. Therefore, small errors could occur if different-shaped
integration cells are created within one time step. However,
in all our simulations we could not detect any negative effect
by employing the Delaunay triangulation. Therefore, it is the
best triangulation approach for the segment-based integra-
tion scheme. However, it would also be possible to subdi-
vide the polygon into quadrilateral and triangular integration
cells by adopting the so-called ear-clipping algorithm [25]. In
our experience, however, this may lead to strongly distorted
quadrilaterals whose Jacobians become rational. Thus, they
cannot be integrated with the desired accuracy by a polyno-
mial based integration rule (e.g. any kind of Gauss quadra-
ture). All in all, the preferred procedure is to subdivide the
polygon into triangular cells having a constant Jacobian by
Delaunay triangulation and to then employ standard Gauss-
Legendre quadrature for these triangles. However, note that
the highest polynomial degree that can be computed exactly
by the integration rule should be chosen somewhat higher
than the product of shape functions on slave and master side
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Fig. 6 Test case to analyze possible integration errors due to weak discontinuities
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Fig. 7 Two characteristic problem settings of the element-based integration associated with the boundary of the contact interface. Dropping edge
situation (left) and small contact search parameter (right)

would indicate. This is due to the nonlinearity of the pro-
jections between auxiliary plane and actual contact surfaces.
Based on our experiences, we suggest to use seven Gauss
points per triangular integration cell, which are able to exactly
calculate a polynomial degree of 5.

The choice of integration rule for the element-based inte-
gration method is simply based on the shape of the slave
element, because the slave element parameter space equals
the integration domain parameter space. However, for the
element-based scheme the choice of the number of integra-
tion points is an extremely crucial issue. In many published
articles, the authors aim at overcoming the negative influence
due to the non-smoothness of the integrand with a very high
number of integration points [10,11]. To analyze the results
of using polynomial based Gauss quadrature rules for inte-
grands with weak discontinuities occuring within the contact
boundary, a simple academic test case is provided, see Fig. 6.
As can be seen, the set of functions F1(x) are piecewise linear
functions in x ∈ [−1, 1] having a kink at k with F1(k) = 1
and the boundary values F1(−1) = F1(1) = 0. Varying the
kink position from −1 to 1 and performing the numerical
integration with 2–5 Gauss–Legendre points gives the error
plot also shown in Fig. 6. It is obvious that the maximum inte-
gration error indeed decreases with an increasing integration
point number. Nevertheless, the integration error strongly
depends on the kink position. Therefore, using an increas-
ing integration point number does not necessarily reduce the

occuring error for any kink position. In other words, for cer-
tain kink positions Gauss rules with few integration points
produce smaller errors than much higher Gauss point num-
bers. Having a closer look at the well-known Gauss point
positions, one notices that the kink locations with the largest
integration errors actually are the integration point positions.
This interesting result can be also transferred to the three-
dimensional case. In addition, when having a fine mesh for
the master surface and a coarse mesh for the slave surface,
the danger of kinks occuring in the integration domain of
a slave element significantly increases. Thus, all in all, the
element-based integration method is very sensitive to the
employed integration point number and also to the mesh size
ratio between slave and master surface. Therefore, defining a
suitable integration point number is very problem-dependent
and requires a certain amount of experience, which is a very
crucial drawback compared to the segment-based method.

4.2 Boundary problems

In the following subsection, possible problems at the bound-
ary of the contact interface are discussed, which only arise
for the element-based integration scheme.
There exist two characteristic problem settings associated
with the boundary of the contact interface, see Fig. 7. Both
problem settings share the fact that they introduce strong dis-
continuities (i.e. jumps) in the integrand of mortar matrix M
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in addition to the usual weak discontinuities (i.e. kinks). This
significantly increases the requirements on the integration
rule in terms of accuracy, and thus causes large integration
errors in general.

The two characteristic problem settings shown in Fig. 7 are
now analyzed in more detail. For the sake of simplicity, both
scenarios are illustrated for two-dimensional mortar contact,
but all following considerations can be directly transferred
to the three-dimensional case. The first problematic setup is
a dropping edge problem, see the left subfigure of Fig. 7.
Here, parameter t defines the partition of the slave element
which has a zero contribution to the integrand. At the posi-
tion where the outermost master node l is projected onto the
slave element, the integrand jumps from zero to a non-zero
value. Thus, a strong discontinuity in the expression to be
numerically integrated occurs. A possible remedy in order
to avoid excessive integration errors for the element-based
scheme will be proposed at the end of this subsection. Obvi-
ously, the segment-based approach does not encounter the
described problem, since no contact segments are detected
in the non-overlapping partition t .

Another contact scenario which produces a strong dis-
continuity is shown in the right subfigure of Fig. 7. The
sketch illustrates two boundary meshes being located pretty
near to each other and potentially coming into contact. The
dashed lines represent the bounding boxes which are typi-
cally used for search algorithms. The specific search algo-
rithms employed here are not presented in detail, but the
reader is exemplarily referred to [53] instead. Only if the
bounding boxes of a slave element and a corresponding mas-
ter element overlap, then the numerical integration of the
mortar matrices will be carried out for these elements. Thus
the numerical integration will not be carried out for the mas-
ter element containing the nodes l − 1 and l. The projection
of the integration points from slave element to the master is
represented by arrows. Here, the red arrow represents a pro-
jection onto the master element that is not considered by the
search algorithm. Due to this, the integration point associ-
ated with the red arrow has a zero contribution to the mortar
integrals. This again leads to a strong discontinuity in the inte-
grand. In contrast to the dropping edge situation, however,
this problem can be avoided by an increased search radius.
Thus, it does note pose a critical limitation to the accuracy
of the element-based integration and will not be considered
further.

Nevertheless, the dropping edge situation described above
remains to be taken care of. Intuitively, eliminating the impact
of strong discontinuities in an integral expression could be
achieved by a significantly increased number of integration
points. But as will be shown by the numerical results in
Sect. 5, this would require so many integration points that
the element-based integration scheme becomes very ineffi-
cient. Thus, a different solution is needed. Our approach to
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Fig. 8 Subdividing a second-order contact element for the segment-
based integration scheme. Exemplarily, a 9-node quadrilateral element
is split into four 4-node quadrilateral subelements, to which the segment-
based Algorithm 1 can then be applied nearly unchanged

handle such boundary problems will be termed boundary-
segmentation in the following. Herein, the segment-based
integration scheme will be employed for problematic slave
elements having strong discontinuities in the integrand and
for non-critical slave elements within the contact zone the
element-based integration is used. The critical slave elements
will be identified by detecting integration points whose pro-
jection misses all of the master elements associated with
this slave element. With this combination of segment-based
and element-based integration, boundary problems can be
avoided. Therefore, our preferred integration strategy con-
sists of employing the element-based integration wherever
possible and only if the problematic boundary scenarios
occur, the integration algorithm will be changed to the
segment-based scheme.

4.3 Second-order interpolation

The next aspect to be highlighted is mortar integration
for higher-order finite element interpolation. Specifically,
second-order Lagrangian elements are considered here. For
the segment-based integration method, the authors in [37]
have suggested a simple, but efficient modification as shown
in Fig. 8. This approach can be interpreted as a direct exten-
sion to the segment-based integration scheme presented in
Sect. 3.

The modification generates linearly interpolated subele-
ments and establishes geometric mappings from parent ele-
ment space so subsegment space and vice versa. Thus, it is
possible to evaluate higher-order shape function products in
the integrand of the mortar matrices and the weighted gap
without any algorithmic changes. This approach only affects
the integration domain itself, which is less accurate in terms
of geometry. Compared to the segment-based integration
scheme, the element-based method requires no such mod-
ification step for second-order interpolation. Numerical inte-
gration is still simply carried out in the slave element para-
meter space without any geometric approximation. However,
the impact of weak and strong discontinuities for quadrati-
cally interpolated elements is larger than for linearly interpo-
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Fig. 9 Moving slave surface in time step tn−1 (blue) and tn (red). With
segment-based integration (left) and element-based integration (right).
(Color figure online)

lated elements. Therefore, there exist greater demands on the
employed integration formulas. Some examples concerning
element-based integration with second-order elements are
shown in Sect. 5.

4.4 Frictional contact

As compared with frictionless mortar contact formulations,
the frictional version requires not only the discrete weighted
gap (g̃n) j but also the discrete relative tangential velocity
(ṽτ,rel) j of each slave node j as fundamental kinematic mea-
sure. As has been demonstrated in (20), the definition of
(ṽτ,rel) j contains time derivatives of the mortar matrices D
and M, which are then approximated by difference quotients
of the mortar matrix entries evaluated at the current time step
tn and the last time step tn−1, see (21). For the segment-based
integration method these differences are in general not prob-
lematic because the mortar entries for both time steps are
calculated with a high accuracy. In contrast, the element-
based integration scheme is in general not able to compute
the mortar integrals with a comparable accuracy (unless an
excessive number of integration points is used). Thus, at both
time steps there occur errors in the mortar expressions which
could accumulate. Beside this effect, some entries in the mor-
tar matrices might not even be detected by the element-based
integration method. To illustrate this effect, both mortar inte-
gration schemes are shown at different time steps, see Fig. 9.
Here, the black dashed lines represent four master elements
not changing their position during the considered time inter-
val. Additionally, the slave element is defined by blue lines
for time step tn−1 and by red lines for time step tn . For stan-
dard Gauss rules, the integration points are located within
the element and not on the element edges. Therefore, there
exist element regions where the element-based integration is
not able to detect contributions from master elements, see the
gray colored area in Fig. 9. The resulting loss of accuracy for
frictionless contact is not severe, because the evaluated terms
within the element dominate the mortar matrices. In contrast,

for frictional contact the non-detected contributions lead to
a significantly increased relative error for the relative tan-
gential velocity (ṽτ,rel) j , which directly affects the decision,
whether a node is in stick or slip state.

All in all, for frictional mortar contact the element-based
integration is more sensitive than for the frictionless mortar
contact. The segment-based integration is the best available
integration scheme for this problems with regard to accuracy
and ensures the highest possible robustness for a frictional
mortar contact algorithm.

4.5 Conservation of linear and angular momentum

Finally, the ability to conserve linear and angular momen-
tum is analyzed and compared for the two integration meth-
ods. All investigations are done in the semi-discrete setting,
i.e. after spatial discretization but before time discretization.
First, as elaborated e.g. in [35] the requirement for linear
momentum conservation can be expressed as

fsl − fm =
m(1)∑
j=1

⎛
⎝

n(1)∑
k=1

D[ j, k]λ j −
n(2)∑
l=1

M[ j, l]λ j

⎞
⎠ = 0,

(31)

which can be simplified to

n(1)∑
k=1

D[ j, k] −
n(2)∑
l=1

M[ j, l] = 0 ∀ j = 1, . . . , m(1). (32)

Several authors, see e.g. [35], have shown, that this require-
ment is exactly satisfied for the segment-based integration
when integrating both mortar matrices D and M with the
same integration procedure. If the mortar integrals were eval-
uated independently of each other, conservation of linear
momentum would not be guaranteed in general. Using the
element-based integration scheme inevitably generates addi-
tional integration errors for the mortar matrix M and the
weighted gap g̃n . However, these errors interestingly cancel
out when evaluating the sum expressions in (32) due to the
partition of unity property of the master side shape functions.

n(1)∑
k=1

(∫
NkΦ j dΩ

)
−

n(2)∑
l=1

(∫
NlΦ j dΩ

)

=
∫

Φ j dΩ −
∫

Φ j dΩ = 0 (33)

Therefore, the element-based integration method also con-
serves linear momentum exactly. The influence of the gen-
erated integration errors could therefore be interpreted as a
changed arrangement of the master side forces to the associ-
ated nodes. However, summing them up yields the same total
force acting on slave and master side.
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Enforcing an exact conservation of angular momentum
is rather challenging in the context of mortar methods for
unilateral contact. The basic requirement for conservation of
angular momentum is given as

0 = msl − mm

=
m(1)∑
j=1

⎡
⎣

n(1)∑
k=1

x(1)
k × (D[ j, k]λ j )−

n(2)∑
l=1

x(2)
l × (M[ j, l]λ j )

⎤
⎦ .

(34)

This condition is fulfilled when either the jump vector g j
becomes zero for each active slave node j , i.e.

g j =
n(1)∑
k=1

D[ j, k]x(1)
k −

n(2)∑
l=1

M[ j, l]x(2)
l = 0, (35)

or alternatively when the discrete nodal Lagrange multi-
plier vector λ j and g j are always collinear. As investigated
in [53], both conditions will usually be slightly violated
for the segment-based integration. Employing the element-
based integration method one can obviously not expect any
improvement with regard to angular momentum conserva-
tion, but rather a deterioration. However, as the examples in
Sect. 5 illustrate, we obtain almost identical results for both
integration methods concerning the conservation of angular
momentum.

5 Numerical examples

In this section the theoretically discussed properties of the
segment-based and element-based integration schemes are
verified on the basis of four numerical examples. The first
example is a classical contact patch test which is conducted
to assess the accuracy of both integration methods and the
effect of our newly proposed boundary-segmentation proce-
dure. The second example analyzes the effect of numerical
integration on the convergence properties for both first-order
and second-order finite element interpolations. Thirdly, a two
tori impact example is considered to evaluate the integration
methods with regard to efficiency and conservation laws. The
fourth example investigates the press fit of two rotating cylin-
ders with regard to possible oscillations of the contact trac-
tions. Finally, an ironing example illustrates the applicability
of both integration methods to frictional contact problems.

5.1 Patch test

The first example is supposed to demonstrate the accuracy
of the introduced integration schemes and their influence on
the consistency of the mortar method. Figure 10 illustrates
the problem setting, where a lower block and a smaller upper

Fig. 10 Initial configuration with finite element discretization of the
patch test

block are in contact. The lower block is supported at the bot-
tom surface and the upper block’s top surface as well as the
free part of the top surface of the lower block are loaded
with a constant pressure p = −0.5 in vertical direction.
Both blocks are defined with equal material parameters based
on a Neo-Hookean material model with Young’s modulus
E = 100 and Poisson’s ratio ν = 0.0. The discretization con-
sists of linearly interpolated hexahedral elements as shown
in Fig. 10. In the following, both possibilities of choosing
slave and master surface are tested and compared. Indepen-
dent from this choice, the mortar method should be able to
exactly transmit constant contact pressure across the inter-
face, which characterizes the physically correct solution.

The first simulations are carried out with a mortar setting
where the lower surface of the upper block is the slave sur-
face and the upper surface of the lower block is the master
surface. Thus, all slave elements are covered with master ele-
ments causing only weak discontinuities in the integrand of
the second mortar matrix and the weighted gap. The resulting
Lagrange multiplier (i.e. contact pressure) values are exem-
plarily plotted along a diagonal line of the mortar surface,
see Fig. 11. Here, the results are given for the segment-based
integration method employing three Gauss points per trian-
gular integration cell and for the element-based integration
scheme employing 9, 64, 100 and 400 Gauss points per slave
element. The analytical solution is represented by a con-
stant contact pressure of −0.5. The segment-based method
passes this patch test. However, the element-based integra-
tion method fails the patch test and yields slight deviations
of the discrete Lagrange multiplier values. However, even if
only nine Gauss points are employed, the errors introduced
by the element-based integration scheme are very small as
compared with typical engineering accuracies.
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Fig. 12 Computed Lagrange multiplier values at the contact interface
along a diagonal axis for overlapping slave elements with element-based
integration, segment-based integration and boundary segmentation

Now, the slave and master sides are switched, which
results in an overlapping slave side. This yields not only weak
discontinuities for the integration of slave elements located
within the contact zone, but also strong discontinuities in the
integrands of overlapping slave elements. Again, the com-
puted Lagrange multiplier values are plotted along a diago-
nal line of the mortar interface for both segment-based and
element-based integration methods, see Fig. 12. It can be
seen that the Lagrange multiplier values are again exactly
reproduced (to machine precision) for the segment-based
integration scheme. The element-based integration method,
however, yields unacceptably large errors for all investigated
numbers of integration points, even for 400 Gauss points per
slave element. The reason for this failure are the strong dis-
continuities (jumps) which occur in the mortar integrands for
this setup. In addition, the results demonstrate how difficult
it may be to predict the number of required Gauss points.
Employing 64 Gauss points per slave element creates larger
errors than nine Gauss points in this case due the fact that
to some points of the 64-point rule are located very close to
the occuring strong discontinuities. As discussed in Fig. 6 for

Fig. 13 Example with bending structure in initial configuration (left)
and deformed configuration (right)

the two-dimensional case this proximity leads to a significant
increase of the overall error level. To handle this problem, the
proposed boundary-segmentation is tested, which employs
element-based integration for slave elements located fully
within the contact interface and segment-based integration
scheme for overlapping elements at the boundary of the con-
tact interface. The resulting Lagrange multipliers are much
better approximated than for the element-based integration
method, which demonstrates why boundary-segmentation is
a natural choice in order to prevent excessive integration
errors. However, the boundary-segmentation does obviously
not reach an accuracy to machine precision, but the error lev-
els are comparable to those of element-based integration for
fully projecting slave elements, cf. Fig. 11.

5.2 Bending beam

This numerical example is considered to investigate the con-
vergence order of the discretization error measured in the
energy norm. The problem setting is a classical domain
decomposition setup with non-matching meshes, see Fig. 13.
All problem data has been re-used from earlier investigations
in [31] to which we refer for further details. The example is
based on a small deformation assumption and a linear-elastic
material behavior. Therefore, an analytical solution of this
problem is well-known [14] and is going to be used as refer-
ence result. The following investigations heavily build upon
the discretization error u − uh measured in the energy norm,
which is defined as

||u − uh ||energy =
√∫

Ω

(ε − εh) : C : (ε − εh)dΩ, (36)

with the linearized strain tensor ε and the linear-elastic con-
stitutive tensor C. The mortar interface is defined having a
curved shape, with the ratio of the characteristic element sizes
between the discretization of slave and master surface being

fixed at h(1)

h(2) = 2
3 . Both sub-domains are discretized with

hexahedral Lagrangian finite elements of polynomial degree
p = 1 or p = 2, i.e. typical first- and second-order ele-
ments. This yields an expected convergence order of O(h p).
The interpolation of the Lagrange multipliers is done by dual
shape functions of the same order as the displacement inter-
polation, see [31] for further details.
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Fig. 14 Convergence of error in the energy norm with uniform mesh
refinement for hexahedral meshes (hex8 and hex27 elements) with
element-based and segment-based integration

To numerically analyze convergence rates of the dis-
cretization error, the characteristic mesh size h is uniformly
refined and the results are illustrated in Fig. 14. The expected
convergence order of O(h p) is perfectly represented by the
segment-based integration schemes for both linearly and
quadratically interpolated elements, as shown by the black
dashed lines. For first-order elements, element-based inte-
gration gives nearly the same errors as the segment-based
method. However, for second-order elements (27-node hexa-
hedra), the element-based scheme fails to deliver an opti-
mal convergence behavior for all employed numbers of
Gauss points. The mesh size, below which the element-based
method significantly differs from the segment-based solu-
tion depends on the number of used Gauss points. Employ-
ing more and more integration points reduces the undesir-

able effect of sub-optimal convergence rates, and the results
slowly approach those of the segment-based version. It is
very likely that this behavior would also occur for linearly
interpolated elements, however only for very small charac-
teristic element sizes, which arguably are irrelevant from a
purely practical engineering point of view.

5.3 Two tori contact

The impact of two tori, firstly introduced in the context of
contact search algorithms [53], is considered to compare
the two integration methods concerning computational effi-
ciency and conservation of linear and angular momentum in
a large scale example. The problem setting taken up here
is described in [32] and slightly differs from the original
example. The employed material is a Neo-Hookean model
with E = 5,500, ν = 0.3 and a density of ρ = 0.1 for both
bodies. The discretization is equal for both tori and results
in a total number of 23.340 linearly interpolated hexahedral
elements. For time integration, a generalized-α scheme is
employed, see [5] for further details. The calculation of con-
tact interaction is based on 200 time steps, and the numerical
solution is performed in parallel on 16 cores. Some charac-
teristic stages of deformation during the impact process are
shown in Fig. 15. First, we investigate the efficiency of the
introduced integration methods. For this purpose, the aver-
age time required for integration for one Newton step within
each time step are plotted in the left subfigure of Fig. 16.
In addition, the accuracy of the integration schemes is vali-
dated by the right subfigure of Fig. 16, which visualizes the
deviations of the relative L2-norm of the displacements with
respect to a reference solution based on segment-based inte-
gration with 12 Gauss points per integration cell. Using 37

Fig. 15 Deformation of the two
tori during frictionless impact.
The time steps 1, 40, 80, 120,
160 and 199 are visualized
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Fig. 17 Investigation concerning the conservation laws for the large scale two tori impact with element-based and segment-based integration. Plot
of linear momentum (left) and Plot of angular momentum (right)

or 64 Gauss points per integration cell does not significantly
change the displacement norm compared to 12 Gauss points.
The relative error of the L2-norm, is given as

εdispl = ||dseg12|| − ||dn||
||dseg12|| , (37)

where dn represents the current numerical solution and
dseg12 the reference solution. For this example, the segment-
based integration is tested with three and seven Gauss
points per integration cell, and the element-based integration
method employs 4–64 Gauss points per slave element. For
the segment-based integration, three Gauss points per inte-
gration cell is the smallest sensible number of integration
points. Thus, it can be seen that compared to the segment-
based integration, the element-based integration method has
the ability to significantly reduce the number of integration
points. In addition, it is obvious that the required integration
time scales linearly with the employed number of integration
points, which is why all curves in Fig. 16 have a similar shape.
The characteristic shape of the curves depends strongly on
the active set. Thus, ups and downs of the curves occur due
to time steps with a correspondingly high or low number

of nodes being in contact. From time step 190 onwards, the
curves are zero-valued due to the face that the two tori are
not in contact any more. Interestingly, the L2-displacement
errors are only small and decrease further with more and
more integration points. Even four Gauss points per element
are sufficient for the L2-displacement error being negligible.
However, with four Gauss points per element, only 7 % of
integration time of the segment-based integration employing
seven integration points per integration cell are required. All
in all, it becomes obvious that the element-based integration
scheme allows for dramatic reductions of the computational
costs for practical applications, while still maintaining a suf-
ficient level of accuracy.

The next aspect to be investigated is the conservation of
linear and angular momentum. As described theoretically in
Sect. 4, the conservation of linear momentum is guaranteed
for both integration methods, but the conservation of angular
momentum may be slightly violated. Figure 17 illustrates our
numerical results with regard to conservation properties. The
left subfigure confirms the exact fulfillment of linear momen-
tum, whereas the right subfigure shows the relative error of
the angular momentum. Again, element-based integration
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Fig. 18 Setup of the cylinder press fit example

produces equally accurate results as segment-based integra-
tion. The element-based scheme with nine Gauss points per
slave element exhibits the same error level as the segment-
based integration scheme. Other Gauss rules for the element-
based integration have also been tested and gave equal results
with regard to conservation properties.

5.4 Cylinder press fit

This example is introduced to investigate the solution quality
of normal contact tractions that can be achieved with the dif-
ferent integration strategies. The problem setting is depicted
in Fig. 18 and consists of two cylinders that are joined by
a press fit. The dimensions of cylinder 1 (the inner cylin-
der) are given by an outer radius r1

o = 5.022 and an inner
radius r1

i = 4.022, whereas cylinder 2 (the outer cylinder)
is defined by an outer radius r2

o = 6.0 and an inner radius
r2

i = 5.0, thus resulting in an initial overlap. The cylinders
have the same material properties, which are defined by a
Saint Venant–Kirchhoff material model with Young’s mod-
ulus E = 500 and Poisson’s ratio ν = 0.0. The outer surface
of cylinder 1 acts as slave side, and the inner surface of cylin-
der 2 is the master side. The cylinders are supported in such a
way, that the outer surface of cylinder 2 remains fixed and the
inner surface of cylinder 1 is subjected to a rotational load
imposed as Dirichlet boundary condition. The mesh ratio
between slave and master side is chosen to be 2

3 , and first-
order elements (8-node hexahedra) are employed for finite
element discretization. The simulation is performed under
the assumption, that no displacements in thickness direc-
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Fig. 19 Contact tractions for the cylinder press fit example with first-
order elements (hex8)

tion will occur. The resulting normal contact traction λn, j

of an arbitrarily chosen slave node is monitored over the
entire simulation time for both element-based and segment-
based integration, see Fig. 19. It can be clearly seen, that the
element-based integration procedure exhibits strongly oscil-
latory behavior of the normal contact tractions, especially for
very small numbers of Gauss points. However, by increasing
the number of integration points, the element-based integra-
tion method converges towards the solution obtained with
the segment-based strategy. These observations are in very
good agreement with the results from the patch test example
in Sect. 5.1. The fact that the normal contact tractions still
exhibit slightly oscillatory behavior even for the segment-
based integration scheme has nothing to do with numerical
integration, but is rather due to the relatively coarse first-order
finite element discretization, which generates kinks at every
node of the curved contact interface. Thus, for the sake of
completeness, a reference solution calculated with second-
order finite elements (27-node hexahedra) and corresponding
mortar techniques, see [31,51], is shown in Fig. 20 and obvi-
ously reduces oscillations to a level that is negligible. Fur-
thermore, a solution based on a strongly refined mesh with
first-order elements (8-node hexahedra) is given in this figure
to demonstrate the superior properties of the second-order
approach for this example. If deemed necessary, a further
smoothing of the contact interface and its associated kine-
matic and kinetic quantities can be achieved by employing
either isogeometric mortar methods [6,45,46] or boundary
smoothing or enrichment techniques [39,48].

5.5 Ironing

The last example is a frictional extension to the ironing prob-
lem investigated in [30]. The geometric setup is shown in
Fig. 21. The upper body is a hollow half cylinder with a Neo-
Hookean material model with Young’s modulus E = 1,000
and Poisson ratio ν = 0.3. The other body is a block being
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Fig. 21 Setup of the frictional ironing problem

fixed at the lower surface and has the material parameter
E = 1 and ν = 0.3. Frictional contact is modeled by
Coulomb’s law with the friction coefficient μ = 0.2. At
the beginning of the simulation, the cylinder is pressed into
the block by a prescribed vertical displacement of w = 1.4
within 20 steps. After this intrusion, the vertical displacement
is held constant and the cylinder slides along the block with a
prescribed displacement u = 4.0 within 130 additional steps.
The problem is discretized with 8-node hexahedral elements
as shown in Fig. 21. The top surface of the block is chosen
as slave side and the bottom surface of the cylinder as master
side, thus yielding only weak but no strong discontinuities in
the mortar integrands. Typical stages of deformation during
contact and associated patterns of tangential forces due to
friction can be seen in Fig. 22.

To validate the accuracy of the element-based integra-
tion, the segment-based integration scheme is considered as
reference solution. Despite the fact that the segment-based
integration produces only marginal integration errors, some

non-physical effects (e.g. slightly oscillating tractions) occur
during the simulation. This could be avoided by well-known
surface smoothing procedures, see e.g. [48]. However, for an
increasing number of integration points, the element-based
solutions should still converge to the segment-based result.
This is validated in Fig. 23. The first quantity to be analyzed
is the relative error of the displacement field measured in
the L2-norm compared to the segment-based reference solu-
tion, see the left subfigure in Fig. 23. During the first part
of the simulation, the cylinder is pressed into the foundation
and starts to slide. After roughly 30 steps all slave nodes
are in the slip phase and no sticking effects occur anymore.
From step 30 until the end of the calculation, the relative dis-
placement errors of the element-based integration schemes
slightly oscillate around the zero-reference. The error magni-
tude decreases for an increasing number of integration points.
The damping effect of the oscillation during the simulation
is due to the prescribed movement of the cylinder. Thus,
the Dirichlet boundary condition dominates the displacement
field for progressing time steps. The peaks of the displace-
ment error are due to the master element edges sliding over
parallel slave element edges. For 25 and more Gauss points,
this effect vanishes due to the integration points being located
near enough to the element edges.

The second investigation is concerning the slip increment
ũτ,rel from (23), which represents the most crucial quan-
tity for frictional mortar contact. Here, the slip increment
of all slip nodes is summed up and divided by the num-
ber of slip nodes, thus yielding an averaged slip increment.
This quantity is plotted over step index in the right subfig-
ure of Fig. 23. Again, the relative error in the slip increment
decreases with an increasing numbers of Gauss points, but in
contrast to the L2-displacement error its magnitude is now
considerable.

All in all, with an adequate number of integration points,
the calculation of frictional mortar contact problems with
the element-based integration scheme is possible, but the
error in the slip increment could cause problems with respect
to the rather sensitive search for the current stick and slip
regions.

6 Conclusion

The two most commonly employed integration methods
for mortar contact problems, segment-based and element-
based integration, have been compared with each other
and their respective advantages and drawbacks have been
highlighted. Furthermore, we have proposed a so-called
boundary-segmentation method as an ideal compromise for
an efficient and accurate integration scheme, because it com-
bines the advantages of both schemes without taking over
their deficiencies.
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Fig. 22 Deformation and tangential nodal slave forces for the frictional ironing problem
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Fig. 23 Relative errors of element-based integration for the L2-norm of the displacements and for the averaged slip increment

Several numerical examples have demonstrated accept-
able results for both integration schemes but with a signifi-
cantly reduced computation time for the element-based inte-
gration. However, for second-order interpolation as well as
for frictional problems with very sensitive stick/slip tran-
sitions, the quality of the solution is much better for the
segment-based integration, which could not be reached by
the element-based integration, even for very high num-
bers of integration points. Therefore, we suggest to employ
the segment-based integration as an accurate basis for fur-
ther mortar-specific method development and the boundary-
segmentation scheme together with a thorough error esti-
mation of all relevant quantities (e.g. displacements, contact
forces, stick/slip behavior) for large-scale applications with
first-order elements.
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