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Abstract We propose a framework that combines varia-
tional immersed-boundary and arbitrary Lagrangian–
Eulerian methods for fluid–structure interaction (FSI) simu-
lation of a bioprosthetic heart valve implanted in an artery
that is allowed to deform in the model. We find that the vari-
ational immersed-boundary method for FSI remains robust
and effective for heart valve analysis when the background
fluid mesh undergoes deformations corresponding to the
expansion and contraction of the elastic artery. Further-
more, the computations presented in this work show that the
arterial wall deformation contributes significantly to the real-
ism of the simulation results, leading to flow rates and valve
motions that more closely resemble those observed in prac-
tice.
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1 Introduction

Heart valves are passive structures that ensure the unidirec-
tional blood flow through the heart by opening and closing
in response to hemodynamic forcing. Hundreds of thousands
of diseased valves are replaced by prosthetics annually [1,2].
Bioprosthetic heart valves (BHV) are prosthetics composed
of thin flexible leaflets that are fabricated from biological
materials and mimic the structure of native heart valves to
avoid pathological hemodynamics [2]. The principal draw-
back of this style of prosthetic is its durability, which is
limited to 10–15 years [3]. Accurate computational analysis
of these devices could provide insights into the mechanical
processes that both contribute to and follow from their dete-
rioration, streamlining the design process of new prosthetics.

The biomechanical significance of arterial elasticity was
first clearly described by Hales [4] in 1733, after performing
a series of pioneering experiments on animals. Hales found
that arteries expand elastically to store the systolic output of
the heart, then gradually release this blood during diastole.
This is now known as the Windkessel effect.1 Frank [5–7]
developed the first mathematical model of the Windkessel
effect in 1899. Frank’s model may be intuitively understood
through the electronic–hydraulic analogy [8], which substi-
tutes electrical current for volumetric flow and voltage for
pressure. In this analogy, Frank’s model—the two-element
Windkessel model—consists of a capacitor and resistor in
parallel, downstream of the aortic valve, which acts as a pul-
satile current source.

1 Windkessel translates from German to “air chamber”, and likely refers
to Hales’ original analogy between arterial compliance and the air-
filled cavities used to smooth hose output from eighteenth-century fire
engines.
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The capacitor models the elastic arteries, which accumu-
late blood to develop pressure, while the resistor models
viscous head loss within the circulatory system by analogy
to Ohm’s Law. This model allows prediction of the time-
dependent aortic pressure based on the history of flow rate
through the aortic valve. Many refinements to Frank’s model
have been proposed since his initial contribution, including
the three- [9], and four- [10] element Windkessel models.
Such models are referred to as “lumped-parameter models”.
Lumped-parameter models may be coupled with detailed
computational fluid dynamics (CFD) simulations of spe-
cific arterial sections of interest. The voltage of the lumped-
parameter model acts as a pressure boundary condition on the
outflow of the CFD domain, and the volumetric flow from
the CFD domain acts as a current source for the lumped-
parameter model [11]. However, to fully account for the
Windkessel effect of arterial elasticity, fluid–structure inter-
action (FSI) must be incorporated into the detailed model
of the section of interest. In this paper, we demonstrate that
the elasticity of the section of aorta immediately surround-
ing an implanted BHV can have profound effects on the
dynamics of both the valve itself and the surrounding blood
flow.

For the reasons discussed in our earlier work [12], we
simulate the BHV leaflets using a non-boundary-fitted (vari-
ational immersed-boundary) method, in which the structural
discretization is free to move independently through a back-
ground fluid mesh. Detailed reviews of non-boundary-fitted
methods for FSI can be found in Sotiropoulos and Yang [13],
Mittal and Iaccarino [14], and Peskin [15]. These methods are
particularly attractive for applications with complex moving
boundaries, such as heart valve leaflets [16–21]. However,
they have the inherent disadvantage of uncontrolled mesh
quality near the fluid–structure interface, and may be unable
to resolve important boundary layer features that may glob-
ally affect the flow.

More accurate results can be obtained using boundary-
fitted approaches by building a fluid mesh that is tailored to
the structure and deforms as the structure moves. In such
computations, the fluid subproblem may be posed using
an arbitrary Lagrangian–Eulerian (ALE) formulation [22–
24], or a space–time formulation [25–27], both of which
explicitly account for the motion of the fluid mechanics
domain and mesh. For the parts of an arterial FSI com-
putation with no contact between solid surfaces,the prob-
lem of mesh deformation may be effectively solved using
a simple fictitious linear elasticity problem [28–32]. This
makes vascular FSI an ideal application for boundary-fitted
approaches.

In the analysis of a BHV implanted in a deforming artery,
we are faced with the confluence of two problems that sug-
gest different computational methods. We therefore elect
to use a hybrid method that leverages the advantages of

both ALE and immersed-boundary techniques for FSI. We
discretize the valve leaflets separately, and immerse them
into a deforming boundary-fitted mesh of the artery vol-
ume. The proposed technique falls under the umbrella of the
recently proposed Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [33], a method that tar-
gets FSI problems in which interfaces that are possible
to track are tracked, and those too difficult to track are
captured. The FSITICT was introduced as an FSI version
of the Mixed Interface-Tracking/Interface-Capturing Tech-
nique (MITICT) [34]. The MITICT was successfully tested
in 2D computations with solid circles and free surfaces
[35,36] and in 3D computation of ship hydrodynamics [37].
Recently Wick [38,39] made use of the FSITICT approach,
coupling a boundary-fitted and immersed-boundary dis-
cretizations in a single computation, to compute several 2D
FSI benchmark problems.

Our immersed-boundary approach for FSI was first devel-
oped in Kamensky et al. [12] using the variational frame-
work of augmented Lagrangian methods. The augmented
Lagrangian approach for FSI was proposed in Bazilevs et
al. [40] to handle boundary-fitted computations with non-
matching fluid–structure interface discretizations. We found
in Kamensky et al. [12] that this augmented Lagrangian
framework can be extended to handle non-boundary-fitted
CFD and FSI problems, and its efficacy was demonstrated
using several computations including the coupling of a BHV
and surrounding blood flow at physiological pressure levels.

In this work, we take the augmented Lagrangian frame-
work for FSI as the starting point of our ALE/immersed-
boundary hybrid methodology. A single computation com-
bines a boundary-fitted, deforming-mesh treatment of some
fluid–structure interfaces with a non-boundary-fitted treat-
ment of others. This approach enables us to simulate the FSI
of a BHV implanted in an elastic artery through the entire
cardiac cycle, at full scale, under realistic physiological con-
ditions.

The paper is organized as follows. In Sect. 2 we present
the details of our hybrid ALE/immersed-boundary method
developed for the FSI simulation of a heart valve implanted
in a deformable artery. In Sect. 3 we provide the simulation
details and report the results of the FSI computations of an
actual BHV design. In particular, we compare the results from
the rigid- and elastic-wall simulations and find that wall elas-
ticity plays an important role in the overall system response.
In Sect. 4 we draw conclusions.

2 FSI modeling using a hybrid
ALE/immersed-boundary approach

In this section, we present the computational framework for
FSI analysis of a BHV implanted in a deformable artery.
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The blood flow in a deforming artery is governed by the
Navier–Stokes equations of incompressible flow posed on
a moving domain. The domain motion is handled using
the ALE formulation, which is a widely used approach
for vascular blood flow applications [41–46]. The cou-
pling of the BHV leaflet dynamics to the artery is han-
dled through the recently proposed variational immersed-
boundary method [12], in which the structural discretization
is free to move independently through a background fluid
mesh. The hybrid ALE/immersed-boundary method will be
presented and applied to the simulation of an aortic BHV cou-
pled to an elastic arterial wall and blood flow over cardiac
cycles.

2.1 Augmented Lagrangian framework for FSI

Let (Ω1)t and (Ω2)t ∈ R
d , d = {2, 3} represent the time-

dependent domains of the fluid and structural mechanics
problems, respectively, at time t , with (Γ1)t and (Γ2)t repre-
senting their corresponding boundaries. Let (ΓI)t ∈ R

d rep-
resent the interface between the fluid and structural domains.
Let u1 and p denote the fluid velocity and pressure, respec-
tively. Let y denote the displacement of structural material
points from their positions in a reference configuration, and
define the structure velocity u2 as the material time derivative
of y.We introduce an additional unknown function λλλ defined
on (ΓI)t , which takes on the interpretation of a Lagrange
multiplier. Let Su , Sp, Sd , and S� be the function spaces
for the fluid velocity, fluid pressure, structural velocity, and
Lagrange multiplier solutions, respectively, and Vu , Vp, Vd ,
and V� be the corresponding weighting function spaces. The
variational problem of the augmented Lagrangian formula-
tion is: find u1 ∈ Su , p ∈ Sp, y ∈ Sd , and λλλ ∈ S� such
that for all test functions w1 ∈ Vu , q ∈ Vp, w2 ∈ Vd , and
δλλλ ∈ V�

B1({w1, q}, {u1, p}; û)− F1({w1, q})
+

∫

(ΓI)t

w1 · λλλ dΓ +
∫

(ΓI)t

w1 · β(u1 − u2) dΓ = 0, (1)

B2(w2, y)− F2(w2)

−
∫

(ΓI)t

w2 · λλλ dΓ −
∫

(ΓI)t

w2 · β(u1 − u2) dΓ = 0, (2)

∫

(ΓI)t

δλλλ · (u1 − u2) dΓ = 0. (3)

In the above, the subscripts 1 and 2 denote the fluid and
structural mechanics quantities, and β is a penalty parame-
ter, which we leave unspecified for the moment. B1, B2, F1,
and F2 are the semi-linear forms and linear functionals cor-

responding to the fluid and structural mechanics problems,
respectively, and are given by

B1
({w, q}, {u, p}; û)=

∫

(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣
x̂
+(

u− û
) · ∇∇∇u

)
dΩ

+
∫

(Ω1)t

εεε(w) : σσσ 1 dΩ +
∫

(Ω1)t

q∇∇∇ · u dΩ, (4)

F1({w, q}) =
∫

(Ω1)t

w · ρ1f1 dΩ +
∫

(Γ1h)t

w · h1 dΓ, (5)

B2(w, y) =
∫

(Ω2)t

w · ρ2
∂2y

∂t2

∣∣∣∣∣
X

dΩ +
∫

(Ω2)t

εεε(w) : σσσ 2 dΩ, (6)

F2(w) =
∫

(Ω2)t

w · ρ2f2 dΩ +
∫

(Γ2h)t

w · h2 dΓ (7)

where ρ1 and ρ2 are the densities, σσσ 1 and σσσ 2 are the Cauchy
stresses, f1 and f2 are the applied body forces, h1 and h2 are
the applied surface tractions, (Γ1h)t and (Γ2h)t are the bound-
aries where the surface tractions are specified,εεε(·) is the sym-
metric gradient operator given by εεε(w) = 1

2 (∇∇∇w+∇∇∇wT ), û

is the velocity of the fluid domain (Ω1)t ,
∂(·)
∂t

∣∣∣
x̂

is the time

derivative taken with respect to the fixed spatial coordinate x̂
in the referential domain (which does not follow the motion

of the fluid itself), and ∂(·)
∂t

∣∣∣
X

is the time derivative holding

the material coordinates X fixed. The gradient ∇∇∇ is taken
with respect to the spatial coordinate x of the current config-
uration. We assume that the fluid is Newtonian with dynamic
viscosity μ and Cauchy stress σσσ 1 = −pI+ 2μεεε(u1).

Bazilevs et al. [40] demonstrate how the Lagrange mul-
tiplier, λλλ, may be formally eliminated by substituting an
expression for the fluid–structure interface traction in terms
of the other unknowns. This leads to the following variational
formulation for the coupled problem: find u1 ∈ Su , p ∈ Sp,
and y ∈ Sd such that for all w1 ∈ Vu , q ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û)− F1({w1, q})+ B2(w2, y)− F2(w2)

−
∫

(ΓI)t

(w1 − w2) · σσσ 1(u1, p) n1 dΓ

−
∫

(ΓI)t

δσσσ 1(w1, q) n1 · (u1 − u2) dΓ

+
∫

(ΓI)t

(w1 − w2) · β(u1 − u2) dΓ = 0. (8)

In the above, δσσσ 1(w, q)n1 = 2μεεε(w)n1+qn1. Equation (8)
may be interpreted as an extension of Nitsche’s method [47],
which is a consistent, stabilized method for imposing con-
straints on the boundaries by augmenting the governing equa-
tions with additional constraint equations.
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This augmented Lagrangian approach for FSI was origi-
nally proposed by Bazilevs et al. [40] and further studied in
Hsu and Bazilevs [48] to handle boundary-fitted computa-
tions with non-matching fluid–structure interface discretiza-
tions. In Kamensky et al. [12], we found that this framework
can be extended to handle non-boundary-fitted FSI prob-
lems and the accuracy and efficiency of the methodology
was examined through several computations. In this work,
we take the augmented Lagrangian framework for FSI as
the starting point of our hybrid ALE/immersed-boundary
method. A single computation can combine a boundary-
fitted, deforming-mesh treatment of some fluid–structure
interfaces with a non-boundary-fitted treatment of others.

Remark 1 In the above developments we assumed that the
trial and test function spaces of the fluid and structural sub-
problems are independent of each other. This approach pro-
vides one with the framework that is capable of handling
non-matching fluid and structural interface discretizations.
If the fluid and structural velocities and the test functions
are explicitly assumed to be continuous (i.e. u1 = u2 and
w1 = w2) at the interface, the FSI formulation given by
Eq. (8) reduces to: find u1 ∈ Su, p ∈ Sp, and y ∈ Sd such
that for all w1 ∈ Vu, q1 ∈ Vp, and w2 ∈ Vd

B1({w1, q}, {u1, p}; û)− F1({w1, q})+ B2(w2, y)− F2(w2) = 0.

(9)

This form of the FSI problem is suitable for matching fluid–
structure interface meshes. Although somewhat limiting,
matching interface discretizations were successfully applied
to cardiovascular FSI in many earlier works [32,44,49–54].

2.2 Semi-discrete fluid formulation with weak boundary
conditions

The fluid subproblem may be obtained by setting w2 = 0 in
Eq. (8). This approach gives a formulation for weak imposi-
tion of Dirichlet boundary conditions for the fluid problem,
which was first proposed by Bazilevs and Hughes [55] and
further refined in Bazilevs et al. [56,57] to improve the per-
formance of the fluid mechanics formulation in the presence
of underresolved boundary layers. This weak imposition of
the Dirichlet boundary conditions is also the starting point of
the variational immersed-boundary approach [12]. In a non-
boundary-fitted method, the elements of the fluid discretiza-
tion may extend into the interior of an immersed object.
Imposing Dirichlet boundary conditions is no longer straight-
forward given that the basis functions are non-interpolating
at the object boundaries. In order to enforce essential bound-
ary conditions, one can either modify the basis functions so
they vanish at the interface [58] or augment the governing
equations with additional constraint equations. In this work
we choose the latter approach.

Consider a collection of disjoint elements {Ωe}, ∪eΩ
e ⊂

R
d , with closures covering the fluid domain: Ω1 ⊂ ∪eΩe.

Note that Ωe is not necessarily a subset of Ω1. {Ωe}, Ω1, and
ΓI remain time-dependent, but we drop the subscript t for
notational convenience. The mesh defined by {Ωe} deforms
with a velocity field ûh and the boundary ΓI moves with
velocity u2. The semi-discrete fluid problem is given by: find
uh

1 ∈ Sh
u and ph ∈ Sh

p such that for all wh
1 ∈ Vh

u and qh ∈ Vh
p

BVMS
1

(
{wh

1 , qh}, {uh
1 , ph}; ûh

)
− FVMS

1

(
{wh

1 , qh}
)

−
∫

ΓI

wh
1 ·

(
−phn1 + 2μεεε(uh

1)n1

)
dΓ

−
∫

ΓI

(
2μεεε(wh

1)n1 + qhn1

)
·
(

uh
1 − u2

)
dΓ

−
∫

(ΓI)
−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+
∫

ΓI

τ B
TAN

(
wh

1 −
(

wh
1 · n1

)
n1

)
·

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+
∫

ΓI

τ B
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0, (10)

where (ΓI)
− is the “inflow” part of ΓI, on which (uh

1 − ûh
)·

n1 < 0, the constants τ B
TAN and τ B

NOR correspond to a split-
ting of the penalty term into the tangential and normal direc-
tions, respectively, and ΓI may cut through element interiors.
The discrete trial function spaces Sh

u for the velocity and Sh
p

for the pressure, as well as the corresponding test function
spaces Vh

u and Vh
p are assumed to be equal order, and, in this

work, are comprised of isogeometric [59,60] functions. The
forms BVMS

1 and FVMS
1 are the variational multiscale (VMS)

discretizations of B1 and F1, respectively, given by

BVMS
1 ({w, q}, {u, p}; û)

=
∫

(Ω1)t

w · ρ1

(
∂u
∂t

∣∣∣∣
x̂
+ (u− û) · ∇∇∇u

)
dΩ

+
∫

(Ω1)t

εεε(w) : σσσ 1 dΩ +
∫

(Ω1)t

q∇∇∇ · u dΩ

+
∑

e

∫

Ωe∩Ω1

(
(u− û) · ∇∇∇w + ∇∇∇q

ρ1

)
· u′ dΩ

+
∑

e

∫

Ωe∩Ω1

∇∇∇ · w ρ1 p′ dΩ
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−
∑

e

∫

Ωe∩Ω1

w · (u′ · ∇∇∇u) dΩ

−
∑

e

∫

Ωe∩Ω1

∇∇∇w
ρ1
: (u′ ⊗ u′

)
dΩ

+
∑

e

∫

Ωe∩Ω1

(
u′ · ∇∇∇w

)
τ · (u′ · ∇∇∇u

)
dΩ, (11)

and

FVMS
1 ({w, q}) = F1({w, q}), (12)

where

u′ = τM

(
ρ1

(
∂u
∂t

∣∣∣∣
x̂
+ (u− û) · ∇∇∇u− f

)
−∇∇∇ · σσσ 1

)
,

(13)

p′ = τC∇∇∇ · u. (14)

Equations (11)–(14) correspond to the ALE–VMS formula-
tion of the Navier–Stokes equations of incompressible flows
[61–63]. The additional terms may be interpreted both as
stabilization and as a turbulence model [64–72]. The stabi-
lization parameters are

τM =
(

s(x, t)

(
Ct

Δt2 + (u− û) ·G(u− û)+ CI ν
2G : G

))− 1
2

,

(15)
τC = (τM tr G)−1 , (16)

τ = (
u′ ·Gu′

)− 1
2 , (17)

where Δt is the time-step size, ν = μ/ρ1 is the kinematic
viscosity, CI is a positive constant derived from an appropri-
ate element-wise inverse estimate [73–76], G is the element
metric tensor defined as

G = ∂ξξξ

∂x

T ∂ξξξ

∂x
, (18)

where ∂ξξξ/∂x is the inverse Jacobian of the element map-
ping between the parametric and physical domain, tr G is the
trace of G, and the parameter Ct is typically taken equal to
4 [66,70,77]. The scalar function s(x, t) ≥ 1 in Eq. (15) is a
dimensionless scaling factor introduced in Kamensky et al.
[12] to improve local mass conservation near concentrated
loads. Locally increasing s near thin immersed structures can
greatly improve the quality of approximate solutions when
the concentrated surface force due to the structure induces a
significant pressure discontinuity. In most of the domain, we
keep s = 1, as in the usual VMS formulation, but, in an O(h)

neighborhood around thin immersed structures, we increase
it to equal the dimensionless constant sshell ≥ 1.

Remark 2 On the fluid mechanics domain interior, the mesh
velocity, ûh , may be obtained by solving a linear elastosta-
tics problem subject to the displacement boundary condi-
tions coming from the motion of the boundary-fitted fluid–
solid interface [28–32]. This method is effective for rela-
tively mild deformations, such as those of the artery. How-
ever, for scenarios that involve large translational and/or rota-
tional structural motions, such as heart valve dynamics, the
boundary-fitted fluid mesh can become severely distorted.
Non-boundary-fitted approaches could be an alternative for
these type of problem.

Remark 3 The last term of Eq. (11) provides additional
residual-based stabilization and originates from Taylor et al.
[78]. The term is consistent and dissipative, and has similari-
ties with discontinuity-capturing methods such as the DCDD
[68,79,80] and YZβ [81–83] techniques.

The terms from the second to the last line of Eq. (10) are
responsible for the weak enforcement of kinematic and trac-
tion constraints at the non-matching or immersed boundaries.
It was shown in earlier works [55–57,84,85] that imposing
the Dirichlet boundary conditions weakly in fluid dynamics
allows the flow to slip on the solid surface when the wall-
normal mesh size is relatively large. This effect mimics the
thin boundary layer that would otherwise need to be resolved
with spatial refinement, allowing more accurate solutions on
coarse meshes. In the immersed-boundary method, the fluid
mesh is arbitrarily cut by the structural boundary, leaving a
boundary layer discretization of inferior quality compared
to the body-fitted case. Therefore, in addition to imposing
the constraints easily in the context of non-boundary-fitted
approach, we may obtain more accurate fluid solutions as an
added benefit of using the weak boundary condition formu-
lation (10).

In Eq. (10), the parameters τ B
TAN and τ B

NOR must be suffi-
ciently large to stabilize the formulation, but not so large as
to degenerate Nitsche’s method into a pure penalty method.
Based on previous studies of weakly-enforced Dirichlet
boundary conditions in fluid mechanics [55–57], we expect
these parameters to scale as

τ B
(·) =

C B
I μ

h
(19)

where h is a measure of the element size at the boundary
and C B

I is a dimensionless constant. However, in the case
of an immersed boundary, neither the appropriate definition
of h nor the principle for deriving C B

I is straightforward.
As a result, we chose the penalty-parameter values through
numerical experiments.

Integrating the fluid formulation (11) over elements that
are only partially contained in Ω1 typically requires spe-
cial quadrature techniques, as discussed in Kamensky et al.
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[12]. In the present work, we do not need these quadra-
ture techniques, because fluid elements only overlap spa-
tially with thin shell structures, which are modeled geomet-
rically as (d − 1)-dimensional surfaces and therefore have
zero Lebesgue measure in R

d . To evaluate the surface inte-
grals of Eq. (10) over immersed boundaries, we define a
Gaussian quadrature rule with respect to a parameterization
of the immersed surface, then locate the quadrature points
of this rule in the parameter space of the background mesh
elements to evaluate traces of the fluid test and trial functions.

Unsteady flow computations may sometimes diverge due
to flow reversal on outflow boundaries. This is known as
backflow divergence and is frequently encountered in car-
diovascular simulations. In order to preclude backflow diver-
gence, an outflow stabilization method originally proposed in
Bazilevs et al. [50] and further studied in Esmaily-Moghadam
et al. [86] is employed in our fluid mechanics formulation.

2.3 Arterial wall modeling

In this section we show the variational formulation of the
boundary-fitted solid problem for the arterial wall modeling.
The fluid–solid interface discretization is assumed to be con-
forming. Let X be the coordinates of the initial or reference
configuration and let y be the displacement with respect to
the reference configuration. The coordinates of the current
configuration, x, are given by x = X + y. The deformation
gradient tensor F is defined as

F = ∂x
∂X
= I+ ∂y

∂X
, (20)

where I is the identity tensor.
Let Sd and Vd be the trial solution and weighting function

spaces for the solid problem. The arterial wall is modeled
as a three-dimensional hyperelastic solid and the variational
formulation which represents the balance of linear momen-
tum for the solid is stated as follows: find the displacement
y ∈ Sd , such that for all weighting functions w2 ∈ Vd

B2(w2, y)− F2(w2) = 0, (21)

where

B2(w, y) =
∫

(Ω2)t

w · ρ2
∂2y
∂t2

∣∣∣∣
X

dΩ +
∫

(Ω2)0

∇∇∇X w : P dΩ,

(22)

F2(w) =
∫

(Ω2)t

w · ρ2f2 dΩ +
∫

(Γ2h)t

w · h2 dΓ (23)

In the above, (Ω2)0 is the solid domain in the reference con-
figuration,∇∇∇X is the gradient operator on (Ω2)0, and P = FS

is the first Piola–Kirchhoff stress tensor, where S is the sec-
ond Piola–Kirchhoff stress tensor given by

S = μJ−2/3
(

I− 1

3
tr C C−1

)
+ 1

2
κ

(
J 2 − 1

)
C−1. (24)

In Eq. (24), μ and κ are interpreted as the blood vessel
shear and bulk moduli, respectively, J = det F is the Jaco-
bian determinant, and C = FT F is the Cauchy–Green defor-
mation tensor. Equation (24) is a generalized neo-Hookean
model with dilatational penalty given in Simo and Hughes
[87]. Its stress-strain behavior was analytically studied on
simple cases of uniaxial strain [32] and pure shear [88]. The
model was argued in Bazilevs et al. [44] to be appropriate
for arterial wall modeling in FSI simulations. It was shown
that the level of elastic strain in arterial FSI problems is suf-
ficiently large to preclude the use of infinitesimal (linear)
strains, yet not large enough to be sensitive to the nonlin-
earity of the particular material model. However, the current
model has the advantage of stable behavior for the regime of
strong compression and therefore is selected in this work for
the modeling of the arterial wall.

2.4 Immersed shell structures

We model the heart valve as a shell structure immersed into
a deforming background mesh covering the lumen of the
artery. The exact solution for the pressure around a shell struc-
ture may be discontinuous at the structure, which presents
a conceptual difficulty. The fluid discretization cannot be
informed by the structure’s position. This means that our fluid
approximation space cannot be selected in such a way that
the pressure basis functions are themselves discontinuous at
the immersed boundary. This implies an inherent approxi-
mation error in the pressure field. This error will converge
slowly for polynomial bases [89]. Nonetheless, we believe
that solutions of sufficient accuracy for engineering purposes
can be obtained in this fashion and we focus on developing
a robust method for obtaining these solutions.

2.4.1 Reduction of Nitsche’s method to the penalty method

Consider integrating the boundary terms of Eq. (10) over
both sides of a thin immersed shell structure. If the velocity
and pressure approximation spaces are continuous through
the vanishing thickness of the shell (and the velocity approxi-
mation space is continuously differentiable), then the depen-
dence of the consistency and adjoint consistency terms on
the normal vector will cause contributions from opposing
sides to cancel one another. The only remaining terms will
be the penalty and the inflow stabilization. In the case of an
immersed shell structure, we may view the inflow term as
a velocity-dependent penalty. The Nitsche-type formulation
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given by Eq. (10) therefore reduces to the following penalty
method:

BVMS
1

(
{wh

1 , qh}, {uh
1 , ph}; ûh

)
− FVMS

1

(
{wh

1 , qh}
)

−
∫

(ΓI)
−

wh
1 · ρ1

((
uh

1 − ûh
)
· n1

) (
uh

1 − u2

)
dΓ

+
∫

ΓI

τ B
TAN

(
wh

1 −
(

wh
1 · n1

)
n1

)
·

((
uh

1 − u2

)
−

((
uh

1 − u2

)
· n1

)
n1

)
dΓ

+
∫

ΓI

τ B
NOR

(
wh

1 · n1

) ((
uh

1 − u2

)
· n1

)
dΓ = 0, (25)

when the approximation spaces Vh
u and Vh

p are sufficiently
regular around the shell.

To determine the velocity and pressure about an
immersed valve in its closed state, a method must be capable
of developing nearly hydrostatic solutions in the presence
of large pressure gradients. Penalty forces will only exist if
there are nonzero violations of kinematic constraints. A pure
penalty method rules out the desired hydrostatic solutions:
every term that could resist the pressure gradient to satisfy
balance of linear momentum depends on velocity. Increas-
ing β may diminish leakage through a structure, but it is
a well-known disadvantage of penalty methods that extreme
values of penalty parameters will adversely affect the numer-
ical solvability of the resulting problem. This motivates us
to return to Eqs. (1)–(3) and develop a method that does not
formally eliminate the multiplier field.

2.4.2 Reintroducing the multipliers

Since the introduction of constraints tends to make discrete
problems more difficult to solve, we will only reintroduce a
scalar multiplier field to strengthen enforcement of the no-
penetration part of the FSI kinematic constraint, rather than
the vector-valued multiplier field of Eqs. (1)–(3). The vis-
cous, tangential component of the constraint will continue to
be enforced by only the penalty τ B

TAN. This may be thought
of as a formal elimination of just the tangential component
of the multiplier field, which also retains the ability to allow
the flow to slip at the boundary, which tends to produce more
accurate fluid solutions as discussed in Sect. 2.2. For clarity,
we redefine the FSI boundary terms on the mid-surface of the
shell structure, Γt , rather than considering the full boundary,
ΓI. This means that constants in the current formulation may
differ from those of Eqs. (1)–(3) by factors of two. We arrive,
then, at the formulation

B1({w1, q}, {u1, p}; û)− F1({w1, q})
+

∫

Γt

w1 · (λnn2) dΓ +
∫

Γt

w1 · β(u1 − u2) dΓ = 0,

(26)

B2(w2, y)− F2(w2)

−
∫

Γt

w2 · (λnn2) dΓ −
∫

Γt

w2 · β(u1 − u2) dΓ = 0,

(27)∫

Γt

δλnn2 · (u1 − u2) dΓ = 0, (28)

where λn is the new scalar multiplier field and, to emphasize
the relation to Eqs. (1)–(3), the penalty force has not been
split into normal and tangential components. The consistency
and adjoint consistency terms associated with eliminating the
tangential component of the multiplier have been omitted
under the assumption that they will vanish after integrating
over both sides of the thin shell, as discussed in Sect. 2.4.1.

We discretize the multiplier field by collocating kinematic
constraints at points of the quadrature rule for
integrals over Γt . This entails adding a scalar multiplier
unknown at each quadrature point. In discrete evaluations
of integrals, these multiplier unknowns are treated like point
values of a function defined on Γt . Because the spatial res-
olution of the discrete multiplier representation is not con-
trolled relative to the background fluid mesh, we must relax
the collocated constraints to ensure stability of the numerical
scheme. We accomplish this through the time-discrete algo-
rithm given in Sect. 2.5. The algorithmic constraint relaxation
is interpreted at the time-continuous level by Kamensky et
al. [12], through an analogy to Chorin’s method of artificial
compressibility [90], in which the Lagrange multiplier solves
an auxiliary differential equation in time.

2.4.3 Treatment of shell structure mechanics

We assume that the structure is a thin shell, represented math-
ematically by its mid-surface. Further, we assume this surface
to be piecewise C1-continuous and apply the Kirchhoff–Love
shell formulation and isogeometric discretization studied by
Kiendl et al. [91–93]. The spatial coordinates of the shell mid-
surface in the reference and current configurations are given
by X(ξ1, ξ2) and x(ξ1, ξ2), respectively, parameterized by ξ1

and ξ2. Assuming the range {1, 2} for Greek letter indices,
we define the covariant surface basis vectors

gα = ∂x
∂ξα

, (29)

g3 = g1 × g2

||g1 × g2|| , (30)
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and

Gα = ∂X
∂ξα

, (31)

G3 = G1 ×G2

||G1 ×G2|| , (32)

in the current and reference configurations, respectively.
Using kinematic assumptions and mathematical manipula-
tions given in Kiendl [93], we split the in-plane Green–
Lagrange strain Eαβ into membrane and curvature contri-
butions

Eαβ = εαβ + ξ3καβ, (33)

where

εαβ = 1

2

(
gα · gβ −Gα ·Gβ

)
, (34)

καβ = ∂Gα

∂ξβ

·G3 − ∂gα

∂ξβ

· g3, (35)

are the membrane strain and change of curvature tensors,
respectively, at the shell mid-surface. In Eq. (33), ξ3 ∈
[−hth/2, hth/2] is the through-thickness coordinate and hth

is the shell thickness. The forms B2 and F2 appearing in the
structure subproblem then become, in the case of a thin shell
structure,

B2(w, y) =
∫

Γt

w · ρ2hth
∂2y
∂t2

∣∣∣∣
X

dΓ +
∫

Γ0

∫

hth

δE : S dξ3dΓ,

(36)

F2(w) =
∫

Γt

w · ρ2hthf2 dΓ +
∫

Γt

w · hnet
2 dΓ, (37)

where S is the second Piola–Kirchhoff stress, δE is the vari-
ation of the Green–Lagrange strain, Γ0 and Γt are the shell
mid-surface in the reference and deformed configurations,
respectively, hnet

2 = h2(ξ3 = −hth/2) + h2(ξ3 = hth/2)

sums traction contributions from the two sides of the shell.
For the purposes of this paper, we assume a St. Venant–
Kirchhoff material, in which S is computed from a con-
stant elasticity tensor, C, applied to E. For isotropic mate-
rials, the constitutive material tensor may be derived from
a Young’s modulus, E , and Poisson ratio, ν, and the inte-
gral over ξ3 in Eq. (36). The St. Venant–Kirchhoff material
model can become unstable when subjected to strongly com-
pressive stress states [94], but such states are not encountered
in the present application, because transverse normal stress
is ignored by the thin-shell formulation and in-plane stresses
within heart valve leaflets are primarily tensile.

Isogeometric analysis [59,60] is employed for modeling
the shell structure. We use C1-continuous quadratic B-spline

functions to represent both the geometry and displacement
solution field. The details of this discretization are given in
Kiendl et al. [91–93]. A noteworthy aspect of this discretiza-
tion is the fact that it requires no rotational degrees of free-
dom. The C1-continuous approximation space (for a single
patch) is in H2, so we may directly apply Galerkin’s method
to the forms defined in Eqs. (36) and (37).

2.5 Time integration and FSI solution strategy

We complete the discretization of the coupled FSI for-
mulation by using finite differences to approximate the
time derivatives appearing therein. In particular, we employ
the Generalized-α technique [32,95,96], which is a fully-
implicit second-order accurate method with control over the
dissipation of high-frequency modes. This produces a nonlin-
ear algebraic system of equations relating the unknown coef-
ficients of the fluid, solid structure, mesh-movement, shell
structure, and multiplier solutions at time level tn+1 to the
known solutions from time level tn . An attempt to solve this
system with a monolithic approach (e.g., by Newton’s itera-
tion with a consistent tangent) would encounter the following
difficulties: (1) The sparsity pattern of the nonlinear resid-
ual’s Jacobian matrix would change as the immersed shell
structure moves through the background mesh. (2) Fluid,
structure, and mesh solvers would become more difficult to
interchange. (3) The potential for drastically-different mul-
tiplier and fluid resolutions could lead to instability.

To circumvent the third issue, at each time step, we com-
pute the solution using the following two-step procedure:

1. Solve for the fluid, solid structure, mesh displacement,
and shell structure unknowns, holding λn fixed. Note that
the fluid and shell structure are still coupled in this prob-
lem, due to the penalty term.

2. Update the multiplier λn , by adding the normal compo-
nent of penalty forces present in the solution from Step
1.

The solution from Step 1 will not satisfy the kinematic con-
straints exactly at all quadrature points on Γt . This is a delib-
erate weakening of the constraints to improve stability, as
mentioned in Sect. 2.4.2. The two-step solution procedure
may be interpreted as penalization of an implicitly-evaluated
time integral of the velocity difference between the fluid and
shell structure, as detailed in Kamensky et al. [12], and is
conceptually-similar to the method of artificial compress-
ibility [90] for incompressible flow problems. Note that the
time integral of the velocity difference is a displacement: we
effectively implement spring-like sliding contact elements
between the fluid and shell structure. This prevents the steady
creeping flow through shell structures that can occur when
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only the current velocity difference is penalized, as in the
penalty approach coming from Nitsche’s method.

To solve the nonlinear coupled problem in Step 1 , we
apply a fixed-point iteration based on Newton’s method. The
linear system to be solved within each iteration of Newton’s
method would have the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Rfl

∂Ufl

∂Rfl

∂Uso

∂Rfl

∂Ume

∂Rfl

∂Ush
∂Rso

∂Ufl

∂Rso

∂Uso

∂Rso

∂Ume

∂Rso

∂Ush
∂Rme

∂Ufl

∂Rme

∂Uso

∂Rme

∂Ume

∂Rme

∂Ush
∂Rsh

∂Ufl

∂Rsh

∂Uso

∂Rsh

∂Ume

∂Rsh

∂Ush

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ΔUfl

ΔUso

ΔUme

ΔUsh

⎞
⎟⎟⎟⎟⎟⎟⎠
=−

⎛
⎜⎜⎜⎜⎜⎜⎝

Rfl

Rso

Rme

Rsh

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(38)

where R(·) and U(·) are the nonlinear residuals and discrete
unknowns of the fluid (fl), solid structure (so), mesh (me),
and shell structure (sh). ΔU(·) are the corresponding solu-
tion increments. To avoid the aforementioned disadvantages
of assembling the full consistent tangent, we approximate it
with the block-diagonal matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Rfl

∂Ufl

∂Rfl

∂Uso
0 0

∂Rso

∂Ufl

∂Rso

∂Uso
0 0

0 0
∂Rme

∂Ume
0

0 0 0
∂Rsh

∂Ush

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

then assemble and solve each block of equations in sequence
(from top to bottom). We use a number of further approxima-
tions within each of the left-hand side blocks, but maintain
the original nonlinear residuals, R(·), of the fully-coupled
problem. Converging these residuals to zero solves the orig-
inal problem, regardless of any approximations used in the
tangent matrix. The procedure that we apply at each step of
the fixed-point iteration is not equivalent to a linear solve with
matrix (39). To accelerate convergence, we use the updated
solutions from previous blocks to assemble the equations for
subsequent ones. We repeat this fixed-point iteration to con-
verge R(·) toward zero and obtain a fully-coupled solution of
the fluid-solid-mesh-shell system. In practice, we use a fixed
number of iterations, chosen to yield typically-satisfactory
convergence at the selected time step size. This algorithm
combines the quasi-direct and block-iterative FSI coupling
approaches outlined in Tezduyar et al. [97–99] and Bazilevs
et al. [100].

left
ventricle

aortic sinus

ascending
aorta

aortic valve leaflets

artery wall

Fig. 1 A schematic drawing illustrating the position of the aortic valve
relative to the left ventricle of the heart and the ascending aorta

Fig. 2 B-spline heart valve mesh comprised of 1,404 quadratic ele-
ments. The pinned boundary condition is applied to the leaflet attach-
ment edge

3 Bioprosthetic heart valve simulations

In this section, we use the proposed hybrid ALE/immersed-
boundary method to simulate the FSI of an aortic BHV
implanted in an elastic artery over cardiac cycles. The aortic
valve regulates flow between the left ventricle of the heart and
the ascending aorta. Figure 1 provides a schematic depiction
of its position in relation to the surrounding anatomy. The
valve leaflets are discretized separately and immersed into
a deforming boundary-fitted background mesh of the artery
lumen.

3.1 Heart valve model

The BHV leaflet geometry used in this study is based on a 23-
mm design by Edwards Lifesciences. We model each leaflet
using a C1-continuous B-spline patch, which comprises 468
quadratic B-spline elements. The pinned boundary condition
is applied to the leaflet attachment edge as shown in Fig. 2.
An isotropic St. Venant–Kirchhoff material with E = 107

dyn/cm2 and ν = 0.45 is applied to the BHV. The thick-
ness and density of the leaflets are 0.0386 cm and 1.0 g/cm3,
respectively. There is no damping applied to the valve dynam-
ics in this study.
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Fig. 3 Illustration of contact notation

3.2 Leaflet–leaflet contact

Contact between leaflets is an essential feature of a func-
tioning heart valve. BHV leaflets contact one another dur-
ing the opening, and especially during the closing to block
flow. An advantage of immersed-boundary methods for FSI
is that pre-existing contact algorithms from structural analy-
sis [101–105] may be incorporated directly into the structural
subproblem without affecting the fluid subproblem. We adopt
a penalty-based approach for sliding contact and employ con-
tact elements associated with the quadrature points of the
shell structure.

As detailed in Kamensky et al. [12], a contact element
activates when its associated quadrature point, located on a
particular BHV leaflet designated S1, is found to penetrate
through another leaflet, designated S2. Penalties are com-
puted using a signed distance, d, from S2 to the quadra-
ture point on S1, and their activation is controlled by sev-
eral geometrical conditions omitted from the current paper
for brevity. Opposing concentrated loads are applied at the
quadrature points on S1 and their closest points on S2. This
notation is illustrated for a pair of contacting points in Fig. 3.
The designation of one leaflet as S1 and another as S2 is arbi-
trary, and to preserve geometrical symmetries, we sum the
forces resulting from both choices.

3.3 Artery model

The BHV model mentioned earlier is immersed into a
pressure-driven incompressible flow through a deformable

artery. The fluid density and viscosity are ρ1 = 1.0 g/cm3

and μ = 3.0× 10−2 g/(cm s), respectively, which model the
physical properties of human blood.

The artery is modeled as a 16 cm long elastic cylindri-
cal tube with a three-lobed dilation near the BHV, as shown
in Fig. 4. This dilation represents the aortic sinus, which
is known to play an important role in heart valve dynam-
ics [106]. The cylindrical portion of the artery has an inside
diameter of 2.3 cm and a thickness of 0.15 cm. It is com-
prised of quadratic NURBS patches, allowing us to repre-
sent the circular portions exactly. The sinus is generated by
displacing control points radially from an initial cylindrical
configuration, so the normal thickness of the sinus varies.
We use a multi-patch design to avoid including a singular-
ity at the center of the cylindrical sections. Cross-sections
of this multi-patch design are shown in Fig. 5. The mesh
of this artery, which includes the fluid-filled interior and
solid arterial wall, consists of 69,696 quadratic B-spline ele-
ments. For analysis purposes, basis functions are made C0-
continuous at the fluid–solid interface and the discretization
is conforming.

Mesh refinement is focused near the valve and sinus, as
shown in Fig. 4. Figure 5 shows that the mesh is clustered
toward the wall to better capture the boundary-layer solution.
As shown in Fig. 6, we extend the pinned edges of the valve
leaflets with a rigid stent. The stent extends outside of the
fluid domain and intersects with the solid region, to properly
seal the gap between the pinned edge of the valve and the
arterial wall.

The arterial wall is modeled as a hyperelastic material—
a neo-Hookean model with dilatational penalty (see Simo
and Hughes [87] and Sect. 2.3 of the present paper)—with
Young’s modulus and Poisson’s ratio set to 107 dyn/cm2

and 0.45, respectively. The density of the arterial wall is
1.0 g/cm3. Mass-proportional damping is added to model the
interaction of the artery with surrounding tissues and intersti-
tial fluids. In this case the inertial term in Eq. (22) is replaced
as follows:

ρ2
∂2y
∂t2 ← ρ2

∂2y
∂t2 + aρ2

∂y
∂t

, (40)

and the damping coefficient, a, is set to 1.0× 104 s−1.

Fig. 4 A view of the arterial
wall and lumen into which the
valve is immersed
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Fig. 5 Cross-sections of the fluid and solid meshes, taken from the
cylindrical portion and from the sinus

Fig. 6 The sinus, magnified and shown in relation to the valve leaflets
(pink) and rigid stent (blue). (Color figure online)

3.4 Boundary conditions and parameters of the numerical
scheme

The solid wall is subjected to zero traction boundary condi-
tions at the outer surface. The inlet and outlet branches are
allowed to slide in their cut planes as well as deform radi-
ally in response to the variations in the blood flow forces
(see Bazilevs et al. [44] for details). This gives more realistic
arterial wall displacement patterns than fixed inlet and outlet
cross-sections.

Because the BHV stent is assumed to contain an
effectively-rigid metal frame [107], the dynamics of the
artery and BHV leaflets are coupled primarily through the
fluid rather than the sutures connecting the stent to the artery.
We therefore constrain the stent to be stationary, and likewise
fix the displacement unknowns of any control point of the
solid portion of the artery mesh whose corresponding basis
function’s support intersects the stent.

The nominal outflow boundary is 11 cm downstream of
the valve, located at the right end of the channel, based on
the orientation of Fig. 4. The nominal inflow is located 5 cm
upstream at the left end of the channel. The designations of
inflow and outflow are based on the prevailing flow direction
during systole, when the valve is open and the majority of
flow occurs. In general, fluid may move in both directions
and there is typically some regurgitation during diastole.
A physiologically-realistic left ventricular pressure profile
obtained from Yap et al. [108] and shown in Fig. 7 is applied
as a traction boundary condition at the inflow. The duration
of a single cardiac cycle is 0.86 s.

The traction −(p0 + RQ)n1 is applied at the outflow,
where p0 is a constant physiological pressure level, Q is the
volumetric flow rate through the outflow (with the convention
that Q > 0 indicates flow leaving the domain), R > 0 is a
resistance constant, and n1 is the outward facing normal of
the fluid domain. This resistance boundary condition and its
implementation are discussed in Bazilevs et al. [50]. In the
present computation, we use p0 = 80 mmHg and R = 70
(dyn s)/cm5. These values ensure a realistic transvalvular
pressure difference of 80 mmHg in the diastolic steady state
(where Q is nearly zero) while permitting a reasonable flow
rate during systole. At both inflow and outflow boundaries
we apply backflow stabilization with γ = 0.5 (see Esmaily-
Moghadam et al. [86] for details).

The time-step size is set to Δt = 1.0× 10−4 s and the τM

scaling factor is sshell = 106. For the immersed heart valve,
we find that results are relatively insensitive to the tangential-
velocity penalty-parameter values, while conditioning and
nonlinear convergence improve when the values are lower.
We therefore set a lower value for τ B

TAN = 2.0×102 g/(cm2 s)
and a higher value for τ B

NOR = 2.0 × 103 g/(cm2 s), also
because the no-penetration condition is more critical for
accuracy.

123



1066 Comput Mech (2014) 54:1055–1071

Time (s)

L
V

 p
re

ss
ur

e 
(m

m
H

g)

L
V

 p
re

ss
ur

e 
(k

Pa
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-20

0

20

40

60

80

100

120

140

0

3

6

9

12

15

18

Fig. 7 Physiological left ventricular (LV) pressure profile applied at
the inlet of the fluid domain. The duration of a single cardiac cycle is
0.86 s. The data is obtained from Yap et al. [108]

3.5 Results and discussion

We compute both the rigid- and elastic-wall cases to study the
importance of including arterial wall elasticity in the heart-
valve FSI simulations. Starting from homogeneous initial
conditions, we compute several cardiac cycles until a time-
periodic solution is achieved. Figure 8 shows the volumetric
flow rate through the top of the tube throughout the cardiac
cycle. The flow rates computed using rigid and elastic arter-
ies differ primarily in the period immediately following valve
closure. The rigid-wall results show large oscillation in the
flow rate, as well as in the valve movement (see Fig. 9). The
oscillation is much smaller when arterial wall elasticity is
included.

In the rigid-wall case, the energy of the fluid hammer strik-
ing the closed valve is initially converted to elastic poten-
tial in the leaflets, transferred back to kinetic energy as the
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Fig. 8 Computed volumetric flow rate through the top of the fluid
domain, during a full cardiac cycle of 0.86 s, for the rigid and elastic
arterial wall cases

Fig. 9 Leaflet oscillation and the highest MIPE during the cardiac
cycle for the rigid and elastic arterial wall cases. The strains are evalu-
ated on the aortic side of the leaflets. The maximum MIPE on the plots
are 0.766 for the rigid-wall case and 0.483 for the elastic-wall case

valve rebounds, converted into potential as the fluid moves
through an adverse pressure gradient, then converted once
again to kinetic energy as the blood reverses direction, form-
ing a new fluid hammer and restarting a cyclic reverberation.
This oscillation is gradually damped by the resistance out-
flow condition and viscous forces in the fluid being directly
modeled.The reverberation of the fluid hammer impact on
the closing valve is the source of the S2 heart sound, mark-
ing the beginning of diastole [109,110]. However, the flow
rate oscillation that follows from the rigid artery assump-
tion is observed to be much smaller or completely absent in
human aortas [111,112]. This is consistent with our elastic-
wall computations, which show that an elastic artery has a
compliance effect and can distend to absorb a fluid hammer
impact and dissipate the initial kinetic energy to surrounding
tissues and interstitial fluids (modeled here through damp-
ing). The artery’s absorption of fluid hammer impacts on the
valve greatly reduces the maximum strains (and thus stresses)
observed in the leaflets, as shown in Fig. 9.

Remark 4 The strains shown in Fig. 9 are the maximum in-
plane principal Green–Lagrange strain (MIPE, the largest
eigenvalue of E). We choose to plot the strains on the aortic
side of the leaflets to include contributions from both stretch-
ing and bending. Evaluation of strain at the shell mid-surface,
ξ3 = 0, would only display the membrane contribution.

Remark 5 Note that the effect we demonstrate here is not the
full Windkessel effect. Direct simulation of the Windkessel
effect would require a much larger network of arteries down-
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stream of the valve, and the final outflow from these arteries
should be relatively constant [8]. We instead demonstrate
that the elasticity of the arteries directly adjacent to a heart
valve can significantly impact its dynamics, especially at the
point of valve closure, where maximum strains occur, and
should therefore not be neglected in simulations. We recom-
mend combining this technology with a lumped-parameter
Windkessel model of arteries further downstream, but we
have applied a simple resistance boundary condition in this
present work to more clearly highlight the effect of arterial
FSI within the directly-simulated domain.

We now examine the details of the fluid and structure solu-
tions obtained from the elastic-artery computation. Figure 10
shows several snapshots of the details of the fluid solution
fields and Fig. 11 shows the deformations and strain fields
of the leaflets at several points during the cardiac cycle. As
the valve opens during systole, we see transition to turbulent
flow. We also see that the leaflets remain partially in contact
while opening. The snapshot at t = 0.35 s illustrates the fluid
hammer effect that is evident in the flow rate. After 0.62 s,
the solution becomes effectively hydrostatic. The strain near
the commissure points at t = 0.35 s is slightly higher than at

t = 0.7 s. This is due to the effect of the fluid hammer striking
the valve as it initially closes. This phenomenon is usually
neglected by both quasi-static and pressure-driven dynamic
computations, as neither accounts for the inertia of the fluid
[107,113]. The FSI solution also shows that the geometri-
cal symmetry of the initial data is not preserved, which is
typical for turbulent flow. This result underscores the impor-
tance of computing FSI for the entire valve, without sym-
metry assumptions. In Fig. 12, the models are superposed in
the configurations corresponding to the opening (t = 0.24 s)
and closing phases (t = 0.345 s) for better visualization of
the relative arterial wall displacement results.

4 Conclusions

We presented a computational framework for FSI which com-
bines a recently proposed variational immersed-boundary
method [12] and the traditional ALE technique. We applied
this hybrid ALE/immersed-boundary framework to simulate
a BHV implanted in an artery that is allowed to deform
in the model. Our computations demonstrate that the vari-
ational immersed-boundary method for FSI remains effec-

Fig. 10 Volume rendering of the velocity field at several points during a cardiac cycle. The time t is synchronized with Fig. 7 for the current cycle
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Fig. 11 Deformations of the valve from the FSI computation, colored by the MIPE evaluated on the aortic side of the leaflet. Note the different
scale for each time

Fig. 12 Relative wall displacement between opening (t = 0.24 s) and
closing (t = 0.345 s) phases

tive for heart valve analysis when the background fluid mesh
undergoes relatively mild deformations, corresponding to the
expansion and contraction of an elastic artery. Further, we
find that arterial wall deformation contributes significantly
to the realism of BHV simulation results. It damps out oscil-
lations in the flow rate and valve deformation during the clos-
ing phase, leading to flow profiles that more closely resemble
those observed in practice [111,112].

The highest strain on the valve, occurring at the point of
valve closure, is much lower when wall elasticity is consid-
ered. This difference in peak strain between the rigid-artery
and elastic-artery computations suggests a potential future
research direction: it indicates that arterial stiffness could be
an important variable to consider in computational studies of
structural fatigue in BHVs. Atherosclerosis and BHV leaflet
deterioration are known to be correlated [114], although the
prevailing hypothesis, which we do not purport to refute in
this work, is that these phenomena have a shared etiology
rather than a cause-and-effect relationship.

One conspicuous shortcoming of our simulations is the
relatively simple material model of the valve leaflets. The
St. Venant–Kirchhoff material used in this work does not
accurately reflect some of the properties of biological materi-
als [94,115]. In the present application, the largest strains are
primarily tensile, avoiding the St. Venant–Kirchhoff mater-
ial’s most significant pathology: instability under compres-
sion. However, its tensile behavior does not exhibit the expo-
nential stiffening characteristic of soft tissues [116,117]. The
introduction of a more realistic soft tissue material model
will allow for meaningful comparison of the valve’s deforma-
tions with detailed geometrical data collected in the flow loop
experiments of Iyengar et al. [118] and Sugimoto et al. [119].
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