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Abstract Fluid mechanics computation of heart valves
with an interface-tracking (moving-mesh) method was one
of the classes of computations targeted in introducing the
space–time (ST) interface tracking method with topology
change (ST-TC). The ST-TC method is a new version of
the Deforming-Spatial-Domain/Stabilized ST (DSD/SST)
method. It can deal with an actual contact between solid sur-
faces in flow problems with moving interfaces, while still
possessing the desirable features of interface-tracking meth-
ods, such as better resolution of the boundary layers. The
DSD/SST method with effective mesh update can already
handle moving-interface problems when the solid surfaces
are in near contact or create near TC, if the “nearness” is
sufficiently “near” for the purpose of solving the problem.
That, however, is not the case in fluid mechanics of heart
valves, as the solid surfaces need to be brought into an actual
contact when the flow has to be completely blocked. Here we
extend the ST-TC method to 3D fluid mechanics computa-
tion of heart valve models. We present computations for two
models: an aortic valve with coronary arteries and a mechan-
ical aortic valve. These computations demonstrate that the
ST-TC method can bring interface-tracking accuracy to fluid
mechanics of heart valves, and can do that with computa-
tional practicality.
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1 Introduction

The space–time (ST) interface-tracking method with topol-
ogy change (ST-TC) was introduced in [1]. This is an
interface-tracking (moving-mesh) method that can deal with
an actual contact between solid surfaces or other TC in
flow problems with moving interfaces. It possesses the
desirable features of interface-tracking methods that do
not come easily or do not come at all with the interface-
capturing (nonmoving-mesh) methods. These desirable fea-
tures include mass conservation across the interface and bet-
ter resolution of the boundary layers. Comments on relative
features of interface-tracking and interface-capturing meth-
ods can be found in [1], and also in [2–4]. Fluid mechan-
ics computation of heart valves with an interface-tracking
method was one of the classes of problems targeted in intro-
ducing the ST-TC method. Accurate calculation of the wall
shear stress (WSS) in cardiovascular fluid mechanics compu-
tations requires good resolution of the boundary layers (see
[5–8]).

The ST-TC method is a new version of the Deforming-
Spatial-Domain/Stabilized ST (DSD/SST) method, which
was introduced in [9–11] and has been evolving [2,4,12–
14]. The DSD/SST method is an alternative to the Arbitrary
Lagrangian–Eulerian (ALE) finite element formulation [15],
which is the most widely used moving-mesh technique, with
many applications and much progress in fluid–structure inter-
action (FSI) (see, for example, [4,16–53]). Comments on and
examples for what the DSD/SST method brings to the table
beyond what the ALE method does can be found in [1], and
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Fig. 1 Aortic valve with coronary arteries. Model geometry. Aorta,
leaflets, sinuses, and coronary arteries. The left coronary artery is on
the right in the figure, and the right coronary artery is on the left

Fig. 2 Aortic valve with coronary arteries. Leaflets at t/T = 0.0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 (left to right and then top to
bottom)

also in [4,13,14,54–58], including examples from aerody-
namics of flapping wings and wind turbines.

As commented in [1], the DSD/SST method, when supple-
mented with robust mesh update, has been proven effective
even in handling moving-interface problems when the solid
surfaces are in near contact or create near TC, if the “near-
ness” is sufficiently “near” for the purpose of solving the
problem. Examples of that from earlier computations were
referenced in [1]. However, as also commented in [1], in some
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Fig. 3 Aortic valve with coronary arteries. Inflow profile

Fig. 4 Aortic valve with coronary arteries. The leaflets surface mesh
at the same instants as in Fig. 2
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Fig. 5 Aortic valve with coronary arteries. Mesh of the aortic valve,
sinuses and coronary arteries

moving-interface problems with contact between the solid
surfaces, the “nearness” that can be modeled with a moving-
mesh method without actually bringing the surfaces into con-
tact might not be “near” enough for the purpose of solving the
problem. Fluid mechanics of heart valves, where the flow has
to be completely blocked when the valve is closed, was men-
tioned in [1] as an example of that. It was also mentioned in
[1] that Fluid–Solid Interface-Tracking/Interface-Capturing
Technique (FSITICT) [59] was motivated by such cardiovas-
cular FSI problems. In the FSITICT, we track the interface
we can with a moving mesh, and capture over that moving
mesh the interfaces we cannot track, specifically the inter-
faces where we need to have an actual contact between the
solid surfaces. Essentially, the FSITICT is based on giving up
on the interface-tracking accuracy in the parts of the domain
where we expect an actual contact. While this is better than
giving up on the interface-tracking accuracy everywhere in
the domain by using purely an interface-capturing method,
the flow would not be represented accurately between the
solid surfaces as they close.

The ST-TC method does not give up on interface-tracking
accuracy even where there is an actual contact between solid
surfaces or other TC. It is a practical alternative to using
unstructured ST meshes. Details of the ST-TC method can
be found in [1], together with conceptual examples and 2D
test computations with models representative of the classes
of problems targeted with the method. In this paper, which is
in essence a continuation of [1], we extend the ST-TC method
to 3D fluid mechanics computation of heart valve models. We
consider two models: an aortic valve with coronary arteries
and a mechanical aortic valve. We present the computations
for the aortic valve with coronary arteries in Sect. 2, and
for the mechanical aortic valve in Sect. 3. The concluding
remarks are given Sect. 4.

2 Aortic valve with coronary arteries

2.1 Geometry and motion modeling

We create a typical aortic-valve model based on pictures, such
as the one in [60]. The model, shown in Figs. 1 and 2, has three

Fig. 6 Aortic valve with coronary arteries. Mesh around the leaflets at
t/T = 0.0, 0.2, 0.4 and 0.6

leaflets with two outlets, corresponding to coronary arteries,
and one main outlet, corresponding to the beginning of the
aorta. The outlets are extended straight in each direction. The
bulges are called sinuses. The left and right coronary arteries
are attached to the left and right aortic sinuses, respectively,
and the other sinus is called the posterior aortic sinus. The
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Fig. 7 Aortic valve with coronary arteries. Flow rate at the outlets of
the coronary arteries

inlet and main outlet diameters are 23 mm, which correspond
to a typical aorta. The two coronary artery diameters are
2.9 mm.

We prescribe the motion of the three leaflets so that the
valve closes and opens with a period of T = 0.6 s. The
motion of the leaflets can be seen in Fig. 2. The valve closes
in 0.30 s, tightens for 0.06 s, loosens (while still closed) for
0.04 s, and opens in 0.20 s. This time profile is similar to how
it is for an actual valve. The inflow velocity is specified such
that the average flow rate is 5,000 m�/min. The flow rate
is a time-variant function of the horizontal projection of the
open mouth area of the valve when it is open, and of the inlet-
side volume change while the valve is changing shape after
it closes (see Fig. 3). The density and kinematic viscosity of
the blood are 1,000 kg/m3 and 4.0 × 10−6 m2/s.

The boundary conditions are no-slip on the arterial walls
and valves, traction-free at the outflow boundaries, and uni-
form velocity at the inflow boundary. The surface mesh on
the leaflets (shown in Fig. 4) is made of 8,448 nodes and
16,440 triangular faces. The arterial-wall surface mesh is
shown in Fig. 5. The mesh has structured, inner zones around
the leaflets and an unstructured, outer zone. The inner zones
consist of tetrahedral, pyramid-shaped and wedge-shaped
elements, and the outer zone consists of tetrahedral elements.
The volume mesh is made of 1,417,910 nodes and 4,184,614
elements. The mesh near the valve is shown in Fig. 6.

During the prescribed motion, only the inner zones move
with a special, algebraic mesh-moving technique. The posi-
tions of the nodes in the inner zones are created by lin-
early interpolating the surface mesh of the zones from the
closed position to the open position. We have 79 layers of
nodes extruded from both the upper and lower surfaces of
the leaflets.

When the valve is completely open, all of the nodes
extruded from the upper surface are slaves to the upper sur-
face, and all of the nodes extruded from the lower surface

0.2 0.4 0.6 0.8

Fig. 8 Aortic valve with coronary arteries. Volume rendering of the
velocity magnitude (m/s) at t/T = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5

are masters. As the valve closes, it leaves one layer of nodes
attached to the upper surface behind, and the leaflet surface
moves to the next node position, making those nodes slaves
to the lower surface. When the valve is completely closed, all
of the nodes extruded from the upper surface are masters and
all of the nodes extruded from the lower surface are slaves to
the lower surface.

2.2 Computational conditions

We use the DSD/SST-SUPS and DSD/SST-VMST (convec-
tive) techniques for the first two and last two nonlinear itera-
tions of each time step, respectively. The stabilization para-

123



Comput Mech (2014) 54:973–986 977

0.2 0.4 0.6 0.8

Fig. 9 Aortic valve with coronary arteries. Volume rendering of the
velocity magnitude (m/s) at t/T = 0.6, 0.7, 0.8 and 0.9

meter τSUPS comes from the τSUPG definition in [2], specif-
ically the definition given by Eqs. (107)–(109) in [2], which
can also be found as the definition given by Eqs. (7)–(9)
in [12], with νLSIC from Eq. (17) in [12]. Prior to the pre-
scribed motion, we compute 150 time steps with the geom-
etry at t = 0 to develop the flow field. The viscosity of
4.0 × 10−6 m2/s is reached by ramping over the first 50
time steps starting from the viscosity 1.31 × 10−3 m2/s.
The ramping profile for the viscosity is designed to result
in a linear ramping for the Reynolds number. The time-step
size is 6.33 × 10−3 s during flow-field development, and
3.00 × 10−3 s for the prescribed-motion cycles. In com-
puting the developed-flow field, the number of GMRES iter-
ations per nonlinear iteration is 150, 350, 450 and 800. In
computing the flapping cycles, the number of GMRES iter-
ations is 250, 500, 750 and 1,000. We compute two cycles
and display the results for the second cycle.

2.3 Results

The global mass-balance error, normalized by the average
flow rate, is less than 10%. Figure 7 shows the flow rate at
the outlets of the coronary arteries. There is some “negative

0.0 0.2 0.3 0.5 0.7

Fig. 10 Aortic valve with coronary arteries. The velocity magnitude
(m/s) on the coronary plane at the same instants as in Fig. 2

outflow” (i.e. inflow) from the coronary arteries, however, the
WSS on the long pipes is large enough to stabilize the over-
all system. Figures 8 and 9 show a volume rendering of the
velocity magnitude. Nonsymmetric and complex flow pat-
terns are observed behind the valve. Figures 10 and 11 show
the velocity magnitude on the “coronary plane,” where the
coronary arteries are connected to the aorta, and the “above-
sinus plane,” which is 18 mm downstream from the coronary
plane. The mainstream flow oscillates away from the sinuses.
This is mainly due to the jet from the contact of the leaflets
of the sinuses.

Figure 12 shows the pressure difference between the lower
and upper surfaces of the leaflets. We exclude the parts where
the leaflets are in contact. Figures 13 and 14 show the WSS
on the leaflet surfaces. The WSS on the lower surfaces of the
three leaflets are somewhat similar to each other. However,
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Fig. 11 Aortic valve with coronary arteries. The velocity magnitude
(m/s) on the above-sinus plane at the same instants as in Fig. 2

on the upper surfaces, the WSS for the leaflets of the coronary
sinuses are different from the WSS for the leaflet of the pos-
terior sinus. Figure 15 shows the OSI on the leaflet surfaces.
The WSS vector is projected onto the open configuration to
calculate the OSI (see [61]).

3 Mechanical aortic valve

3.1 Geometry and motion modeling

The model of the mechanical aortic valve consists of a pipe
and two rotating plates inside (see Fig. 16). Three of the
edges of the plates are straight, and the fourth edge is an
elliptical arc. This type of valve is used widely in medical
treatment, and we extracted the geometry from the pictures
at [62]. Figures 17 and 18 show the plate positions and how

0 240 480

Fig. 12 Aortic valve with coronary arteries. Pressure difference (Pa)
between the lower and upper surfaces of the three leaflets at the same
instants as in Fig. 2
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0.0 2.0 4.0 6.0 8.0

Fig. 13 Aortic valve with coronary arteries. WSS (Pa) on the lower
surface of the three leaflets at the same instants as in Fig. 2

0.0 2.0 4.0 6.0 8.0

Fig. 14 Aortic valve with coronary arteries. WSS (Pa) on the upper
surface of the three leaflets at the same instants as in Fig. 2
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0.00 0.25 0.50

Fig. 15 Aortic valve with coronary arteries. OSI on the lower (left) and
upper (right) surfaces of the leaflets. The leaflets are in the fully-open
configuration, and the left, right and posterior aortic sinuses are shown
in the frames from top to bottom, respectively

Fig. 16 Mechanical aortic valve. The pipe (left) and a valve plate
(right)

they rotate, with the rotation angle θ defined in Fig. 17. The
flow passages between the plates and between each plate
and the pipe wall are all blocked when the valve is closed
at θ = 47.17◦. The valve closes and opens with a period
of T = 1.597 s, and Fig. 19 shows θ during a cycle. The

4.4 mm 9.8 mm

3.0 mm

47.17◦

θ

12 mm

Fig. 17 Mechanical aortic valve. The plate dimensions and positions

Fig. 18 Mechanical aortic valve. The plates at θ = 0.0◦, 9.43◦,
18.87◦, 28.30◦, 37.73◦ and 47.17◦
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Fig. 19 Mechanical aortic valve. The rotation angle during a cycle

flow rate during a cycle is given in Fig. 20. The average flow
rate is 5,736 m�/min. The density and kinematic viscosity
of the fluid are 1,052 kg/m3 and 4.0 × 10−6 m2/s. The
boundary conditions are no-slip on the pipe walls and plates,
and uniform velocity at the inflow boundary. At the outflow
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Fig. 20 Mechanical aortic valve. Inflow profile

Fig. 21 Mechanical aortic valve. Surface mesh on the pipe wall (left)
and the meshes at the outflow (top right) and inflow (bottom right)
boundaries

boundary, we use the technique described in [22] to control
the reverse flow.

Each surface of a plate is made of 3,444 nodes and 3,354
quadrilateral faces. The surface mesh on the pipe wall is
shown in Fig. 21, together with the meshes at the inflow and
outflow boundaries. The volume mesh is generated all man-
ually and consists of 1,241,163 nodes and 1,217,264 tetrahe-
dral, pyramid-shaped and wedge-shaped elements. Figure 22
is a schematic depiction of the block structure of the mesh
when the valve is open and closed. A cross-section of the
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Fig. 22 Mechanical aortic valve. Block structure of the mesh near a
plate when the valve is open (left) and closed (right). The small circular
arcs made of dashed lines and arrows denote the nodes in master–
slave relationship, with the arrow pointing to the master (see [1] for
the concept of master and slave nodes in the ST-TC method). The set
of nodes {25,13,14} is on the lower surface of the plate, and the set
{0,10,11} the upper surface. When the valve is open, node 14 is a slave
of node 11, representing the top edge of the plate. When the valve is
closed, node 14 is a master and node 24 is its slave. At the same time,
node 19 is a slave of node 11. With this nodal master–slave design, the
domain is completely separated into the upper and lower parts when the
valve is closed. The other nodes in the figure are for maintaining layers
of refined mesh near the plate surfaces so that we have a more accurate
representation of the boundary layers, and for having somewhat uniform
mesh in the outflow-boundary region

actual volume mesh at different values of θ is shown in
Figs. 23 and 24.

3.2 Computational conditions

We use the DSD/SST-VMST (convective) technique. The
stabilization parameter τSUPS comes from the τSUPG defin-
ition in [2], specifically the definition given by Eqs. (107)–
(109) in [2], which can also be found as the definition
given by Eqs. (7)–(9) in [12], with hRGN (= hRGNT) and
νLSIC (= νLSIC–HRGN) given by Eqs. (15) and (19) in [57].
The time-step size is 3.175 × 10−3 s. We use 3 nonlinear iter-
ations per time step, with 600 GMRES iterations per nonlin-
ear iteration. Prior to the prescribed valve motion, we com-
pute 132 time steps at the fully-open configuration to develop
the flow field. The viscosity of 4.0 × 10−6 m2/s is reached
by ramping over 30 time steps starting from the viscosity
4.0 × 10−4 m2/s. The ramping profile for the viscosity is
designed to result in a linear ramping for the Reynolds num-
ber. We compute two cycles and display the results for the
second cycle.

3.3 Results

The global mass-balance error, normalized by the average
flow rate, is less than 5%. Figures 25 and 26 show a volume
rendering of the velocity magnitude. We see mostly symmet-
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Fig. 23 Mechanical aortic valve. A cross-section of the mesh at θ =
0.0◦, 9.43◦, 18.87◦ and 28.30◦

ric flow patterns around the valve, nonsymmetric patterns in
the flow passage between the plates because of the jet there
(see the picture corresponding to t/T = 0.8), and nonsym-

Fig. 24 Mechanical aortic valve. The cross-section of the mesh shown
in Fig. 23 at θ = 37.73◦ and 47.17◦

metric patterns downstream. The jet fluctuates left and right,
and in the picture corresponding to t/T = 0.8 the jet is bent
to the right. Figures 27 and 28 show the WSS vectors on
the upper and lower surfaces of a plate, viewed in a direc-
tion normal to the plate surface. The upper surface, which
is most of the time sheltered from the inflow, has in general
lower WSS, with high values only when θ = 0.0◦. Near the
curved edge of the plate, sometimes we see the WSS vec-
tor having negative component in the inflow direction. The
lower surface, which is most of the time not sheltered from
the inflow, has higher WSS, and the WSS vector always has
positive component in the flow direction. Figure 29 shows
the moment acting on each plate with respect to its rotation
center. We note that when the valve is completely closed,
because the lower domain is not connected to the upper one,
the pressure is determinable up to an arbitrary constant in
the lower domain. However, the computation maintains the
pressure to be comparable to what it was before the valve
was closed, and this can be seen in the figure.

4 Concluding remarks

We have extended the ST-TC method to 3D fluid mechan-
ics computation of heart valve models. The ST-TC method,
which is an interface-tracking method, can deal with an actual
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0.2 0.4 0.6

Fig. 25 Mechanical aortic valve. Volume rendering of the velocity
magnitude (m/s) at t/T = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5

0.2 0.4 0.6

Fig. 26 Mechanical aortic valve. Volume rendering of the velocity
magnitude (m/s) at t/T = 0.6, 0.7, 0.8 and 0.9

contact between solid surfaces in flow problems with mov-
ing interfaces, while still possessing the desirable features of
interface-tracking methods, such as better resolution of the
boundary layers. The ST-TC method is a new version of the
DSD/SST method, and the DSD/SST method can already
handle moving-interface problems when the solid surfaces
are in near contact or create near TC, if the “nearness” is
sufficiently “near” for the purpose of solving the problem.
By not giving up on interface-tracking accuracy even where
there is an actual contact between solid surfaces or other TC,
the ST-TC method enables accurate representation of the flow
between the heart valve surfaces even just before they close.
In fact, fluid mechanics computation of heart valves with an
interface-tracking method was one of the classes of compu-
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0.0 6.8 13.5

Fig. 27 Mechanical aortic valve. WSS vectors on the upper (left) and
lower (right) surfaces of the plate at t/T = 0.0, 0.1, 0.2, 0.3 and 0.4.
The color scale is in Pa

tations targeted in introducing the ST-TC method. This paper
is essentially a continuation of the paper [1] where the ST-
TC method was introduced and 2D test computations with
models representative of the classes of problems targeted
with the method were presented. Here we have presented 3D

0.0 6.8 13.5

Fig. 28 Mechanical aortic valve. WSS vectors on the upper (left) and
lower (right) surfaces of the plate at t/T = 0.5, 0.6, 0.7, 0.8 and 0.9.
The color scale is in Pa

computations for two heart valve models: an aortic valve with
coronary arteries and a mechanical aortic valve. These com-
putations show that the ST-TC method can bring interface-
tracking accuracy to fluid mechanics of heart valves, and can
do that with computational practicality.
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Fig. 29 Mechanical aortic valve. The moment acting on each plate
with respect to its rotation center. Positive moment increases θ
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