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Abstract Decohesion undergoing large displacements
takes place in a wide range of applications. In these prob-
lems, interface element formulations for large displacements
should be used to accurately deal with coupled material
and geometrical nonlinearities. The present work proposes
a consistent derivation of a new interface element for large
deformation analyses. The resulting compact derivation leads
to an operational formulation that enables the accommoda-
tion of any order of kinematic interpolation and constitutive
behavior of the interface. The derived interface element has
been implemented into the finite element codes FEAP and
ABAQUS by means of user-defined routines. The interplay
between geometrical and material nonlinearities is investi-
gated by considering two different constitutive models for
the interface (tension cut-off and polynomial cohesive zone
models) and small or finite deformation for the continuum.
Numerical examples are proposed to assess the mesh inde-
pendency of the new interface element and to demonstrate
the robustness of the formulation. A comparison with experi-
mental results for peeling confirms the predictive capabilities
of the formulation.
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1 Introduction

In recent years, cohesive zone models (CZMs) have been
used in a variety of engineering applications concerning the
formation of free surfaces due to the development of fracture
processes. Relying on the seminal work of Barenblatt [1],
CZMs have been massively incorporated into computational
frameworks, especially in the context of the nonlinear finite
element (FE) method, as a consequence of two primary rea-
sons: (i) the high versatility of the approach to accommodate
different phenomenological fracture events, and (ii) the rela-
tive simplicity to numerically implement interface elements
as user defined subroutines into research and commercial FE
codes. In this context, the basic ingredient that character-
izes CZMs is the so-called nonlinear traction-displacement
jump relationship which relates the cohesive tractions to the
relative opening and sliding displacements at the interface,
where various contributions have been proposed, see [2–5]
for a wide review of formulations and a recent special issue
on the topic.

Applications cover several fields and range from quasi-
static fracture in quasi-brittle solids [6,7] with special atten-
tion to modelling snap-back instabilities during crack prop-
agation [8,9], crack propagation in composites [10–12],
coupled thermo-mechanical applications [13–15], microme-
chanical and multi-scale analyses [16–18], fracture and con-
tact at interfaces [19], combination of friction and cohesive
fracture at interfaces [20,21], and flaw-tolerance assessment
in bio-inspired materials [22,23], among others.

Specific contributions related to finite elements regarded
the study of the effect of the numerical integration of interface
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elements [24], ill-conditioning situations [25], convergence
issues [26,27] and the use of a set of overlapping cohesive
segments [28].

In applications regarding thin structural elements sub-
jected to large displacements, as, e.g., in biological mem-
branes, paper sheets, elastomers, viscoelastic materials for
the encapsulation of solar cells, the complexity relies on the
fact that during the simulation the deformed configuration
cannot be approximated by the underformed one due to the
occurrence of large displacements. Therefore, the computa-
tion of the interface gap (global or projected over a local
reference basis) according to the initial underformed geom-
etry can lead to errors depending upon the specific applica-
tions and materials tested. Thus, large displacement analyses
require tracking of the surface separation, the relative rota-
tions between the two sides of the interface and the simulta-
neous deformation of the two bodies separated by the inter-
face. A pioneering attempt to solve this problem is due to
Ortiz and Pandolfi [29], who suggested the adoption of a ref-
erence middle surface of the cohesive element in the current
configuration to define a convenient (deformed) surface for
the calculation of the normal and tangential directions to the
interface. Nevertheless, their resulting formulation specified
for a quadratic 3D interface element for matching tetrahe-
dra and stemming from the differentiation of the cohesive
tractions with respect to the normal unit vector to the middle
surface led to a non-symmetric geometric stiffness matrix.
In [30], a 3D large displacement interface element was used
based on the aforementioned formulation in order to simulate
standard fracture mechanics tests in thin aluminum panels. In
that case, a residual with a rotation matrix updated along the
deformation process was considered, whereas its consistent
linearization did not take into account the dependence of the
standard B-operator with respect to the kinematic field.

In [31], an alternative formulation for a 2D interface ele-
ment in large displacements was proposed by introducing
a non symmetric co-rotational reference system coincident
with one of the two deformed sides of the interface. As also
admitted by the authors, this co-rotational description leads
to a very complex formulation of cumbersome implementa-
tion. Approximate 2D and 3D formulations with emphasis on
the problem of interface fibrilation were recently proposed
in [32,33]. In this instance, the kinematics of the interface
element was assumed to be like that of 2D or 3D trusses
under large displacements and rotations. More recently, an
interface element in large displacements for fully coupled
thermo-mechanical applications was proposed in [34]. The
authors defined the CZM relation in a global reference sys-
tem, similarly to the method proposed in [32], but did not
consider a CZM relation that takes into account the contri-
bution of different fracture modes. Although this could be
an advantage to simplify the burn of the linearization of the
residual, actually it requires the use of integrated formula-

tions to deal with the transition from small to large displace-
ment regimes as suggested in [32]. Moreover, to the present
authors’ view, the geometrical contribution to the stiffness
matrix was not clearly addressed in [34].

The objective of this paper is concerned with the develop-
ment of a consistent interface element formulation for mate-
rial and geometrical nonlinearities and the derivation of its
corresponding FE implementation. The starting point of the
consistent derivation is the analysis of the interface contribu-
tion to the Principle of Virtual Work of the whole mechanical
system, its virtual variation, discretization and then lineariza-
tion. As shown in the next sections, the resulting derivation
leads to a simple and compact operational formulation in
which the geometric and the material contribution to the ele-
ment stiffness matrix are clearly identified. In addition to this,
one of the most appealing aspects of the model herein pro-
posed relies on its versatility to accommodate any 2D and 3D
finite element typologies along with any interface decohesion
law, without any lack of generality.

The article is organized as follows. In Sect. 2, the govern-
ing equations of the large displacement interface formulation
and the corresponding FE discretization are established. The
constitutive models for the bulk and for the interface used
in this investigation are then briefly outlined in Sect. 3. In
particular, a tension cut-off model and a polynomial CZM
are considered as two limit cases representative for very brit-
tle or ductile interface performances. Section 4 addresses the
main issues regarding the FE implementation in the context
of the classical iterative Newton–Raphson solution scheme.
Section 5 presents a series of test problems, applications to
peeling and proves the robustness of the formulation and its
ability to capture experimental results related to peeling tests
of very thin layers. Finally, the main conclusions are given
in Sect. 6.

2 Large displacement interface model and FE
formulation

2.1 Variational framework

The point of departure of the present formulation relies on
the interface contribution to the expression of the Principle
of Virtual Work of the whole system. Let us to assume two
deformable bodies B(i)

0 (i = 1, 2) in the reference configu-
ration (denoted as Bulk-1 and Bulk-2 in Fig. 1), which could
have different constitutive relations that characterize their
mechanical performance. As customary, both bodies are sub-
jected to the external body forces F(i)

v (i = 1, 2). The bound-
ary conditions applied on their boundaries are ti = t̂i on
∂Bi

0,t and ui = ûi on ∂Bi
0,u (i = 1, 2).

The bodies undergo a motion φ : B0 × [0, t] → R3,
where [0, t] is the time step interval, that maps the reference

123



Comput Mech (2014) 54:1569–1581 1571

Fig. 1 A schematic definition of two bodies separated by a cohesive
interface

material points (X ∈ B0) onto the current material points
(x ∈ B), such that x = φ(X, t). The deformation gradient
of the transformation is defined as F := ∂Xφ(X, t), with the
Jacobian J = det[F] and ∂X denoting the partial derivative
with respect to the reference frame. Moreover, it is supposed
that the interface between both solids is characterized by the
presence of a cohesive surface S0.

Focusing our attention on the analysis of the interface
between the solids, the contribution of the interface cohesive
tractions T, acting on S0, to the Principle of Virtual Work of
the mechanical system in the reference configuration is:

�intf(gloc) =
∫

S0

gT
locT dS (1)

where gloc is the gap vector accounting for opening and slid-
ing displacements between the two sides of the interface.
Note that, due to the geometrical nonlinearity, the traction
vector previously defined corresponds to the nominal first
Piola–Kirchhoff tractions related to the local basis of the
interface in the reference configuration.

It is worth noting that in the large deformation setting, the
gaps vector vanishes when the body undergoes rigid body
motions, thus confirming the frame indifference of the for-
mulation proposed in this paper.

The virtual variation of �intf according to the principle of
virtual displacements reads:

δ�intf(gloc) =
∫

S0

(
∂gloc

∂u
δu

)T

TdS

= δuT
∫

S0

(
∂gloc

∂u

)T

TdS (2)

In case of large displacements, the updated coordinates of
a generic point are given by x = X + u, see Fig. 2.

Fig. 2 Kinematics definition of the interface along the deformation
process

Fig. 3 Sketch of the interface element with node numbering and inte-
gration points

As is generally proposed for interface formulations, it is
convenient to define a middle line (in the 2D case) in the
updated configuration by averaging the position vectors and
the displacement fields of the upper and lower sides of the
interface, see Fig. 3 after performing a standard discretization
process. Hence, the position vector x of a generic point along
this middle line can be determined by pre-multiplying the
positioning vector x by an averaging operator M:

x = Mx (3)

2.2 FE formulation

Based on isoparametric interpolation, the position vector at
the interface can be approximated through:
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x ∼= xe = Nxn (4)

where xn denotes the nodal position vector (the superscript n
identifies nodal quantities), and N is the operator that collects
the shape functions and it depends on the natural coordinate
of the element ξ . Introducing now the discretization of the
interface into Eq. (3), the interpolated average position vector
yields:

x ∼= xe = NMxn (5)

Similarly, the coordinates of the points belonging to the
middle line in the reference configuration, X, and their dis-
placement vector, u, can be computed via a standard inter-
polation procedure from the nodal quantities

X ∼= X
e = NMXn, u ∼= ue = NMd (6)

where Xn and d denote the position vector of the nodes in the
reference configuration and their nodal displacement vector,
respectively.

In 2D, the tangential and the normal vectors t and n to the
middle line of the interface element used to define the local
frame are given by:

t = ∂xe

∂ξ
, n · t = 0 (7)

Note that in 3D applications, in line with the derivation pro-
posed in Ortiz and Pandolfi [29], the convective tangential
and normal vectors to the middle surface of the interface ele-
ment (t1, t2 and n) used to define the local frame are deter-
mined via differentiation of the average coordinates with
respect to the natural coordinates ξ and η:

t1 = ∂xe

∂ξ
, t2 = xe

∂η
, n = t1 × t2 (8)

The gap vector in the reference cartesian frame, g, can be
obtained by pre-multiplying the nodal displacement vector
d by a suitable operator L which provides the difference
between the displacements of the upper and the lower bodies
at the interface. Accordingly, within the FE discretization we
have:

g ∼= ge = NLd (9)

The constitutive relation for the interface, i.e., the so-called
CZM, is usually provided in a local frame defined by the
normal and the tangential vectors to the average line of the
interface element in order to distinguish between fracture
Modes I and II, as introduced in Eq. (7). Therefore, the gap

vector in this local frame, gloc, has to be computed by mul-
tiplying the gap vector in the reference frame by a rotation
operator R:

gloc = R(u)g (10)

It is remarkable to note that, in case of large displacements,
the operator R(u) is a function of the displacement field. Its
expression is detailed in Sect. 4 for the 2D case that repre-
sents the main scope of the present work (the 3D version can
be derived adapting the formulation here developed). Conse-
quently, a consistent formulation must take into account this
dependency in the subsequent linearization of the discretized
version of the interface contribution to the Principle of Virtual
Work within the classical Newton–Raphson iterative solution
scheme. This dependency will lead to the so-called geomet-
ric contribution to the element stiffness matrix. Introducing
the FE discretization, Eq. (10) can be rewritten as:

ge
loc = R(d)NLd (11)

Examining the terms entering the virtual variation of the
virtual work in Eq. (2), the partial derivative (∂gloc/∂u) is
approximated by:

∂gloc

∂u
∼= ∂ge

loc

∂d
= R(d)NL + ∂R(d)

∂d
NLd (12)

where the differentiation of the second order tensor R with
respect to the components of the vector d leads to a third
order tensor. The formulation will be simplified by omitting
the second derivative of the rotation matrix with respect to the
displacement vector that arises from the linearization of Eq.
(12), see Eq. (17). This vanishes in case of linear displace-
ment interpolation under the assumption that the norm of the
tangent vector t does not depend on the displacement field.
In this regard, we also assessed the role of this term based
on representative numerical tests adopting alternative inter-
polation schemes. It was found that this term has an almost
negligible effect on the results and it is therefore reasonable
to be neglected.

The operator B = NL is now introduced and Eq. (12) can
be rephrased as:

∂ge
loc

∂d
= RB + ∂R

∂d
Bd (13)

The matrices R and B are evaluated at the element level,
though the typical superscript (e) has been omitted here to
simplify the notation.

Inserting this intermediate result into the discretized ver-
sion of Eq. (2), where u is simply replaced by d, the following
general formulation valid for any kind of interface element
topology dealing with geometric and material nonlinearities
is derived:
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δ�e
intf = δdT

∫
S0

(
RB + ∂R

∂d
Bd

)T

T dS (14)

The solution of the variational equation δ�e
intf = δdTfe,k

intf

= 0 ∀δd results in the equations set fe,k
intf = 0, where fe,k

intf is a
nonlinear function of the unknown d and assumes the role of
the residual vector in the Newton–Raphson iterative scheme:

fe,k
intf =

∫
S0

(
RB + ∂R

∂d
Bd

)T

T dS (15)

which leads to the following equations set for the computa-
tion of the corrector �d at each iteration k:

Ke,k�d = −fe,k
intf (16a)

dk+1 = dk + �d (16b)

To alleviate the notation, the superscript k will be omitted in
the sequel. Following standard arguments of nonlinear FE
formulations, the element stiffness matrix Ke is obtained
from the linearization of the residual, i.e., Ke = ∂fintf/∂d
and it is evaluated by using the displacement field solution
at the iteration k:

Ke =
∫

S0

[
2BT ∂RT

∂d
T +

(
BTRT + dTBT ∂RT

∂d

)
∂T
∂d

]
dS

(17)

In this derivation, as it was already stated, the second-order
differentiation of the rotation matrix R was omitted.

The derivative of the cohesive traction vector T with
respect to the displacement vector d can be determined via a
chain rule differentiation:

∂T
∂d

= ∂T
∂gloc

gloc

∂d
= C

(
RB + ∂R

∂d
Bd

)
(18)

where C = ∂T
∂gloc

represents the tangent interface consti-

tutive matrix whose expression will be detailed in the next
section.

After some algebra we obtain the following result:

Ke =
∫

S0

BTRTCRB dS

+
∫

S0

[
2BT ∂RT

∂d
T + dTBT ∂RT

∂d
C

∂R
∂d

Bd

+ BTRTC
∂R
∂d

Bd + dTBT ∂RT

∂d
CRB

]
dS (19)

Summarizing, the tangent stiffness matrix which accounts
for both the material and the geometric contributions reads:

Ke = Ke
mat + Ke

geom (20a)

Ke
mat =

∫
S0

BTRTCRB dS (20b)

Ke
geom =

∫
S0

[
2BT ∂RT

∂d
T + dTBT ∂RT

∂d
C

∂R
∂d

Bd

+
(

BTRTC
∂R
∂d

Bd + dTBT ∂RT

∂d
CRB

)]
dS

(20c)

In case of small displacements, Eq. (20) reduces to the
standard form of the material contribution to the element
stiffness matrix, Eq. (20b). In case of large displacements,
the complete tangent stiffness matrix is composed of four
terms, see Eq. (20c). Only the first one, involving the com-
putation of the cohesive traction vector T is not symmetric.
Therefore, a nonsymmetric solver has to be used. However,
in case of a symmetric constitutive matrix C for the interface,
as it happens in case of the same CZM parameters for Mode
I and Mode II, we explored the possibility to neglect the non
symmetric contribution to Kgeom . The examples discussed
in Sect. 5 will show that this will not affect the accuracy of
the solution and slightly penalize the convergence rate. The
omission of this term, on the other hand, makes it possible
the use of symmetric solvers. This fact represents an obvious
advantage in case of massive computations.

3 Material models

With reference to the continuum, to assess the effect of large
displacements on debonding of thin structures, both a small
deformation and a large deformation versions of a standard
homogeneous isotropic hyperelastic material model are con-
sidered in the sequel. The derivation is here omitted for the
sake of brevity. The readers can refer to [35] for more details.

Regarding the cohesive traction vector T, with the aim
of quantifying the role of the geometric nonlinear effects
along the decohesion process, two different types of interface
constitutive laws are examined.

First, a tension cut-off CZM is considered, with uncou-
pled Mode I and Mode II deformation. This type of CZM
has the advantage of allowing for closed form solutions for
specific testing configurations, like for the double cantilever
beam test [36]. The stiffness of the CZM can be related to
the Young’s modulus E and to the thickness of the adhesive
h, i.e. k = σmax/ lnc ∼ E/h where σmax and lnc denote the
critical traction for damage initiation and the critical relative
displacement, respectively. In this approach, when the crack
sliding or opening displacements overcome a critical value
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corresponding to the achievement of the adhesive strength,
σmax, the interface suddenly debonds. Since such critical rel-
ative displacements for failure are very small quantities in
applications, the process zone size is expected to be quite
small and limited within a region very close to the real crack
tip, where displacements are moderately small.

The cohesive traction vector T = (τ, σ )T reads:

τ = τmax
gloc,t

ltc
(21a)

σ = σmax
gloc,n

lnc
(21b)

where gloc,t and gloc,n are the tangential and normal compo-
nents of the gap vector gloc, whereas ltc and lnc are the critical
sliding and opening displacements. The tangent constitutive
matrix stemming from the linearization of the CZM tractions
with respect to the gap vector is:

C =
⎡
⎢⎣

τmax

ltc
0

0
σmax

lnc

⎤
⎥⎦ (22)

As second formulation, we consider the polynomial CZM
by Tvergaard [37] as an example of an interface constitutive
relation where the cohesive traction vector T = (τ, σ )T is a
nonlinear function of the sliding and opening displacements
with a softening branch after reaching the maximum cohesive
tractions. For the same values of the parameters τmax, σmax

and of the initial stiffness as for the tension cut-off model, this
CZM has a larger fracture energy and therefore a more wide-
spread process zone is expected. In this model, the cohesive
tractions are given by

τ = τmax
gloc,t

ltc
P(λ) (23a)

σ = σmax
gloc,n

lnc
P(λ) (23b)

where

P(λ) =
{ 27

4

(
1 − 2λ + λ2

)
, for 0 ≤ λ ≤ 1

0, otherwise
(24a)

λ =
√(

gloc,n

lnc

)2

+
(

gloc,t

ltc

)2

(24b)

For this CZM, the tangent constitutive matrix reads:

C =

⎡
⎢⎢⎣

τmax
P

ltc
+ τmax

gloc,t

ltc

∂ P

∂λ

∂λ

∂gloc,t

τmax
gloc,t

ltc

∂ P

∂λ

∂λ

∂gloc,n

σmax
gloc,n

lnc

∂ P

∂λ

∂λ

∂gloc,t

σmax
P

lnc
+ σmax

gloc,n

lnc

∂ P

∂λ

∂λ

∂gloc,n

⎤
⎥⎥⎦ (25)

4 Matrix operators for FE implementation

This section covers the main features concerning the numer-
ical implementation of the large displacement interface ele-
ment formulation proposed in the previous section. Accord-
ing to the derivation presented in Sect. 2, we restrict our atten-
tion to the implementation of the element in a 2D version,
although Eqs. (18) and (19) are the same for 3D problems,
provided that a middle surface is introduced in analogy with
the middle line for the 2D case.

Let us to consider a 4 node bilinear interface element, see
Fig. 3. The corresponding shape functions to accomplish the
numerical integration are N1 = 1

2 (1−ξ) and N2 = 1
2 (1+ξ).

Each node has two degrees of freedom, so that the nodal
position and displacement vectors are arranged as:

X = (X1, Y1, X2, Y2, X3, Y3, X4, Y4)
T (26a)

d = (u1, v1, u2, v2, u3, v3, u4, v4)
T (26b)

where Xi , Yi identifies the cartesian coordinates correspond-
ing to the node i and ui and vi stands for the corresponding
displacements along the X and Y directions.

The gap and the traction vectors that characterize the CZM
are evaluated in correspondence of each integration point, so
that:

gloc = (gloc,t, gloc,n)
T (27a)

T = (τ, σ )T (27b)

Next, the matrix operators defined in Sect. 2 to determine
the coordinates and the gaps of the points belonging to the
interface middle line take the form:

N = [
N1I N2I

]
(28a)

M = 1

2

[
I 0 0 I
0 I I 0

]
L =

[−I 0 0 I
0 −I I 0

]
(28b)

where 0 is a 2 × 2 null matrix and I is a 2 × 2 identity
matrix. As previously stated, the CMZ is evaluated at the local
reference system that is defined by the tangential vector t and
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the normal vector n to this middle line. Thus, the rotation
operator yields:

R =
[

tx ty

nx ny

]
(29)

where:

tx = ny = X2 + u2 + X3 + u3 − X1 − u1 − X4 − u4

2‖t‖
ty = −nx = Y2 + v2 + Y3 + v3 − Y1 − v1 − Y4 − v4

2‖t‖
and the symbol ‖.‖ denotes the Euclidean norm of the corre-
sponding vector. Note that, differing from previous interface
formulations [38], this operator is evaluated at each integra-
tion point at the element level.

The operator stemming from the third order tensor has
to be computed with care. For the present particular case it
renders:

∂R
∂d

Bd =
[−a −b +a +b +a +b −a −b

−b +a +b −a +b −a −b +a

]
(30)

where a = −N1u1 − N2u2 + N2u3 + N1u4

2‖t‖ and b =
−N1v1 − N2v2 + N2v3 + N1v4

2‖t‖ .

The remaining operations to accomplish are straightfor-
ward, and therefore are omitted here for the sake of concise-
ness.

The algorithmic treatment of the proposed formulation,
implemented by the present authors both in the Finite Ele-
ment Analysis Program FEAP and in the commercial soft-
ware Abaqus as user defined subroutines, is summarized in
the following sequence of main operations, see Algorithm 1.
Note that the external loop over j refers to the numerical inte-
gration, whereas the variable nlgeom indicates a flag defined
in the input file to select between: (i) small displacement for-
mulation (nlgeom = 0) or (ii) large displacement formula-
tion (nlgeom = 1).

5 Numerical examples

In this section, the numerical performance of the pro-
posed element is illustrated. To this aim, two applications
are selected. First, we investigate the element capabilities
through a series of benchmark problems to highlight the
principal capabilities that the present element formulation
incorporates. Second, a structural application consisting of
a peeling test is addressed. Small or finite displacement for-
mulations for the continuum and for the interface element
are examined, along with two different CZM formulations.

Data: Given: Xe, d, �d, �t
if nlgeom > 0 then

Update the geometry: xe = Xe + d;
else

xe = Xe;
end
Construct L;
Loop over the integration points;
for j = 1 to 2 do

Evaluate shape functions and derivatives;
Compute the local basis vectors [t, n] and rotation matrix R;
Construct N;
Perform B = NL;
Compute RB → (RB)T ;
Evaluate T, C according to the selected CZM;

end
if nlgeom > 0 then

Perform: ∂R
∂d Bd;

Construct the geometrical stiffness matrix Ke
geom, Eq. (20c);

Compute the geometric part of the residual vector fe
intf ,

second term of Eq. (15)
else

Compute the material part of the residual vector fe
intf ,first term

of Eq. (15)
end
Evaluate the material contribution to the stiffness matrix Ke

mat,
Eq. (20b);
if nlgeom > 0 then

Ke = Ke
mat + Ke

geom

else
Ke = Ke

mat
end
Update stiffness matrix and r.h.s. vector;

Algorithm 1: Numerical implementation of the large
displacement interface element.

5.1 Benchmark tests

A preliminary test problem shown in Fig. 4a is analyzed in
order to assess the performance of the new interface ele-
ment for large displacements as compared to a standard for-
mulation for small displacements. This benchmark problem
aims at investigating the interplay between geometric and
material nonlinearities, an issue not yet rigorously quanti-
fied in the related literature. Therefore, as was previously
stated, we consider small or large deformation hyperelastic
material models for the continuum in order to investigate the
role played by the different interface element formulations in
these two cases. Hence, each numerical test will be identified
by labels X−Y (Z). Whereas X refers to the interface element
formulation and it can be S or L depending on the small or
the large displacement formulation used, the second label Y
stands for the constitutive model of the continuum and again
it can be S or L depending on the small or large deformation
theory adopted for the hyperelastic material. The symbol Z
in parenthesis denotes the solver used (s for symmetric solver
or u for a non symmetric solver).
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Fig. 4 Sketch of the geometry of the 2-blocks Mixed Mode test prob-
lem and illustration of the normal cohesive traction-normal gap CZM
relations used in the simulations

In this benchmark problem, two blocks of lateral size 1 mm
and different heights are discretized by a single FE each. The
lower block of unit height has a Young’s modulus E1 = 500
MPa in order to simulate an almost rigid substrate, whereas
the upper block has a height of 0.1 mm and a Young modu-
lus E2 = 5 MPa to simulate a highly deformable elastomeric
tape or a paper sheet. Both materials have a vanishing Pois-
son’s ratio and the simulations are conducted under plane
strain assumption. An interface element is placed between
the two blocks and its CZM can have either a tension cut-off
or a polynomial form, see Fig. 4b for the Mode I relations
(Sect. 3). The values of the CZM parameters σmax and τmax

are selected the same for both the tension cut-off and the poly-
nomial CZMs, to perform a consistent comparison. On the
other hand, the fracture energy of the tension cut-off model
is much smaller than that of the polynomial CZM, as it can
be readily visualized in Fig. 4b from the different area under
the respective traction-separation relations. The value of lnc

in the tension cut-off model has been selected so that the
tension cut-off curve is tangent to the polynomial CZM at
gloc,n = 0.

As far as the boundary conditions are concerned, a non-
uniform Mixed Mode debonding problem is simulated by
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Fig. 5 Total force versus imposed displacement for the test problem
in Fig. 4a and different CZM formulations for an interface tougher in
Mode I than in Mode II (σmax/τmax = 10). (S–S): small displacement
interface element and small deformation continuum; (L–S): large dis-
placement interface element and small deformation continuum; (S–L):
small displacement interface element and large deformation continuum;
(L–L): large displacement interface element and large deformation con-
tinuum

restraining the first block at the basis and imposing a lin-
ear vertical displacement variation to the upper side of the
second block. This testing configuration has been chosen
because leads to large displacements at the interface during
the deformation process and therefore Mode Mixity [39]. In
other types of loading, such as uniform Mode I debonding,
uniform Mode II debonding or uniform Mixed Mode debond-
ing, the response of the interface element would be in fact
the same regardless of the small or large displacement for-
mulation used, since the orientation of the local frame does
not change during the deformation process. These trends are
consistent with the results reported in [32], although they
were based on an approximated large displacement formula-
tion for the interface element deduced by the kinematics of
a beam element in large displacements and rotations.

The vertical reaction force F in the constrained node is
plotted versus the imposed displacement � in Fig. 5 for
an interface tougher in Mode I than in Mode II, i.e., with
σmax/τmax = 10 and lnc = ltc = 0.1 mm. The results for
the tension cut-off CZM are shown in Fig. 5a and those for
the polynomial CZM are depicted in Fig. 5b. Examining the

123



Comput Mech (2014) 54:1569–1581 1577

curves related to the tension cut-off CZM, Fig. 5a, we note
that, in case of the small deformation theory for the contin-
uum, curves labeled (S–S) and (L–S) are almost coincident
before the peak load, i.e., before complete debonding of the
first Gauss point of the interface. Note that the labels (s) and
(u) make reference to the symmetric or unsymmetric charac-
ter of the formulation. In this sense, the small displacement
case always leads to a symmetric stiffness matrix, whereas
the large displacement case provides a general unsymmetric
formulation, in which the role of the term that breaks the
symmetry (see Eq. (20c)) is examined.

After the peak load, an abrupt reduction in the interface
load-carrying capacity takes place and the structural response
is characterized by a lower stiffness until complete deco-
hesion takes place. In this respect, the large displacement
formulation for the interface predicts a much lower displace-
ment jump for complete debonding. A similar difference can
be noticed in case of a large deformation formulation for
the continuum, see curves labeled (S–L) and (L–L). Since
this CZM does not consider coupling between Mode I and
Mode II, i.e., the matrix C is diagonal, it makes sense to com-
pare the results for the large displacements interface element
formulation by considering the complete expression of the
tangent stiffness matrix and using a non symmetric solver
or the approximate symmetric expression and using a sym-
metric solver. As it can be seen from Fig. 5a, the results are
coincident.

In case of the polynomial CZM, the results have the same
trend as for the tension cut-off, just with much smoother
curves during the debonding process. In light of the previous
arguments, it is worth noting that for a given assumption
regarding the kinematics of the continuum, the use of a large
displacement formulation for the interface instead of its small
displacement counterpart has a predominant effect on the
softening branch of the F–� response. In this case, since
the matrix C is not symmetric due to the expression of the
CZM, a non symmetric solver has been always used and the
full expression for the geometric stiffness matrix has been
retained in the computations.

Examining the element performance in case of an inter-
face with the same fracture parameters in Mode I and in Mode
II (σmax/τmax = 1), see Fig. 6, we find that the discrepancy
between the predictions in case of large or small interface
element formulations are minimal. On the other hand, small
or large displacement formulations for the continuum signif-
icantly affects the post-peak branch. Since in this case the
matrix C is symmetric for both the CZM formulations, the
use of the complete non symmetric tangent stiffness matrix or
its symmetric version by neglecting the non symmetric con-
tribution to its geometric component have been compared
and the results are again coincident.

Finally, the last scenario to be inspected is represented by
the case of an interface much tougher in Mode II than in
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Fig. 6 Total force versus imposed displacement for the test problem
in Fig. 4a and different CZM formulations for an interface with the
same toughness in Mode I and in Mode II (σmax/τmax = 1). (S–S):
small displacement interface element and small deformation contin-
uum; (L–S): large displacement interface element and small deforma-
tion continuum; (S–L): small displacement interface element and large
deformation continuum; (L–L): large displacement interface element
and large deformation continuum

Mode I (σmax/τmax = 0.1), see Fig. 7. As far as the choice of
the symmetric or the non symmetric solver is concerned, the
same comments to the case when Mode I prevails over Mode
II apply. In this instance, since the loading test is predom-
inantly in Mode I, we observe a much lower peeling force
F in this benchmark test. Additionally, slight discrepancies
between the numerical predictions using large or small inter-
face element formulations are noticed.

Therefore, it is possible to draw the practical conclu-
sion that the large displacement formulation for the inter-
face should be primarily used in case of applications with
σmax > τmax, as, e.g., in fibrilation problems where the shear
strength of cellulose or polymeric fibrils is almost negligible
as compared to their axial strength.

5.2 Structural application: peeling test and comparison
with experiments

Examining now a structural problem where the large dis-
placement formulation for the interface element is deemed
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Fig. 7 Total force versus imposed displacement for the test problem
in Fig. 4a and different CZM formulations for an interface tougher in
Mode II than in Mode I (σmax/τmax = 0.1). (S–S): small displacement
interface element and small deformation continuum; (L–S): large dis-
placement interface element and small deformation continuum; (S–L):
small displacement interface element and large deformation continuum;
(L–L): large displacement interface element and large deformation con-
tinuum

to be crucial, a peeling test where a thin layer is pulled from
al almost rigid substrate by the action of a vertical displace-
ment imposed to the top right corner is considered (see the
final deformed shapes in case of (S–S) or (L–L) formulations
in Fig. 8). The material parameters for the bulks and for the
CZMs (tension cut-off and polynomial CZMs) are the same
as in the previous example, considering the case of an inter-
face tougher in Mode I than in Mode II (σmax/τmax = 10,
where the large displacement formulation for the interface
element was found to significantly differ from the small dis-
placement one. A non symmetric solver and the complete
expression for the tangent stiffness matrix are used.

The force–displacement curves for different kinematics
formulations are compared in Fig. 9. As a general trend,
the large displacement formulation for the interface element
leads to lower peak loads as compared to its small dis-
placement counterpart, for a given kinematical model of the
continuum. Large differences among the predictions of the
formulations can also be observed as far as the softening
branches are concerned.

F F

Fig. 8 Deformed meshes of the peeling test in case of small displace-
ment formulations for the continuum and the interface element (left
(S–S)) or large displacement formulations (right (L–L))
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Fig. 9 Total force versus imposed displacement for the peeling test in
Fig. 7 and different CZM formulations for an interface tougher in Mode I
than in Mode II (σmax/τmax = 10)). (S–S): small displacement interface
element and small deformation continuum; (L–S): large displacement
interface element and small deformation continuum; (S–L): small dis-
placement interface element and large deformation continuum; (L–L):
large displacement interface element and large deformation continuum

Additionally, some comments on the convergence of the
formulation herein proposed have to be added. First, from the
numerical point of view, the interface element formulation
was found to be quite stable, with the appearance of small
oscillations in the softening branches for the peeling test only
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Fig. 10 Mesh convergence study for the peeling test in Fig. 8. Mesh 1
corresponds to 25 elements along the interface, mesh 2—50 elements,
mesh 3—100 elements and mesh 4—200 elements

in case of the tension cut-off CZM. These effects are caused
by the sharp discontinuity in the traction-gap constitutive
relation leading to small jumps in the load when debond-
ing takes place in a given Gauss point, see Fig. 9a. These
small oscillations disappear in case of the polynomial CZM,
since a softening is included in the interface constitutive
relation.

Second, for the sake of completeness, the mesh conver-
gence of the method is tested by considering the polyno-
mial CZM and performing peeling tests as in Fig. 9b for
the (L–L) case, with different mesh refinement for the bulk
and the interface in the horizontal direction. In the coarsest
discretization (mesh 1), only 25 elements along the inter-
face are used. Finer meshes with 50 elements (mesh 2),
100 elements (mesh 3) and 200 elements (mesh 4) along
the interface are also considered. The corresponding load-
displacement curves are shown in Fig. 10, where an excel-
lent mesh-independency even for the coarsest mesh can be
observed.

The predictive capabilities of the proposed formulation
are finally checked against experimental results. To this aim,
a 90◦ peeling of a backsheet (0.1 mm thick, Young’s mod-
ulus 2.8 GPa, vanishing Poisson’s ratio, hyperelastic mate-
rial) from a glass substrate (4 mm thick, Young’s modulus
73 GPa, vanishing Poisson’s ratio, linear elastic material) is
simulated by modelling the adhesive response of the Epoxy
Vynil Acetate (EVA) interlayer via the polynomial CZM used
in the previous examples. The parameters to be identified are
the peak cohesive traction σmax and the fracture energy GIc,
which is proportional to the critical opening displacement lnc.
The same parameters for Mode I and Mode II deformation
are used and the symmetric formulation of the interface ele-
ment for large displacement analyses is adopted. The test is
conducted under plane strain conditions. Mesh and bound-
ary conditions are analogous to those displayed in Fig. 8,
although the upper layer is much thinner in the present prob-
lem. Four finite elements are used to discretize the back-
sheet through its thickness and 200 finite elements are used
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Fig. 11 Peeling of a backsheet from a glass substrate: numerical versus
experimental results taken from [40]

along the interface, considering an initial bonded length of
50 mm.

For this test, essential to ascertain the reliability of back-
sheet bonding in photovoltaic systems, experimental results
are reported in [40]. Since the material parameters and the
exact dimensions corresponding to the experimental force-
peel extension curve are not listed in [40], we use values
conforming to the standard materials used in PV production,
see [41]. Another source of uncertainty regards the way the
peeling extension is measured, since no details are provided
in [40]. In the numerical simulation we predict the peeling
extension via the location of the fictitious crack tip position.
Keeping in mind that, alternatively, the position of the real
crack tip could be used, this choice makes a certain difference
especially in the pre-peak branch of the force-peel extension
curve.

Numerical results are shown in Fig. 11 for GIc = 5.4
N/mm, which corresponds to the steady-state peeling force
measured in experiments. A series of curves obtained by
varying σmax in the range from 3.6 to 28.8 N/mm are dis-
played and are used to identify the value of σmax which pro-
vides the best agreement with experiments. In the present
case, we found σmax ∼ 5.8 N/mm, corresponding to the black
dashed curve in Fig. 11. The numerical methods is able to
predict the stead-state peeling force very well, in excellent
agreement with experiments. The pre-peak response, which
has the highest degree of inaccuracy in the real tests, is in
any case reasonably well reproduced.

6 Conclusions and outlook

In this paper, a consistent derivation of an interface element
for large displacements applications has been proposed.

The present theory finds its variational basis in the inter-
face contribution to the Principle of Virtual Work of the whole
mechanical system. Our present work, differing from alter-
native formulations presented in the literature, furnishes a
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consistent derivation of the interface model involving large
deformations. Particularly, the cohesive model herein devel-
oped takes into account the full finite kinematics in which
the material and the geometrical contributions to the element
stiffness matrix are clearly determined.

The corresponding FE discretization of the interface
model has been accomplished based on a linear two-
dimensional zero-thickness interface element for which the
fundamental operators and the implementation details have
been addressed. The compact and consistent theoretical
derivation allows its straightforward generalization to differ-
ent orders of the kinematic interpolation and to 3D topolo-
gies.

Numerical applications using two different cohesive inter-
face laws and with small or finite deformation kinematic
assumptions for the continuum have been examined in order
to assess the interface element performance. Particularly,
concerning the interface constitutive models, two laws have
been selected: (1) the so-called tension cut-off model, that
assimilates a quasi-brittle behavior of the interface, and (2)
the polynomial based Tvergaard model that was adopted for
simulating a ductile interface. The numerical results have
proven the applicability of the interface element proposed
especially in terms of its satisfactorily numerical conver-
gence in achieving equilibrium solutions, along with a mini-
mal mesh sensitivity. The predictive character of the method
has been demonstrated through the simulation of a peeling
test of a backsheet from a glass substrate, in which the ability
of the formulation to capture the nonlinear character of the
experimental trend is noteworthy.

In closing, we would like to emphasize that the developed
model is particularly promising in addressing real situations
undergoing large displacements, which commonly take place
in a wide range of engineering and biomechanical applica-
tions. This fact has been evidenced in the peeling simulations
included in this investigation where the role of finite displace-
ments has been highlighted. In case of problems involving
thin layers with an interface much tougher in Mode I than
in Mode II, as in fibrilation problems, the proposed interface
element for large displacements is recommended to be used
instead of its small displacement counterpart, to avoid a sig-
nificant overestimation of the peeling force, as shown in the
examples discussed in the present study.
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