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Abstract A smoothed finite element method formulation
for the resultant eight-node solid-shell element is presented
in this paper for geometrical linear analysis. The smooth-
ing process is successfully performed on the element mid-
surface to deal with the membrane and bending effects of
the stiffness matrix. The strain smoothing process allows
replacing the Cartesian derivatives of shape functions by
the product of shape functions with normal vectors to the
element mid-surface boundaries. The present formulation
remains competitive when compared to the classical finite
element formulations since no inverse of the Jacobian matrix
is calculated. The three dimensional resultant shell the-
ory allows the element kinematics to be defined only with
the displacement degrees of freedom. The assumed nat-
ural strain method is used not only to eliminate the trans-
verse shear locking problem encountered in thin-walled
structures, but also to reduce trapezoidal effects. The effi-
ciency of the present element is presented and compared
with that of standard solid-shell elements through various
benchmark problems including some with highly distorted
meshes.

Keywords Resultant solid-shell element · Smoothed
finite element method (SFEM) · Polygonal element · Strain
smoothing · Mesh sensitivity · Accuracy

X. J.-G. Élie-Dit-Cosaque (B) · A. Gakwaya
Département de génie mécanique,
Université Laval, Québec, Canada
e-mail: xelieditcosaque@gmail.com

H. Naceur
Lab LAMIH, University of Valenciennes,
Valenciennes, France

1 Introduction

In the finite element method (FEM), a lot of work deal-
ing with thin shell structures has been accomplished, led by
industry needs. This category of three dimensional (3D) shell
structures is useful in many industrial activities, like those
involved in the aerospace industry. It is characterized by the
existence of a small dimension in one direction, identified
as the shell thickness, when compared to the two remaining
directions.

The many existing shell element formulations can be
grouped into three main classes: (i) classical shell elements
depicted into plate elements and shell elements. Plate ele-
ments combine membrane and bending characteristics, thus
including in-plane and out-of-plane theories. For each node,
they use both translational and rotational degrees of freedom.
They are widely used in practice because of their simple for-
mulation and attractive time efficiency. Shell elements have
the same characteristics as plate elements, except for the fact
that they also remain accurate in arbitrary shape contexts.
The reader can consult Betsch et al. [1], Bischoff and Ramm
[2] and Cardoso and Yoon [3]; (ii) degenerated shell ele-
ments based on a 3D variational formulation, as for solid ele-
ments, have kinematics expressed on the shell mid-surface
exhibiting translational and rotational degrees of freedom.
For more details on this topic, one can consult, among oth-
ers, the following authors: [4–13] and [14]; (iii) solid-shell
elements, which are among the most recent shell element
developments, are 3D shell elements.

Some advantages of solid-shell compared with shell ele-
ments formulations are: (i) the capacity of modeling 3D
geometries comprising both thin and thick portions with-
out any need for special transition elements; (ii) boundaries
modeling without any extra kinematics assumptions. Since
physical nodes are located on the bottom and top surfaces of
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the shell structure, the contact definition with associated fric-
tion phenomenon can be easily dealt with; (iii) the kinemat-
ics description remains simple since their formulation uses
only displacement degree of freedoms, avoiding the com-
plex update of the rotation vector in non-linear problems.
See [15,16] and [17] for details.

Notwithstanding the above classification, shell elements
can be separated into two categories: (i) thin shell elements
described by Kirchhoff–Love plate theory, which neglects
transverse shear deformation, are described in Timoshenko
and Woinowsky-Krieger [18]. The elements using this the-
ory require a C1 displacement continuity; (ii) moderate thick
shell elements described by Reissner-Mindlin plate theory
and used in Bathe and Dvorkin [10], a theory which con-
siders transverse shear, (see Timoshenko and Woinowsky-
Krieger [18]). However, solid-shell elements using only dis-
placement degrees of freedom and based in particular on the
Reissner–Mindlin theory, use shape functions that are not
able to describe the bending induced kinematics in the thick-
ness direction, which may be responsible for locking occur-
rences. The locking problems are mainly transverse shear
locking (cited above), volumetric locking, Poisson thick-
ness locking, curvature or trapezoidal locking and membrane
locking. The transverse shear locking may occur when a shell
element with a thickness tending towards to zero is subject
to bending.

Among the most popular methods to solve transverse shear
locking is found the assumed natural strain (ANS) method,
used for instance in Dvorkin and Bathe [8] to remedy to trans-
verse shear locking in shell elements. Then, Klinkel et al.
[19], Kim et al. [20] and more recently Hannachi [21] intro-
duced it in solid-shell elements. According to ANS method,
the natural transverse shear strains are calculated in four sam-
pling points located at the center of the element mid-surface
edges. The transverse shear strain is then calculated at ele-
ment integration points by interpolating the strains evaluated
at the element mid-surface. However, to provide a good accu-
racy, the four sampling points used above are sufficient only
in fully integrated elements. An extended ANS method using
eight sampling points initially introduced in Cardoso et al.
[22] and also used in Schwarze and Reese [23] and Nguyen
[24] is however preferred for reduced integration elements.

Another popular technique, used to eliminate transverse
shear locking is the enhanced assumed strain (EAS) method,
which consists in adding in the deformation field, another
field of internal variables that creates additional modes of
deformation. The EAS approach is employed in the work
of Andelfinger and Ramm [25], Alves de Sousa et al. [26]
and in the work of Wriggers et al. [27], Alves de Sousa et al.
[28], Li et al. [29] and Fontes Valente et al. [30] for small and
large deformations, respectively. The volumetric locking can
occur when a given material remains nearly incompressible
or incompressible. Simo and Rifai [12] have demonstrated

that applying the EAS method is a way to reduce the vol-
umetric locking issue. The Poisson thickness locking may
take place with the hypothesis of a linear displacement vari-
ation and, thus, when considering a constant strain along
the thickness. This constant strain in the thickness direction
may induce inconsistencies since the thickness strain varies
linearly as a combination between Poisson’s effect and in-
plane strain (Büchter et al. [31]). More recently Schwarze
and Reese [23] have successfully used this EAS technique
in an eight-node solid shell element in a full 3D integration
context in order to avoid the Poisson thickness locking. The
curvature or trapezoidal locking may appear when an ele-
ment is used to mesh curved structures and thus when an
edge in the thickness direction of a given element is not per-
pendicular to its mid-surface. Following the same idea as for
transverse shear locking treatment, Betsch et al. [1] applied
the ANS method to tackle curvature locking. Accordingly,
the natural thickness strain is calculated in four sampling
points located at the corners of the element mid-surface. It
is then interpolated at the integration points. The membrane
locking could emanate from a configuration whereby mem-
brane strains remain very small relative to the bending strains
in thin structure bending problems. In order to overcome
membrane locking issues, Miehe [32] developed a solid type
element using one enhanced parameter. Mesh distortion may
also be responsible for inaccurate or oscillatory results as
proven in Lyly et al. [33] and Kouhia [34].

In spite of the prolific and insightful prior research aiming
at improving the FEM, some unresolved issues remain with
the technique, such as those related to element distortion and
numerical integration. In an effort to enhance the accuracy
of numerical solutions for irregular meshes, an approxima-
tion method named smoothed finite element method (SFEM)
was recently proposed by Liu et al. [35], [36]. This method
integrates the conventional FEM technology with the strain
smoothing technique that was introduced by Chen et al. [37]
while devising a stabilized nodal integration scheme in mesh-
free methods (element free Galerkin method). Essentially,
the SFEM consists in dividing each element into smoothing
cells over which a strain smoothing operation is performed.
The strain energy in each smoothing cell is expressed as
an explicit form of the smoothed strain. A subsequent use
of the divergence theorem then allows the integration to be
transformed into one over the cell boundary eliminating the
requirements to use shape function derivatives. In Liu et al.
[35], the SFEM was applied to a two dimensional static con-
tinuum element and implemented in four-node quadrilateral
and polygonal elements. Compared with standard FEM, the
work of Liu et al. [35], [36] indicate that SFEM has interest-
ing features such as: (i) simplicity of the method, since no
Cartesian derivatives of shape functions are used; (ii) elim-
ination of the inverse of the Jacobian matrix; (iii) apparent
insensitivity of the SFEM to mesh distortion. This thus makes
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finite elements based on this technique more attractive in sit-
uations requiring convergence for very complex mesh and /
or adaptive meshing when standard finite elements are used;
(iv) compared with standard finite elements, the proposed
SFEM elements appear to be more accurate and significantly
more attractive in terms of computer time efficiency. Results
accuracy could also be increased by using more smoothing
cells.

The variational weak form used in SFEM can be derived
from the Hu-Washizu three-fields variational principle or by
the assumed strain method proposed by Simo and Hughes
[38]. Liu et al. [36] then detailed the SFEM theory and found
that it remains equivalent to standard FEM theory for one
dimension as well as for two dimensional (2D) triangular
elements, contrasting with quadrilateral elements. Moreover,
they investigated on the variational consistency of this last
type of element regarding the number of smoothing cells
used. They observed that if the formulation remains varia-
tionally consistent with one cell, this observation does not
hold in cases using multiple cells. However, when using the
same set of shape functions for a given element, the for-
mulation remains energy consistent since the element nodal
displacements remain continuous. Nguyen-Xuan et al. [39]
and Bordas and Natarajan [40], in their theoretical study of
convergence, accuracy and properties of the SFEM tech-
nique, also contributed to a better understanding of SFEM
and gave a good overview of the SFEM driving concept
as well as some interesting results obtained with a SFEM
quadrilateral shell element. The SFEM applied previously
to static problems was extended to 2D dynamic problems in
Dai and Liu [41], [42]. It is demonstrated in these papers that
the approach yields better results than standard quadrilateral
finite elements. The SFEM was initially used with conven-
tional isoparametric elements in Liu et al. [35]. An extension
of the method to polygonal elements is then performed in
Dai et al. [43] and further extended to node-centered (Liu et
al. [44]) and edge-centered (Nguyen-Thoi et al. [45]). It is
observed that SFEM for general n-sided polygonal elements
works well and yields very accurate results, especially in
cases with heavily distorted meshes. However, due to the cor-
responding high computational cost induced by the inherent
higher number of nodes of the technique, they suggest using a
combination of nSFEM and quadrilateral SFEM elements to
respectively mesh the exterior and interior of a part. Nguyen-
Thanh et al. [46] investigated on some methods to solve shear
and incompressible locking problems for quadrilateral SFEM
elements. They successfully presented three selective inte-
gration schemes. Scheme 1 is based on the decomposition of
the material matrix into two parts; one containing the shear
modulus or μ terms and another containing the remaining
terms. Scheme 2 is based on the B-bar approach of Hughes
[47] to overcome volumetric locking. Scheme 3, used to over-
come shear locking, consists in using different smoothing

cell numbers for each stiffness matrix contribution. How-
ever, this last scheme is not that attractive compared with
standard finite elements, since the shear stiffness matrix still
needs Gauss integration points to be determined. Then, var-
ious developments have been made on SFEM quadrilateral
plate and shell elements. For example, Nguyen-Xuan et al.
[48] developed a four nodes plate element using the SFEM
to deal with membrane and bending stiffness matrix compo-
nents. Their proposed element exhibited good accuracy and
time efficiency compared with equivalent standard elements.
Nguyen-Thanh et al. [49] then extended this work to quadri-
lateral flat shell elements and emphasized the high poten-
tial capabilities of the SFEM. Unlike the MITC4 element,
which uses an isoparametric mapping, their proposed ele-
ment calculates the membrane and bending parts of the stiff-
ness matrix directly in the local Cartesian coordinate system.
As a matter of fact, it remains accurate even with a distorted
mesh. Moreover, this new element is found to be insensitive to
mesh distortion when compared to the standard MITC4 ele-
ment. More recently, Wu and Wang [50] improved this work
by revisiting its variational formulation. They demonstrated
that moving the Gauss points to the SFEM cell-based centroid
position has a softening effect on the structure response. A
key point of their work is the smoothing of the assumed shear
strain of the MITC4 element using the edge-based strain
smoothing method presented in Liu et al. [51]. Their pro-
posed element shows improved results accuracy, especially
in cases of a highly distorted mesh. The extension of SFEM to
3D solid continuum elements is proposed by Nguyen-Xuan
[52] and Bordas et al. [53]. In their work, they used a stabiliza-
tion technique to avoid membrane and volumetric locking.
This is consistent with the stabilization technique used in
the meshfree method proposed by Puso and Solberg [54]. In
order to reduce computation time, their 3D stiffness matrix
is calculated using reduced integration on each facet of the
element cells, instead of a standard 2 × 2 Gauss quadrature
formula. However, a stabilization strategy was developed in
order to keep some element efficiency and to eliminate the
zero energy modes. This method consists in considering the
stiffness matrix as a linear combination of the one subcell ele-
ment and the four or eight subcell element. Due to the relative
novelty of the SFEM, its non-linear development and asso-
ciated applications still remain limited. Cui et al. [55] devel-
oped quadrilateral non-linear SFEM plate and shell elements.
They then illustrated their good accuracy as well as their
rapid convergence towards the analytic solutions. Moreover,
Liu et al. [56] successfully compared a quadrilateral shell
element using SFEM with classical finite element through
non-linear examples using plastic materials. More recently,
Élie-Dit-Cosaque et al. [57] developed a non-linear resultant
eight-node solid-shell element. Their proposed element gives
promising results, but some developments are still required
in order to improve its accuracy in non-linear applications.
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One should also mention a method called the partition ele-
ment method (PEM), detailed in Rashid and Sadri [58]. In
this method, similarly to SFEM, an element is divided into
quadrature cells over which the shape functions are piece-
wise linear. The averaged strain operators are then calculated
in each cell. A major difference between the PEM and the
SFEM is that the PEM method allows arbitrary cells to be
defined which gives it greater flexibility.

In summary, previous works on the SFEM have observed
the following main features of the method: (i) simple imple-
mentation; (ii) insensitivity to mesh distortion; (iii) better
accuracy as well as higher convergence rates compared with
standard equivalent finite element in many cases; (iv) time
efficiency.

However, to the best of our knowledge, the following
issues are either scarce or did not receive much attention:
(i) a full assessment of the theoretical basis of the stabiliza-
tion techniques proposed in Nguyen-Xuan [52] and Bordas et
al. [53]; (ii) the performance of the eight-node solid element
using the SFEM in case of a distorted mesh; (iii) application
of SFEM shell elements formulation to geometric and mate-
rial non-linear problems; (iv) implementation of the SFEM
approach in solid-shell elements.

In the present paper, the SFEM is applied to an eight node
resultant solid-shell element presented in Kim et al. [20] as an
extension of the classical resultant shell theory and in Simo et
al. [59], in order to evaluate the membrane and bending ele-
ment stiffness. The strain smoothing method is then applied
in a way similar to its application to a quadrilateral shell ele-
ment (Nguyen-Thanh et al. [49]) without any use of stabiliza-
tion, since no reduced integration is required. A preliminary
simplified version of this work has already been proposed in
Élie-Dit-Cosaque et al. [57]. A complete development of the
smoothing technique is proposed in the following sections.
In order to reduce element locking problems inherent to the
proposed solid-shell element extended to SFEM formula-
tion, the well-known ANS method is applied, in a way that is
similar to the procedure proposed in Bordas et al. [53]. The
transverse normal strain is also approximated using the ANS
technique. Special care has been taken to adequately explain
how the SFEM is applied to a resultant solid-shell formula-
tion. This paper organization is described in what follows.
In Sects. 2, 3 and 4, the geometric description, the kine-
matics and the finite element approximation of the resultant
solid-shell element are presented. The related virtual work
principle is then presented in Sect. 5. The SFEM approxima-
tion applied to solid-shell element and its parameters are then
discussed in Sect. 6. The details of SFEM discretization of
the weak form and the computer implementation including
detailed element stiffness matrix structures are then given.
Various benchmark examples for geometrically linear prob-
lems are presented in Sect. 7 to validate the approach. Finally,
a conclusion is given in the last section.
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Fig. 1 Solid-shell element parametrization, undeformed configuration
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Fig. 2 Solid-shell element configurations

2 Geometric description

A solid-shell element based on Reissner–Mindlin kinematics
is considered and represented parametrically as in Fig. 1.
Only three displacement degrees of freedom are introduced
at each node as in a standard solid element (Hauptmann and
Schweizerhof [16]).

In order to describe the shell-like behavior of the eight-
node solid element, it is useful to introduce a set of three
coordinates systems as shown in Fig. 2, inspired from Vu-
Quoc and Tan [60] and further detailed in Table 1: a global
Cartesian coordinate system X (X, Y, Z), a convected coor-
dinate system ξ

(
ξ1, ξ2, ξ3

)
and a local Cartesian coordinate

system x (x, y, z) whose orientation changes with the con-
figuration. The latter is set up in the element mid-surface in
order to be able to handle shell features such as membrane,
bending and shear behavior of thin shell structures. The rela-
tionships between the different coordinate basis are given in
several monographs and papers for instance Domissy [61]
and Hannachi [21].
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Table 1 Coordinate systems
definition Level Base vectors Coordinates

Global Cartesian (eX , eY , eZ ) X0
(
X0, Y 0, Z0

)
or X0

i , i = 1, 2, 3 undeformed configuration

X (X, Y, Z) or Xi , i = 1, 2, 3 deformed configuration

Natural
(G1, G2, G3)

(g1, g2, g3)
ξ
(
ξ1, ξ2, ξ3

)
or ξi , i = 1, 2, 3

Local Cartesian

(
Rx , Ry , Rz

)
(
rx , ry, rz

) x0
(
x0, y0, z0

)
or x0

i , i = 1, 2, 3 undeformed configuration

x (x, y, z) or xi , i = 1, 2, 3 deformed configuration

1ξ3ξ
2ξ
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Fig. 3 Resultant eight-node solid-shell element geometry and mid-
surface concept

The coordinates of an arbitrary point q0 on the solid-shell
structure in the undeformed configuration can then be defined
in term of the position vector represented parametrically by:

X0
q0

(
ξ1, ξ2, ξ3

)
= (1 + ξ3)

2
· X0,U (ξ1, ξ2)

+ (1 − ξ3)

2
· X0,L(ξ1, ξ2)

(
−1 ≤ ξ1, ξ2, ξ3 ≤ 1

)
(1)

which, after introducing the mid-surface concepts and con-
sidering the parameter ξ3 as the thickness direction (see
Fig. 3), can also be written as:

X0
q0

(
ξ1, ξ2, ξ3

)
= X

0
(
ξ1, ξ2

)
+ ξ3 · �X0

(
ξ1, ξ2

)
,

(
−1 ≤ ξ1, ξ2, ξ3 ≤ 1

)
(2)

where X0,L and X0,U are respectively the position vector of
a point on the lower and upper surface in the global Carte-
sian coordinate system X0

(
X0, Y 0, Z0

)
of the undeformed

configuration, X
0 = X0,U +X0,L

2 is the position vector of the

mid-surface and �X0 = X0,U −X0,L

2 is a director vector point-
ing from the lower to the upper surface.

In the deformed configuration, the coordinates of an arbi-
trary point q in the global Cartesian coordinate system
X (X, Y, Z) can similarly be represented as:

Xq

(
ξ1, ξ2, ξ3

)
= X

(
ξ1, ξ2

)
+ ξ3 · �X

(
ξ1, ξ2

)
,

(
−1 ≤ ξ1, ξ2, ξ3 ≤ 1

)
(3)

By introducing the displacements field vector Uq , the unde-
formed and the deformed configurations are related by the
standard mapping at point q, as:

Xq

(
ξ1, ξ2, ξ3

)
= X0

q0

(
ξ1, ξ2, ξ3

)
+ Uq

(
ξ1, ξ2, ξ3

)
(4)

in the global Cartesian coordinate system X (X, Y, Z). Sim-
ilarly, as in Eqs. (2) and (3), by using mid-surface related
parameters, the displacement vector in Eq. (4) can be written
as:

Uq

(
ξ1, ξ2, ξ3

)
= U

(
ξ1, ξ2

)
+ ξ3 · �U

(
ξ1, ξ2

)
,

(
−1 ≤ ξ1, ξ2, ξ3 ≤ 1

)
(5)

where U and �U are defined as U = UU +UL

2 and �U =
UU −UL

2 , with UL and UU being respectively the displacement
vector of a point on the lower and upper surface of the shell
structure.

The covariant base vectors (G1, G2, G3) respectively the
contravariant base vectors

(
G1, G2, G3

)
take the following

forms in the undeformed configuration:

Gi = ∂X0

∂ξ i
, i = 1, 2, 3 (6)

Gi = ∂ξ i

∂X0 , i = 1, 2, 3 (7)

In the same idea, the covariant base vectors (g1, g2, g3),
respectively the contravariant base vectors

(
g1, g2, g3

)
take

the following forms in the deformed configuration:

gi = ∂X
∂ξ i

, i = 1, 2, 3 (8)

gi = ∂ξ i

∂X
, i = 1, 2, 3 (9)
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The local Cartesian base vectors are defined in the unde-
formed configuration from the covariant base vectors as:

Rz = G1 ∧ G2

‖G1 ∧ G2‖ (10)

Rx = G1

‖G1‖ (11)

Ry = Rz ∧ Rx (12)

Similarly, the local Cartesian base vectors are defined in the
deformed configuration from the covariant base vectors as:

rz = g1 ∧ g2

‖g1 ∧ g2‖ (13)

rx = g1

‖g1‖ (14)

ry = rz ∧ rx (15)

So, the local Cartesian coordinates x (x, y, z) are related
to the global Cartesian coordinates X (X, Y, Z) through the
transformation matrix Q1 = [

rx ry rz
]

such that the local
components of a position or displacement vector uq =〈
u v w

〉
of an arbitrary point q are given by:

xq = QT
1 · Xq (16)

uq = QT
1 · Uq (17)

For sake of simplify, the subscript ( )q is omitted in the
subsequent developments.

3 Kinematics of shell deformation

The Green–Lagrange strain tensor components ε
ξ
kl , oriented

in the natural coordinate system ξ
(
ξ1, ξ2, ξ3

)
are (see Vu-

Quoc and Tan [60] for more detail):

ε
ξ
kl = 1

2

(
gk

∂u
ξ l

+ ∂u
ξ k

gl + ∂u
ξ k

∂u
ξ l

)
, k, l = 1, 2, 3 (18)

Considering only the linear terms, the above Eq. (18)
becomes:

ε
ξ
kl = 1

2

(
gk

∂u
ξ l

+ ∂u
ξ k

gl

)
, k, l = 1, 2, 3 (19)

Considering Eq. (19) component by component, the individ-
ual components of ε

ξ
kl are then:

ε
ξ
11 = g1 · ∂u

∂ξ1 ε
ξ
22 = g2 · ∂u

∂ξ2

γ
ξ
12 = g1 · ∂u

∂ξ2 + g2 · ∂u
∂ξ1 γ

ξ
13 = g1 · ∂u

∂ξ3 + g3 · ∂u
∂ξ1

γ
ξ
23 = g2 · ∂u

∂ξ3 + g3 · ∂u
∂ξ2 ε

ξ
33 = g3 · ∂u

∂ξ3 (20)

The Green–Lagrange strain tensor ε, can be formulated in
the directions of the local Cartesian base vectors as:

ε = εi j ri ⊗ r j , i, j = 1, 2, 3 (21)

It can also be formulated in the direction of the contravariant
base vectors

(
g1, g2, g3

)
defined in Eq. (9) as:

ε = ε
ξ
klg

k ⊗ gl

= ε
ξ
kl

∂ξ k

∂ Xi
ri ⊗ ∂ξ l

∂ X j
r j

= ε
ξ
kl

∂ξ k

∂ Xi

∂ξ l

∂ X j
ri ⊗ r j , i, j, k, l = 1, 2, 3 (22)

where Xi , i = 1, 2, 3 are the global Cartesian coordinates
defined in Table 1.

Identifying the terms of Eqs. (21) and (22), the transforma-
tion between the local Cartesian and the natural components
of the Green–Lagrange strain tensor represented respectively
by εi j and ε

ξ
kl is:

εi j = ε
ξ
kl

∂ξ k

∂ Xi

∂ξ l

∂ X j
, i, j, k, l = 1, 2, 3 (23)

Starting from the deformation gradient F defined in term of
the displacements field described in Eq. (5) as F = ∂x

∂X =
I + ∇X u, the Green–Lagrange strain tensor ε oriented in the
local Cartesian coordinate system can be written as:

ε = 1

2

(
FT F − I

)

= 1

2

{
(∇X u) + (∇X u)T + (∇X u)T (∇X u)

}
(24)

Limiting the following development to the linear strain com-
ponents, as for the natural expression of the Green–Lagrange
strain tensor, gives the expression:

ε = 1

2

{
(∇X u) + (∇X u)T

}
(25)

Following the concepts introduced in Eq. (5), the displace-
ments vector can also be written as:

u = 〈u v w〉T =
〈
u + ξ3 · �u v + ξ3 · �v w + ξ3 · �w

〉T

(26)

with u =
⎧
⎨

⎩

u
v

w

⎫
⎬

⎭
as the displacement mean value on the mid-

surface and �u =
⎧
⎨

⎩

�u
�v

�w

⎫
⎬

⎭
as the through-thickness relative

displacement vector.
Separating the in-plane and the out-of-plane degrees of

freedoms from Eq. (26), the displacements vector for the
resultant theory can then be defined as:
�
u = 〈

u v w �u �v �w
〉T

(27)
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Then, using the displacement vector defined as in Eq. (5),
the linear terms of the Green–Lagrange strain tensor can be
expressed in the local Cartesian coordinate system x (x, y, z)
defined in Table 1 as:

εxx = ∂u

∂x
= ∂u

∂x
+ ξ3 · ∂�u

∂x
;

εyy = ∂v

∂y
= ∂v

∂y
+ ξ3 · ∂�v

∂y
;

γxy = ∂u

∂y
+ ∂v

∂x
= ∂u

∂y
+ ∂v

∂x
+ ξ3 ·

(
∂�u

∂y
+ ∂�v

∂x

)

εzz = ∂w

∂z
= ∂w

∂z
+ ∂ξ3

∂z
· �w + ξ3 · ∂�w

∂z

γyz = ∂v

∂z
+ ∂w

∂y
= ∂v

∂z
+ ∂w

∂y

+ξ3 ·
(

∂�v

∂z
+ ∂�w

∂y

)
+ ∂ξ3

∂z
· �v

γxz = ∂u

∂z
+ ∂w

∂x
= ∂u

∂z
+ ∂w

∂x

+ξ3 ·
(

∂�u

∂z
+ ∂�w

∂x

)
+ ∂ξ3

∂z
· �u (28)

Developing the terms of Eq. (23) and reorganizing the result-
ing equations in tensor and matrix forms, the transformation
of the Green–Lagrange strain tensor components from the
natural to the local coordinate system can be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γxy

γyz

γxz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= T ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
ξ
11

ε
ξ
22

ε
ξ
33

γ
ξ
12

γ
ξ
23

γ
ξ
13

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

where

T=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

j2
11 j2

21 j2
31 j11 j21 j21 j31 j11 j31

j2
12 j2

22 j2
32 j12 j22 j22 j32 j12 j32

j2
13 j2

23 j2
33 j13 j23 j23 j33 j13 j33

2 j11 j12 2 j21 j22 2 j31 j32 j12 j21+ j11 j22 j22 j31+ j21 j32 j12 j31+ j11 j32

2 j12 j13 2 j22 j23 2 j32 j33 j23 j12+ j22 j13 j23 j32+ j22 j33 j13 j32+ j12 j33

2 j11 j13 2 j21 j23 2 j31 j33 j23 j11+ j21 j13 j23 j31+ j21 j33 j13 j31+ j11 j33

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

(30)

with, in case of small displacements and small strains formu-
lation, ji j = J−1

i j = (
Gi · r j

)−1 is the inverse of the matrix J
components such that J = Gi ⊗ r j . Equation (30) expressed
on the mid-surface ξ3 = 0 simplifies to Tξ3=0:

Tξ3=0 =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

j2
11 j2

21 0 j11 j21 0 0

j2
12 j2

22 0 j12 j22 0 0

0 0 j2
33 0 0 0

2 j11 j12 2 j21 j22 0 j12 j21+ j11 j22 0 0

0 0 0 0 j22 j33 j12 j33

0 0 0 0 j21 j33 j11 j33

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(31)

However, the calculations required for evaluating the terms
of the inverse J−1 of the Jacobian matrix may be laborious
and are likely to induce matrix transformations that are poten-
tially computational time consuming, as illustrated in Kim et
al. [20]. Nevertheless, introducing the strain smoothing tech-
nique in the context of finite element or SFEM technique to
calculate membrane and bending components helps avoid
such calculations. Indeed, their integration is made in the
local Cartesian coordinate system x (x, y, z) after smooth-
ing operation. This eliminates the calculation of shape func-
tion Cartesian derivatives. This technique is presented in the
following sections.

Separating the strain tensor components of Eq. (28) into
membrane-bending εmb, transverse shear γ and transverse
normal εzz , the linear strain vector can be written, in line
with the work proposed in Kim et al. [20], in this compact
form:

ε =
⎧
⎨

⎩

εmb

γ

εzz

⎫
⎬

⎭
=
⎧
⎨

⎩

εm + ξ3 · εb

γ

εzz

⎫
⎬

⎭
(32)

In Eq. (32), εmb is the combination of the membrane and the
bending strains components, respectively εm and εb such that

εmb =
⎧
⎨

⎩

εxx

εyy
γxy

⎫
⎬

⎭
= εm + ξ3 · εb. Writing Eq. (28) in matrix

form:

εm =

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x

⎫
⎪⎪⎬

⎪⎪⎭
= Bm · �

u (33)

with the membrane strain operator defined as:

Bm =

⎡

⎢⎢
⎣

∂
∂x 0 0 0 0 0

0 ∂
∂y 0 0 0 0

∂
∂y

∂
∂x 0 0 0 0

⎤

⎥⎥
⎦ (34)

and where:

εb =

⎧
⎪⎪⎨

⎪⎪⎩

∂�u
∂x

∂�v
∂y

∂�u
∂y + ∂�v

∂x

⎫
⎪⎪⎬

⎪⎪⎭
= Bb · �

u (35)
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with the bending strain operator defined as:

Bb =

⎡

⎢⎢
⎣

0 0 0 ∂
∂x 0 0

0 0 0 0 ∂
∂y 0

0 0 0 ∂
∂y

∂
∂x 0

⎤

⎥⎥
⎦ (36)

From Eq. (28), the matrix expressions of the transverse shear
strain γ and the transverse normal strain εzz are also obtained.

The transverse shear strains γ =
{

γyz

γxz

}
can be written in

matrix form as:

{
γyzγxz

}
=
{

0 ∂v
∂z

∂w
∂y 0 ξ3 · ∂�v

∂z + ∂ξ3

∂z · �v ξ3 · ∂�w
∂y

∂u
∂z 0 ∂w

∂x ξ3 · ∂�u
∂z + ∂ξ3

∂z · �u 0 ξ3 · ∂�w
∂x

}

= Bγ · �
u (37)

where Bγ is:

Bγ =
[

0 ∂
∂z

∂
∂y 0 ξ3 · ∂

∂z + ∂ξ3

∂z ξ3 · ∂
∂y

∂
∂z 0 ∂

∂x ξ3 · ∂
∂z + ∂ξ3

∂z 0 ξ3 · ∂
∂x

]

(38)

The transverse normal strain εzz can be written in matrix form
as:

εzz =
[

0 0 ∂w
∂z 0 0 ξ3 · ∂�w

∂z + ∂ξ3

∂z · �w

]
= Bzz · �

u (39)

where Bzz is:

Bzz =
[

0 0 ∂
∂z 0 0 ξ3 · ∂

∂z + ∂ξ3

∂z

]
(40)

Considering Eqs. (33), (35), (37) and (39), the strain tensor
can be written:

ε = B · �
u (41)

where B is a strain operator including membrane-bending,
transverse shear and transverse normal components (See Kim
et al. [20]).

4 Finite element approximation

4.1 Strain finite element approximation

The standard trilinear shape functions of the hexahedral ele-
ment can be defined in terms of standard bilinear shape func-
tions, as in Sze and Yao [62] combined with a parameter-
ization in the thickness direction. The resultant solid-shell
geometry is thus defined in terms of shape functions defined
on the shell mid-surface combined with a thickness parame-
terization as:

x
(
ξ1, ξ2, ξ3

)
=

4∑

I=1

NI

(
ξ1, ξ2

)
·
(

xi + ξ3 · �xi

)
,

(
−1 ≤ ξ3 ≤ 1

)
(42)

where NI , I = 1, . . . , 4 are the standard bilinear shape func-
tions of a quadrilateral element, xi = (xi1, xi2, xi3, xi4) ,

(i = 1, . . . , 3) are the position vectors of the element mid-
surface corners and �xi = (�xi1,�xi2,�xi3,�xi4) ,

(i = 1, . . . , 3) are the orientation vectors at the element mid-
surface corners.

The displacements field expressed in Eq. (5) can be
approximated in finite element form as u ≈ ue. For sake of
simplicity the superscript ( )e is omitted in this last expres-
sion, such that the nodal displacements field u is given by:

u
(
ξ1, ξ2, ξ3

)
=

4∑

I=1

NI

(
ξ1, ξ2

)

·
((

1 + ξ3
)

2
· uU

i +
(
1 − ξ3

)

2
· uL

i

)

=
4∑

I=1

NI

(
ξ1, ξ2

)
·
(

ui + ξ3 · �ui

)
,
(
−1 ≤ ξ3 ≤ 1

)

(43)

where ui = (ui1, ui2, ui3, ui4) , (i = 1, . . . , 3) are the dis-
placement vectors of the element mid-surface corners and
�ui = (�ui1,�ui2,�ui3,�ui4) , (i = 1, . . . , 3) are the
rotation vectors at the element mid-surface corners. They
are defined at each corner I like in Eq. (5).

The finite element approximation of the membrane and
bending strain field, defined respectively in Eqs. (33) and
(35), then becomes:

εm =
4∑

I=1

Bm
I .

�
u I (44)

where
�
u I = 〈

uI v I w I �uI �vI �wI
〉T

for each corner
I ,

with

Bm
I =

⎡

⎣
NI,x 0 0 0 0 0

0 NI,y 0 0 0 0
NI,y NI,x 0 0 0 0

⎤

⎦ , I = 1, . . . , 4

(45)

and

εb =
4∑

I=1

Bb
I .

�
u I (46)

with

Bb
I =

⎡

⎣
0 0 0 NI,x 0 0
0 0 0 0 NI,y 0
0 0 0 NI,y NI,x 0

⎤

⎦ , I =1, . . . , 4 (47)

The detailed smoothing procedure to calculate this mem-
brane and bending element strain fields, respectively rep-
resented by εm and εb, as well as the corresponding strain
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operators Bm
I and Bb

I in their smoothed form are given in
Sect. 6.1.

Developing Eq. (37) in the element mid-surface, at ξ3 = 0,
the element transverse shear components can be expressed
as:

γ = Tγ

ξ3=0
· γξ (48)

where the natural transverse shear strain γξ in matrix form
is obtain by developing Eq. (20) as:

γξ =
⎧
⎨

⎩

γ
ξ
23

γ
ξ
13

⎫
⎬

⎭
= ∑4

I=1 Bγ, 0
I · �

u I (49)

with the transverse shear strain operator Bγ, 0
I , expressed in

the element mid-surface ξ3 = 0 by:

Bγ, 0
I =

⎡

⎣
0 0 ∂ NI

∂ξ2 GT
3 0 NI GT

2 0

0 0 ∂ NI
∂ξ1 GT

3 NI GT
1 0 0

⎤

⎦ , I = 1, . . . , 4

(50)

and Tγ

ξ3=0
is a sub-transformation matrix extracted from Eq.

(31) as:

Tγ

ξ3=0
=
[

j22 j33 j12 j33

j21 j33 j11 j33

]
(51)

Using Eq. (39), the element normal strain finite element
approximation evaluated on the element mid-surface ξ3 = 0
then becomes:

εzz = j2
33 · ε

ξ
33 (52)

where the natural normal strain in matrix form is obtained by
developing Eq. (20) as in Eq. (53):

ε
ξ
33 =

4∑

I=1

Bζ ζ
I · �

u I (53)

where the normal strain operator Bζ ζ
I , evaluated on the ele-

ment mid-surface ξ3 = 0 is expressed as:

Bζ ζ
I = 〈

0 0 0 0 0 NI GT
3

〉
, I = 1, . . . , 4 (54)

4.2 Transverse shear locking

In order to reduce the transverse shear locking when eval-
uating the transverse shear stiffness using first order shell
theory (Reissner–Mindlin assumption), the ANS technique
initially introduced by Hughes and Tezduyar [63] and then
developed by other researchers like Batoz and Dhatt [64],
as Q4-gama element, remains an efficient strategy. Since
first order shear deformable shell formulation yields constant
transverse shear strain through the shell thickness, this may
be a good approximation for very thin shells but not neces-
sarily appropriate for thick shells. Then in order to handle the

7

6
5

4
3

1 2

8

1A

1B

2A

2B

2ξ
3ξ

1ξ

Fig. 4 Eight-node shell element, ANS method for transverse shear
locking

thick shell case, the natural shear strains is evaluated at four
points (A1, A2, B1, B2) located in the middle of the mid-
surface edge as illustrated in Fig. 4. These four points are
used to evaluate the actual transverse shear strain anywhere
on the element.

This is done by calculating the element shear strain used
in actual shear stiffness computation from the interpolation
of the element natural strains defined in Eq. (49) at points
A1, A2, B1 and B2 as:

γ
ξ,A1
13 = γ

ξ
13

∣∣∣
ξ1=0, ξ2=−1, ξ3=0

(55)

γ
ξ,A2
13 = γ13|ξ1=0, ξ2=1, ξ3=0 (56)

γ
ξ,B1
23 = γ

ξ
23

∣∣∣
ξ1=−1, ξ2=0, ξ3=0

(57)

γ
ξ,B2
23 = γ

ξ
23

∣∣∣
ξ1=1, ξ2=0, ξ3=0

(58)

Equations (55) to (58) are then used to obtain an improved
interpolated shear strain using linear interpolation functions:

γ
ξ,AN S
13 = 1 − ξ2

2
γ

ξ,A1
13 + 1 + ξ2

2
γ

ξ,A2
13 (59)

0γ
ξ,AN S
23 = 1 − ξ1

2
γ

ξ,B1
23 + 1 + ξ1

2
γ

ξ,B2
23 (60)

where −1 ≤ ξ1, ξ2 ≤ 1.

4.3 Trapezoidal effect or curvature thickness effect

In FEM approximation, simulation accuracy is dependent on
the mesh quality. However, it remains common to use some
trapezoidal elements to mesh curved structures such as, for
instance, tubes. In case of bending dominated problems, such
a trapezoidal shape may be responsible for the trapezoidal
effect occurrence, since it may provide additional through-
the-thickness strain. Betsch et al. [1] were among the first to
apply the ANS method in order to get rid of this type of lock-
ing. This technique tends to reduce the additional thickness
strain caused by curved shapes in case of bending situation.
Consequently, it also tends to reduce potential locking occur-
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Fig. 5 Eight-node shell element, ANS method for trapezoidal effect
treatment

rence. The present element has the same improved properties
as those detailed in the work of Betsch et al. [1], since the nat-
ural thickness strains are evaluated at the four corners of the
element mid-surface (C, D, E, F) as illustrated in Fig. 5.

The thickness strain used in actual thickness stiffness cal-
culation is then obtained by interpolation of these natural
thickness strains.

The normal strains at the four corners of the mid-surface
are then obtained from Eq. (53) as:

ε
ξ,C
33 = ε

ξ
33

∣
∣∣
ξ1=−1,ξ2=−1

(61)

ε
ξ,D
33 = ε

ξ
33

∣∣∣
ξ1=1,ξ2=−1

(62)

ε
ξ,E
33 = ε

ξ
33

∣∣∣
ξ1=1,ξ2=1

(63)

ε
ξ,F
33 = ε

ξ
33

∣
∣∣
ξ1=−1,ξ2=1

(64)

And Eqs. (61) to (64) are used to obtain an improved inter-
polated transverse normal strain using bilinear interpolation
functions of the standard mid-surface Q4 element:

ε
ξ,AN S
33 = 1

4
·
(

1 − ξ1
)

·
(

1 − ξ2
)

· ε
ξ,C
33

+1

4
·
(

1 + ξ1
)

·
(

1 − ξ2
)

· ε
ξ,D
33

+1

4
·
(

1 + ξ1
)

·
(

1 + ξ2
)

· ε
ξ,E
33

+1

4
·
(

1 − ξ1
)

·
(

1 + ξ2
)

· ε
ξ,F
33 (65)

where −1 ≤ ξ1, ξ2 ≤ 1.

5 Principle of virtual work

Following the work of Oden and Reddy [65] and more
recently of Simo and Hughes [38], the virtual work principle
can be written:

W = Wint − Wext (66)

where the internal and the external work expressions are
given by:

Wint =
∫

V
εT : σ dV (67)

Wext =
∫

V

�T
u ·fvdV +

∫

s
δ

�T
u ·fsd S (68)

The weak form expression of the virtual work principle can
be written as detailed in Hodge [66]:

δW = δWint − δWext = 0 (69)

with the following definition:

δWint =
∫

V
δεT : σ dV (70)

δWext =
∫

V
δ

�T
u ·fvdV +

∫

s
δ

�T
u ·fsd S (71)

where the stress field σ and the constitutive parameter H′ are
assumed to be related by the following constitutive equation:

σ = H′·ε (72)

where, for an isotropic elastic material

H′ =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

λ + 2μ λ 0 0 0 0
λ λ + 2μ 0 0 0 0
0 0 μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 E

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=
⎡

⎣
H′mb

(0)

H′γ
(0) H′zz

⎤

⎦ (73)

in which

H′mb =
⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤

⎦ (74)

H′γ =
[

μ 0
0 μ

]
(75)

H ′zz = E (76)

and the modified Lamé’s coefficients are λ = E .ν

(1−ν2)
and

μ = E
2.(1+ν)

with E the Young’s modulus and ν the Poisson’s
ratio.

The constitutive parameter H′, based on the generalized
plane stress theory, prevents some coupling between mem-
brane, bending and shear strain modes and the thickness
mode. This reduces the risk of extra locking in the thickness
direction.

Separating the membrane and bending stresses from the
transverse shear and the through-the-thickness stresses, the
stress-strain relations can be decomposed as follows:
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σmb = H′mb · εmb = H′mb
(
εm + ξ3 · εb

)
= σm + ξ3 · σb

σγ = H′γ · εγ

σ zz = H
′zz · εzz (77)

where σm = H′mbεm and σb = H′mb · εb.
According to the adopted kinematics decomposition for

shell formulation and following Domissy [61] and Hannachi
[21], it is possible to decompose the weak form of the inter-
nal virtual work δWint, defined in Eq. (70), into membrane-
bending, transverse shear and normal components as:

δWint = δW mb
int + δW γ

int + δW zz
int

=
∫

V

(
δεmb

)T : σmbdV +
∫

V
δγT : σγ dV

+
∫

V

(
δεzz)T : σzzdV (78)

Introducing Eq. (77) in Eq. (78) gives:

δWint = δW mb
int + δW γ

int + δW zz
int

=
∫

V

(
δεmb

)T · H′mb · εmbdV +
∫

V
δγT · H′γ · εγ dV

+
∫

V
(δεzz)

T · H ′zz · εd
zz V (79)

Then, using Eq. (79) and separating integration into thickness
and mid-surface integrations gives:

δWint = δW mb
int + δW γ

int + δW zz
int

=
∫

S

(
δεm)T · AH · εmd S+

∫

S

(
δεb

)T · DH · εbd S + · · ·

· · · +
∫

S
δγT · AH · γd S +

∫

S
(δεzz)

T · E H · εd
zz S

= δ
�T
u ·

[∫

S

(
Bm)T · AH · Bmd S +

∫

S

(
Bb
)T

· DH · Bbd S + · · ·
· · · +

∫

S

(
Bγ
)T · AH · Bγ d S

+
∫

S

(
Bzz)T · E H · Bzzd S

]
· �

u (80)

where h is the shell thickness and AH , DH , AH and E H are
through-the-thickness integrated material parameters thus
defining the new resultant constitutive law expressed as:

AH =
h/2∫

−h/2

H′mb
i j dξ3 = h · H′mb (81)

DH =
h/2∫

−h/2

(
ξ3
)2 · H′mbdξ3 = h3

12
· H′mb (82)

AH =
h/2∫

−h/2

H′γ dξ3 = h · H′γ (83)

E H =
h/2∫

−h/2

H ′zzdξ3 = h · H ′zz (84)

Introducing the finite element approximation, the element
internal virtual work δW e

int in Eq. (78) can be expressed as:

δW e
int = δW e,mb

int + δW e,γ
int + δW e,zz

int

=
∫ 1

−1

∫ 1

−1

4∑

I=1

(
δεm

I + ξ3 · δεb
I

)T : σ̂
mb |J|dξ1dξ2 + · · ·

· · · +
∫ 1

−1

∫ 1

−1

4∑

I=1

δγT
I : σ̂

γ |J|dξ1dξ2

+
∫ 1

−1

∫ 1

−1

4∑

I=1

(δεzz)
T
I : σ̂

zz |J|dξ1dξ2

= δŭT
I ·
∫ 1

−1

∫ 1

−1

[
4∑

I=1

(
Bm

I + ξ3 · Bb
I

)T · σ̂
mb |J| + · · ·

· · · +
4∑

I=1

(
Bγ

I

)T · σ̂
γ |J| +

4∑

I=1

(
Bzz

I

)T · σ̂
zz |J|

]

dξ1dξ2

= δ
�T
u I · fint (85)

where |J| is the determinant of J, the resultant stresses

are σ̂
mb =

[
AH

DH

]

.

{
εm

I

εb
I

}

, σ̂
γ = AH.γI , σ̂

zz =
E H.εzz,I and

fint =
∫ 1

−1

∫ 1

−1

[(
Bm

I + ξ3 · Bb
I

)T · σ̂
mb + (

Bγ

I

)T · σ̂
γ

+ (
Bzz

I

)T · σ̂
zz
]

· |J| dξ1dξ2 (86)

The finite element approximation of the weak form of the
internal virtual work δW e

int expressed in Eq. (80) then yields
(See Kim et al. [20]):

δW e
int = δŭT

I ·
∫ 1

−1

∫ 1

−1

[
4∑

I=1

(
Bm

I

)T · AH · Bm
I · |J|

+
4∑

I=1

(
Bb

I

)T · DH · Bb
I · |J| + · · ·

· · · +
4∑

I=1

(
Bγ

I

)T · AH · Bγ

I · |J|

+
4∑

I=1

(
Bzz

I

)T · E H · Bzz
I · |J|

]

dξ1dξ2 · �
�
u I

= δ
�T
u I · k · �

�
u I (87)
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where the element stiffness matrix k is:

k = kmb + kγ + kzz (88)

with

kmb =
∫ 1

−1

∫ 1

−1

4∑

I=1

[(
Bm

I

)T · AH · Bm
I

+
(

Bb
I

)T · DH · Bb
I

]
· |J| dξ1dξ2 (89)

kγ =
∫ 1

−1

∫ 1

−1

4∑

I=1

(
Bγ

I

)T · AH · Bγ

I · |J|dξ1dξ2 (90)

kzz =
∫ 1

−1

∫ 1

−1

4∑

I=1

(
Bzz

I

)T · E H · Bzz
I · |J|dξ1dξ2 (91)

6 Smoothed finite element method

6.1 Smoothed strain field FEM formulation

At this stage, the standard FEM and the SFEM formulations
share the same shell kinematics and variational principles.
A fundamental difference will however result from the intro-
duction, in the SFEM, of the smoothed strain obtained from a
strain smoothing operation introduced in Liu et al. [35], Dai
and Liu [42] or Nguyen-Thanh et al. [49]. This smoothed
strain is defined as:

ε̃i j (xc) =
∫


h
εi j (x) · ϕ (x − xc) d
 (92)

where ϕ is a smoothing function with ϕ (x − xc) ={
1/Sc x ∈ 
c

0 x /∈ 
c
and Sc = ∫


c
d
 is the area of the

smoothing cell 
c with xc the position vector of a point on
the shell structure. This operation is very similar to the mean
dilatation procedure used to deal with the incompressibility
in non-linear mechanics. It has also been used in the weak-
form meshless method based on nodal integration or in the
moving particle finite element method (MPFEM) developed
in Hao et al. [67].

Applying the strain smoothing concepts to the deforma-
tion gradient, the smoothed deformation gradient can be writ-
ten as:

F̃i j (xc) = 1

SC

∫


C

[
∂ui

∂x j
+ δi j

]
d
 (93)

By applying the divergence theorem,
∫

C

[
∂ui
∂x j

]
d
 =

∫
�C

(
u·

i n j
)

d�, the smoothed strain formulation is then
expressed as an integration of the strain matrix on the cell
boundary and Eq. (93) becomes:

F̃i j (xc) = ẽi j (xc) + δi j (94)

n

n

n
cΩ

1Γ

nX
Y

Z

Fig. 6 Smoothing concept: mid-surface identification

where

ẽi j (xc) = 1

SC

∫

�C

(
ui · n j

)
d� (95)

Hence the associated smoothed Green–Lagrange strain ε̃

becomes:

ε̃i j = 1

2

(
F̃ik F̃k j − Ii j

)

= 1

2

[
(ẽik + δik)

(
ẽk j + δk j

)− δi j
]

(96)

In the previous equation, �C is the cell boundary and n j the
outward normal of the considered cell boundary.

In the concept presented here, the mid-surface of the shell
is first identified. Then, the length of its boundary �c, the nor-
mal vectors of its boundary n and its area SC are determined
as illustrated in Fig. 6.

Considering only the linear part and after simplification,
the smoothed strain becomes:

ε̃l
i j = 1

2

[
ẽi j + ẽ j i

]
(97)

Introducing the local displacements field u
(
ξ1, ξ2, ξ3

) =
u
(
ξ1, ξ2

) + ξ3 · �u
(
ξ1, ξ2

)
, the deformation gradient can

then be written as:

F̃i j (xc) = 1

SC

∫


C

[
∂
[
ui
(
ξ1, ξ2

)+ξ3 · �ui
(
ξ1, ξ2

)]

∂x j
+δi j

]

d


= ẽi j (xc) + δi j (98)

with

ẽi j (xc) = 1

SC

∫

�C

(
ui · n j + ξ3�ui n j

)
d� (99)

Here, the smoothed element formulation is applied for the
numerical integration of the membrane and bending parts of
the strain field on the mid-surface boundary for the resultant
eight-node solid-shell element.

Separating the strain field into membrane-bending, trans-
verse shear and transverse normal components then gives:

ε̃i j = ε̃m
i j +ε̃b

i j + ε
γ

i j + εzz
i j (100)

From Eqs. (89) and (99) it is possible to deduce the contin-
uous smoothed form of the membrane and bending stiffness
matrix k̃mb:
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Fig. 7 Mid-surface partition in
cells
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k̃mb =
nc∑

c=1

[(
B̃m

c (xc)
)T · AH · B̃m

c (xc)

+
(

B̃b
c (xc)

)T · DH · B̃b
c (xc)

]
· Sc (101)

where the smoothed strain–displacement matrix operators
are determined similarly as in Nguyen-Thanh et al. [49]:

B̃m
c (xc) = 1

Sc
·

4∑

b=1

4∑

I=1

⎡

⎣
NI · nx 0 0 0 0 0

0 NI · ny 0 0 0 0
NI · ny NI · nx 0 0 0 0

⎤

⎦ · lc
b

(102)

B̃b
c (xc) = 1

Sc
·

4∑

b=1

4∑

I=1

⎡

⎣
0 0 0 NI · nx 0 0
0 0 0 0 NI · ny 0
0 0 0 NI · ny NI · nx 0

⎤

⎦ · lc
b

(103)

In Eqs. (101) to (103), I is the mid-surface node indices from
1 to 4; xc is the unique gauss point along the element edge
and lc

b is the length of �c
b; nx and ny are the components of

the cell border outward normal vector n; Sc is the area of cell
c; nc is the total number of cells; NI is the shape functions at
the integration point and b is the edge number of cell c going
from 1 to 4. One of the main advantages of the SFEM is that
NI , lc

b,n and Sc are directly calculated from the real structure
geometry as presented in Fig. 7.

As a result, the expression of the total element stiffness
matrix expressed in Eq. (88), can take the smoothed form in
the local Cartesian coordinate system x (x, y, z):

k̃ = k̃mb + kγ + kzz (104)

The approximation of the shear strain field presented in sec-
tion 4.2 is used to determine the shear strain matrix BAN S,γ .
This matrix is then used in the numerical integration of the
transverse shear stiffness at four classical Gauss points. A
2 × 2 integration scheme is adopted in the element mid-
surface. The transverse shear stiffness, evaluated at the geom-
etry mid-surface and free of transverse shear locking, is then
calculated introducing Eqs. (59) and (60) into Eq. (49) to
give:

kAN S, γ =
4∑

I=1

(
BAN S, γ

I

)T · AH · BAN S, γ

I · |J| (105)

Then, the approximation of the transverse normal strain field
presented in Sect. 4.3 is used to determine the transverse nor-
mal strain matrix BAN S,zz . It is this latter which is used in
the numerical integration of the through-the-thickness nor-
mal stiffness Eq. (65) defined as:

kAN S, zz =
4∑

I=1

(
BAN S, zz

I

)T · E H · BAN S, zz
I · |J| (106)
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Fig. 8 Membrane / bending integration scheme per element; a classical
and b SFEMs

The adopted integration scheme is 2 × 2.
The total local element stiffness matrix then becomes:

k̃AN S = k̃m + k̃b + kAN S,γ + kAN S,zz (107)

The local to global stiffness matrix transformation is similar
to the method used in Kim et al. [20].

6.2 Operation count

A quick overview of the integration scheme used in the SFEM
is given in this section. It is compared with the integration
scheme used in a classical eight-node resultant shell element
to deal with the membrane and bending effects as illustrated
in Fig. 8.

In the classical scheme, the intrinsic shape function and
shape function derivatives are calculated at the four inte-
gration points located in the element mid-surface. Then the
Jacobian matrix J and its determinant |J| are calculated. As
the element is integrated in local Cartesian coordinate system
x (x, y, z), the Cartesian shape function derivatives, required
to define the strain operators Bm and Bb, are computed by
multiplying the intrinsic derivative with the inverse of the
jacobian matrix J−1. Then the stiffness matrix Kmb is calcu-
lated at each integration point and assembled with the corre-
sponding element vector and matrices.

In the SFEM, there is no need to calculate the intrinsic
shape function derivatives. At the beginning of the integra-
tion, each element is subdivided into nc cells and over each
cell a smoothed strain is used, which is a constant integrand,

and the integral over each cell is evaluated over the cell
boundary. Geometric parameters such as the length of the
four edges of each cells lc

b, the cell areas Sc and the cell edge
normals n are calculated depending on the number of parti-
tioning cells used within the element. In the present study,
even if the number of cells remains limited to one, two or
four, it is possible to increase this number depending on the
required level of accuracy. In order to get familiar with the
calculated geometric parameters, let us consider as an exer-
cise, one cell for the element integration.

As presented in Sect. 6.1, only lengths l1
1 , l1

2 , l1
3 ,l1

4 and nor-
mals n1

1, n1
2, n1

3, n1
4, of four edges are calculated as well as one

area A1, all of them calculated in the local Cartesian coor-
dinate system x (x, y, z). Mathematically, the length of the
four edges of each cell lc

b corresponds to the Jacobian used in
the loop on cell edges integration. The intrinsic shape func-
tions are calculated in the center of each cell boundary. Then,
the Jacobian matrix J and its determinant |J| are evaluated in
the center of each cell located in the element mid-surface. As
no Cartesian derivatives of the shape function are calculated,
there is no need to calculate the inverse of the Jacobian matrix
J−1 to determine the smoothed operator B̃mb as presented in
Eqs. (102) and (103). Then the smoothed stiffness matrix
K̃mb is calculated and summed on each cell if more than
one cell is used for the integration. The smoothing method
simplifies the expression of the integration terms and is very
attractive, especially when only one cell is used, since the
number of operations remains small.

6.3 Element consistency

Taking advantage of the divergence theorem presented in
Sect. 6.1, the relations between the classic and the smoothed
strain-displacement matrix operators are easily determined
(See Liu et al. [36] for details):

B̃m
cI = 1

SC

∫


C

Bm
I (x) d
 (108)

B̃b
cI = 1

SC

∫


C

Bb
I (x) d
 (109)

Indeed, the smoothed strain operators of Eqs. (102) and (103)
are equivalent to the strain operators of Eqs. (45) and (47),
smoothed over a given smoothing cell. The solution of the
present resultant solid-shell element is then different than the
solution of a resultant element using a classical FEM. This
can be observed in Sect. 7.

Considering the smoothed strain field ε̃, the orthogonal
condition takes an analogous form to that in Liu et al. [36]:
∫

V
δσ T :

(
∇X

�
u −ε̃

)
dV +

∫

V
σ T :

(
∇Xδ

�
u −δε̃

)
dV =0

⇒
∫

V
δε̃

T
.H′.∇X

�
u dV −

∫

V
δε̃

T
.H′.ε̃dV
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+
∫

V
ε̃T

.H′.∇Xδ
�
u dV −

∫

V
ε̃T

.H′.δε̃dV = 0

⇒ δ
�T
u
(∫

V
B̃T .H′.BdV

)
�
u −δ

�T
u
(∫

V
B̃T .H′.B̃dV

)
�
u

+ �T
u
(∫

V
B̃T .H′.BdV

)
δ

�
u − · · ·

· · · − �T
u
(∫

V
B̃T .H′.B̃dV

)
δ

�
u = 0

⇒
∫

V
B̃T .H′.BdV =

∫

V
B̃T .H′.B̃dV (110)

with B̃, a smoothed strain operator similar to that of Eq. (41),
but replacing the membrane and bending components with

their smoothed form and where ε̃ = B̃ · �
u .

From Eq. (110) it can be easily demonstrated that the
SFEM formulation remains consistent if one smoothing cell
is used within the element. (See proof of Theorem 2 in Liu
et al. [36]). However, in such a situation, they have shown
that the solution of the SFEM has the same properties as
for a reduced integration element, initially developed by
Zienkiewicz et al. [68]. In this type of element, only one
integration point is used. It is located at the centroid of the
isoparametric element, where ξ1 = ξ2 = ξ3 = 0. The strain
operator B is then equivalent to an average value over the
isoparametric element mid-surface. Similarly, the smoothed
strain operator B̃ is an average value over the element mid-
surface. This could result in the apparition of zero energy
modes called “hourglass modes” in the stiffness matrix.

If the number of smoothing cells is at least two, the SFEM
element does not stay variationally consistent as demon-
strated in Theorem 4 of Liu et al. [36], but energy consistent.
In this case neither the stress continuity at the cell interfaces
nor the equilibrium within the element are guaranteed. How-
ever, these configurations have the advantage of not having
hourglass modes.

7 Benchmark problems

The proposed eight-node solid-shell element is named RH8s-
X (Resultant hexahedra eight nodes smoothed with X
smoothing cells) where X represents the number of smooth-
ing cells dividing its mid-surface, 1, 2 or 4. Its capabilities
have been compared in typical benchmark problems with
other existing elements presented in the following list:

SH8—eight-node element with ANS and EAS equivalent
to the SCH8 element from Hannachi [21].
SC8R—eight-node element with reduced integration and
plane stress assumption Abaqus user’s manual, ver 6.8
[69].
RH8—resultant eight-node element with ANS.

A

F = 1

44

16

48

Thickness t= 1

Fig. 9 Cook’s membrane problem

Xsolid85—resultant eight-node element with ANS and
plane stress assumption Kim et al. [20].
RH8s-X (X = 1, 2 or 4)—present eight-node resultant
element.
Sch2009—Schwarze and Reese [23] : reduced integra-
tion eight—node solid-shell element with ANS and EAS.
MISTk (k = 1, 2 or 4) – Nguyen-Xuan [52] : four—
node shell element with smoothed membrane and bend-
ing strains.

All results have been normalized to the exact reference
solution of each problem.

7.1 Cook’s membrane problem

This benchmark problem is generally used to verify the abil-
ity of an element to handle membrane problems. The irregular
mesh also helps verifying the accuracy of the isoparametric
Jacobian transformation matrix calculation at the same time.
A plate, with the geometry presented in Fig. 9, is clamped on
the left side and subjected to a shear load F = 1 on the right
side. The Young’s modulus is E = 1 and the Poisson’s ratio
is ν = 0.33. The vertical displacement of point A, located
at the right side center, is compared to the exact reference
solution Uy = 23.91 in Fig. 10 and Table 2.

From Table 2 it is seen that when the number of smooth-
ing cells increases from 1 to 4, the displacement of point A
decreases progressively from an overestimated to an under-
estimated solution approaching the result obtained with the
classical RH8 element. For a very coarse mesh, at least two
cells seem to be necessary to arrive at a sufficiently accurate
solution to the problem. The current element shows good
performance. Even if the SC8R element results have the best
convergence rate towards the reference result, the RH8s-1
and RH8s-2 remain the most accurate elements.
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Fig. 10 Cook’s membrane problem normalized results

7.2 Pinched cylinder with end diaphragm problem

In the pinched cylinder problem, a cylinder with an end
diaphragm is subjected to a concentrated load at its center

top surface A. Its geometry parameters, presented in Fig. 11a
are a length L = 600, a radius R = 25 and a thickness t =
0.25. Due to the symmetry of the model, only a quarter of
the cylinder is considered in simulations. The Young’s mod-
ulus is E = 3e − 6 and the Poisson’s ratio is ν = 0.3.
This typical benchmark problem is very useful to determine
the capacity of an element to deal with inextentional bend-
ing modes and complex membrane states. The vertical dis-
placement of point A is compared to the reference solution
Uy = 1.8248 e−5. Irregular meshes, as in Fig. 11b, created
using a technique presented in Nguyen-Thanh et al. [49] are
also studied. Results for different mesh sizes are presented
in Table 3 and in Fig. 12.

From Table 3, it is seen that when the number of smooth-
ing cells is increased from 1 to 4 in the RH8s-X element, the
displacement of point A decreases progressively, approach-
ing the result obtained with the classical RH8 element. The
same observation can be made for both regular and irregular
meshes. In terms of result accuracy, the proposed element
remains the best for regular and irregular meshes among the
resultant shell elements. Thus, RH8s-1 is here again the best

Table 2 The normalized results
of Cook membrane problem Element number SC8R Xsolid85 SH8 RH8 RH8s-1 RH8s-2 RH8s-4

2 × 2 1.112 0.495 0.492 0.492 1.259 0.784 0.547

4 × 4 0.963 0.765 0.763 0.763 1.032 0.928 0.810

8 × 8 0.974 0.953 0.922 0.922 1.008 0.980 0.941

16 × 16 0.987 0.98 0.979 0.979 1.003 0.995 0.985

Fig. 11 Pinched cylinder with
end diaphragm problem

L/2 = 300
F = 1
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Table 3 The normalized results of pinched cylinder with end diaphragm problem

Regular mesh

Element number SC8R Mist1 Mist2 Mist4 Xsolid85 SH8 RH8 RH8s-1 RH8s-2 RH8s-4

4 × 4 0.453 0.475 0.442 0.388 0.382 0.383 0.375 0.478 0.417 0.392

8 × 8 0.785 0.809 0.788 0.755 0.751 0.75 0.746 0.81 0.782 0.758

16 × 16 0.945 0.957 0.948 0.935 0.932 0.935 0.929 0.955 0.945 0.934

32 × 32 0.995 − − − 0.991 0.989 0.989 0.997 0.993 0.99

Irregular mesh

Element number SC8R SH8 RH8 RH8s-1 RH8s-2 RH8s-4

4 × 4 0.458 0.369 0.361 0.461 0.4 0.377

8 × 8 0.784 0.742 0.739 0.811 0.775 0.751

16 × 16 0.953 0.928 0.927 0.963 0.948 0.933

32 × 32 0.999 0.988 0.988 0.997 0.994 0.989
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Fig. 12 Pinched cylinder with end diaphragm problem normalized
results

configuration of the proposed eight-node elements. It is worth
noting that the RH8 element remains slightly more sensitive
to mesh distortion than the RH8s-X elements providing a
lowest accuracy in the case of an irregular mesh. The con-
vergence rate of the Mistk elements is similar to that of the
RH8s-X elements.

7.3 Scordelis–Lo roof problem

The Scordelis–Lo roof problem was first introduced by
Scordelis and Lo [70]. Since then, many researchers have
used it as a standard benchmark problem to check membrane
as well as bending shell elements performance. The geom-
etry parameters of the simple curved structure illustrated in
Fig. 13a are a length L = 50, a radius R = 25 and a thickness t
= 0.25. The material used has a Young’s modulus E=4.32e8
and a Poisson’s ratio ν = 0.0. The end diaphragms, located
at each extremity of the structure, are taken into account
using the boundary conditions ux = uy = 0. As was the
case for the pinched cylinder with end diaphragm problem,
the symmetry of the model allows one to consider only a
quarter of the structure in the calculation. The vertical dis-
placement of point A is compared to the reference solution
Uy = −0.3024. The proposed element capability is tested
using a regular as well as an irregular mesh configuration,
as illustrated in Fig. 13b. The convergence of the numerical
results towards the analytical solution is then presented in
Table 4 and in Fig. 14.

From Table 4 it is seen that when the number of smoothing
cells increases from 1 to 4 in the RH8s-X, the displacement of
point A decreases progressively, approaching the reference
analytical solution and the result obtained with the classi-
cal RH8 element. The same observation could be made for
both regular and irregular meshes. Among the eight-node ele-
ments, the classical RH8 and the SH8 are the most accurate
when the mesh is regular and their results offer a better con-
vergence rate towards the reference solution than the results
of the proposed RH8s-X elements. However, when an irreg-
ular mesh is used, the proposed RH8s-X elements converge
faster towards the reference solution than the other resul-
tant elements. Moreover, RH8s-4 remains the most accurate
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Fig. 13 Scordelis–Lo roof
problem
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Table 4 The normalized results of Scordelis-Lo roof problem

Regular mesh

Element number SC8R Mist1 Mist2 Mist4 SH8 RH8 RH8s-1 RH8s-2 RH8s-4

4 × 4 1.206 1.168 1.06 0.977 1.035 1.031 1.297 1.179 1.089

8 × 8 1.041 1.028 1.001 0.976 1.019 1.018 1.096 1.68 1.041

16 × 16 1.010 1.008 1.001 0.995 1.009 1.009 1.035 1.028 1.021

32 × 32 1.000 − − − 1.000 1.000 1.012 1.010 1.008

Irregular mesh

Element number SC8R SH8 RH8 RH8s-1 RH8s-2 RH8s-4

4 × 4 1.281 1.075 1.071 1.382 1.245 1.135

8 × 8 1.027 0.95 0.949 1.086 1.005 0.973

16 × 16 1.010 1.000 1.000 1.036 1.022 1.013

32 × 32 0.998 0.995 0.995 1.010 1.007 1.004

resultant element emphasizing the ability of SFEM technique
to deal with membrane and bending problems without any
locking. It is also noteworthy that the convergence rate of the
Mistk elements is better than that of the RH8s-X elements.

7.4 Pinched hemispherical with 18o hole problem

This problem was initially proposed to examine the element
capacity to deal with inextentional bending modes and rigid
body movements. The double curvature geometry used in
this problem is a severe test and a great way to estimate the
Jacobian transformation accuracy. A hemispherical with a
hole of 18o is subjected to two opposed concentrated loads
Fx = 1 and Fy = −1, as presented in Fig. 15. Its radius is R
= 10 and its thickness is t = 0.04. The Young’s modulus is
E = 6.825e7 and the Poisson’s ratio is ν = 0.3. Once again,
given the problem symmetry, only a quarter of the geometry

was studied. The reference analytical point A displacement
proposed in Macneal and Harder [71] was 9.4e-2. Results for
different mesh sizes are presented in Table 5 and in Fig. 16.

From Table 5 it is seen that when the number of smooth-
ing cells increases from 1 to 4, the displacement of point A
decreases progressively from an overestimated to an under-
estimated solution approaching the result obtained with the
classical RH8 element. The RH8s-1 element remains more
accurate than the other elements as well as the latest Schwarze
and Reese [23] element for refined mesh. However, the other
RH8s-2 and RH8s-4 elements have a better convergence rate
to the reference solution.

8 Concluding remarks

A review of existing developments using the SFEM is pro-
posed in the introduction of this paper. Even though some
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results

issues are still opened, it should be noted that the SFEM is
already used in both shell and solid element formulations.
Open issue examples are, for instance, found in Nguyen-
Xuan [52] who have emphasized the necessity to introduce
in their solid element formulation based on the SFEM a sta-
bilization procedure to compensate for the induced rank defi-
ciency and to increase its accuracy. However, this last point
still needs some development. The present work has demon-
strated that solid-shell elements can also successfully take
advantage of this method through the resultant stress theory.
Following some recent contributions, such as in Nguyen-
Thanh et al. [49], a 3D variational formulation has been
developed yielding in a set of resultant solid-shell elements
with smoothed membrane and bending strains. In the pro-
posed element the membrane and bending stiffness matrix
integration is transferred to the boundary of cells defined
on the mid-surface. No intrinsic shape function derivative
and no transformation Jacobian matrix inverse calculation
are required which makes the element easier to implement
than a classical resultant shell element. Moreover, only the
normal vectors of four cell boundaries are required per cell to
integrate the membrane and bending part of the proposed ele-
ment. The corresponding theoretical aspects of this method
are presented. An accurate calculation of the Jacobian matrix
allows the proposed element to represent very well plate and
double curved structures. This element remains accurate even

Table 5 The normalized results of pinched hemispherical problem

Element number SC8R Xsolid85 Sch2009 SH8 RH8 RH8s-1 RH8s-2 RH8s-4

4 1.138 1.058 1.043 1.055 1.024 1.073 1.037 1.030

8 1.035 1.005 1.002 1.001 0.994 1.016 1.003 0.997

16 1.005 – 0.993 0.992 0.990 1.001 0.996 0.992

20 0.995 – – 0.992 0.991 0.999 0.996 0.992

123



124 Comput Mech (2015) 55:105–126

with highly distorted meshes and even provides the best accu-
racy among the tested resultant shell elements. Several 3D
numerical benchmark problems have been used as evaluation
tools, revealing the efficiency of the SFEM, when compared
to the classical FEM in membrane and bending problems. In
accordance with Theorem 3 of Liu et al. [36], it is observed
that the solution obtained with SFEM elements will approach
the standard compatible displacement FEM model when the
number a smoothing cells increases. The RH8s-1 configu-
ration generally gave the closest results regarding the ana-
lytical reference solution in the tested benchmark problems.
However, this configuration could be exposed to hourglass
modes. Much like in Nguyen-Thanh et al. [49], the authors
of the present paper believe that the RH8s-2 configuration is
the most acceptable configuration. With two surface smooth-
ing cells, the present eight-node resultant solid-shell element
does not require any stabilization to remain stable and accu-
rate either for regular or distorted meshes. Only the linear
elastic aspect is considered in this contribution. However,
the authors believe that the SFEM could remain efficient
in non-linear geometric context given the work initiated in
Élie-Dit-Cosaque et al. [57]. In addition, the classical ANS
technique used in the present element to approximate the
transverse shear and transverse normal strains has been suf-
ficient enough to avoid trapezoidal as well as shear locking
in the test problems. Nevertheless, the accuracy of this tech-
nique could be significantly reduced in case of highly dis-
torted meshes and very small thicknesses. Inspired by Wu &
Wang [50], investigations on the extension of the SFEM to
the two other effects, i.e the transverse shear and through-
the-thickness effects, could be a good axis of development
for future work.
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