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Abstract Cohesive zone (CZ) models have long been used
by the scientific community to analyze the progressive dam-
age of materials and interfaces. In these models, non-linear
relationships between tractions and relative displacements
are assumed, which dictate both the work of separation per
unit fracture surface and the peak stress that has to be reached
for the crack formation. This contribution deals with isogeo-
metric CZ modeling of interface debonding. The interface is
discretized with generalized contact elements which account
for both contact and cohesive debonding within a unified
framework. The formulation is suitable for non-matching dis-
cretizations of the interacting surfaces in presence of large
deformations and large relative displacements. The isoge-
ometric discretizations are based on non uniform rational
B-splines as well as analysis-suitable T-splines enabling local
refinement. Conventional Lagrange polynomial discretiza-
tions are also used for comparison purposes. Some numerical
examples demonstrate that the proposed formulation based
on isogeometric analysis is a computationally accurate and
efficient technology to solve challenging interface debonding
problems in 2D and 3D.
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1 Introduction

Interfacial debonding often results in failure of laminated or
generally jointed structures. Laminated structures are widely
used e.g. for aerospace, civil and mechanical applications
due to their good thermo-electro-mechanical performances
combined with low weight and high toughness. The devel-
opment of damage at the interfaces between laminae results
in the formation and growth of interlaminar cracks through
a non-linear and irreversible process which is known as
debonding.

A widely used modeling approach to simulate the onset
and the propagation of debonding is represented by cohesive
zone (CZ) models. These interpret the progressive decay of
the cohesive forces and the formation of traction-free sur-
faces at a bi-material interface or within a material or at the
interlaminar interface in a laminated structure, provided that
the path of the potential crack is known a priori [2,43]. CZ
models were originally introduced by [7,22] as an alternative
approach to singularity driven fracture mechanics and have
been widely used to describe the fracture process in a number
of materials, such as ductile [32,33,54,55,59] or composite
materials [3,4,9,11,37,43].

The numerical application of CZ models for debonding
problems within finite element frameworks, however, has
shown some difficulties because of the localization of the
fracture process zone (FPZ) ahead of the crack tip. Unless a
sufficiently fine mesh discretizes the process zone of a cohe-
sive crack, local softening in the interface elements results
in a sudden release of the elastic strain energy stored in the
surrounding bulk material. This causes a sequence of arti-
ficial (non physical) snap-through or snap-back branches in
the global load-deflection response, which leads to failure of
a standard Newton–Raphson iterative scheme [1]. The sim-
plest strategy to circumvent this problem consists in reducing
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the oscillations through mesh refinement, so that the FPZ is
adequately resolved. For realistic interface parameters lead-
ing to a small process zone size, the element size has to be
extremely small.

In contrast to refinement of the entire domain, local refine-
ment close to the potentially debonded interface is a compu-
tationally more efficient alternative. To this end, different
surface enrichment strategies have been developed in the lit-
erature using different types of enrichment functions for CZ
interface elements [13,24,38,39,41,42]. These techniques,
however, do not increase the degree of continuity of the para-
meterization at the inter-element boundaries which is also
partly responsible for the unphysical stress oscillations at the
interface.

The advent of isogeometric analysis (IGA), introduced
recently by [27], has provided a framework in which an
exact description of the geometry is combined with the pos-
sible achievement of the desired degree of continuity at the
element boundaries, as well as with additional advantageous
features including variation diminishing and convex hull
properties, and non-negativeness of the basis function. The
core idea of IGA is the tight connection between computer
aided design (CAD) and finite element analysis (FEA), since
the same basis fuctions are used with this approach to repre-
sent geometry in CAD and approximate the solutions fields
in FEA. In addition, it has been shown that the use of a
smooth, higher-order geometric basis can deliver significant
advantages as an analysis technique, independently of the
integration with CAD. This has been verified for many appli-
cation areas, see [27] and references therein. In particular, the
application of IGA to the solution of contact problems has
been recently shown to deliver significantly superior results
in comparison with conventional Lagrange discretizations
[16,17,30,31,52,53].

The development of local refinement strategies within
IGA is a subject of active research. Local refinement
techniques include T-splines [8,45,46,58,61], hierarchical
B-splines [44,57], polynomial splines over hierarchical
T-meshes [18,34], and locally-refinable splines [20]. The
application of T-spline discretizations for the solution of con-
tact problems was first demonstrated in Dimitri et al. [19].

The attempts to apply IGA to the modeling of cohesive
interface debonding have been very limited. In [56], prob-
lems involving cohesive cracks were solved by introducing
discontinuities in the IGA parameterization by means of knot
insertion at the location of existing knots. Non uniform ratio-
nal B-splines (NURBS) were used for the discretization of
pre-defined interfaces, whereas T-splines were applied to the
case of propagating cracks, due to their ability to generate
localized discontinuities. Nguyen and Nguyen-Xuan [35]
employed Bézier elements based on Bernstein basis func-
tions to solve delamination problems using zero-thickness
cohesive interface elements. The utilization of high order

Bézier elements was shown to deliver improved results com-
pared to standard linear elements.

This paper presents a simple isogeometric framework for
the 2D and 3D analysis of interfaces undergoing contact and
cohesive debonding. These two phenomena are here treated
within a unified framework, by developing an IGA-based
generalized contact element which embeds the enforcement
of the non-penetration contact conditions in compression as
well as a bilinear mode-I CZ model in tension. In contrast
to the vast majority of the existing investigations based on
interface elements, the presented generalized contact element
allows for non-matching discretizations of the interacting
surfaces, thereby allowing for a much greater flexibility in
the meshing of complicated geometries.

Using a terminology sometimes used in the literature [56],
the focus in this paper is on “adhesive” interfaces, where
a non-infinite initial stiffness of the CZ law in tension is
introduced to simulate the finite stiffness of an adhesive layer.
However, the same approach can be applied to “cohesive”
interfaces within a single material, where the initial stiffness
of the CZ law in tension plays the role of a penalty parameter
and should be taken as large as possible compatibly with
ill-conditioning issues. As follows, the term “cohesive” will
be used throughout without distinction between the previous
two cases.

Unlike in [56], we make no use of knot insertion proce-
dures to generate the discontinuity within a single patch, but
rather assemble different patches along the desired potential
interfaces. The stress conditions then automatically lead to
the enforcement of the proper boundary conditions at these
interfaces, i.e. non-penetration under compression and the
desired CZ behavior in tension.

Unlike in Nguyen and Nguyen-Xuan [35], we adopt here
NURBS and T-splines discretizations as well as conventional
Lagrange discretizations for a comparative assessment of
their performance. In contrast to Bézier elements based on
Bernstein basis functions, which feature C0 inter-element
continuity also for higher-order discretizations, IGA basis
functions are able to naturally achieve a C p−1 inter-element
continuity, with p as the order of the discretization (provided
that no knots are repeated).

The IGA-based discretizations are developed in this work
from a finite element point of view, utilizing the so called
Bézier extraction. The idea is to extract the linear operator
which maps the Bernstein polynomial basis on Bézier ele-
ments to the global NURBS or T-spline basis. In this way
the isogeometric discretizations are automatically generated
for any analysis-suitable CAD geometry and easily incor-
porated into existing finite element frameworks [10,45]. A
recently released commercial T-spline plugin for Rhino3d is
capable of defining and exporting analysis-suitable T-spline
or NURBS models based on Bézier extraction. This plugin
was used to build the analysis models adopted in this study.
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The paper is organized as follows. Sect. 2 briefly describes
basic NURBS and T-spline concepts. Sect. 3 presents the
formulation of the large deformation frictionless contact and
mode-I debonding problem in the discretized setting. Finally,
in Sect. 4, numerical examples are presented and discussed.

2 A brief introduction to NURBS and T-splines

In this section NURBS and T-splines discretizations are
briefly reviewed. Further details and extensive references can
be found in the fundamental works of Hughes and co-workers
[12,27], as well as in further references which will be cited
at the appropriate locations. In what follows we denote the
spatial and parametric dimensions by ds and dp, respectively.

2.1 NURBS discretizations

Univariate B-splines in all spatial dimensions are generated
from ds knot vectors

�i =
{
ξ i

1, . . . ., ξ
i
ni +pi +1

}
(1)

In the above equation i = 1, .., ds, pi is the polynomial order
of the B-spline basis functions along parametric direction
i, ξ i

j is the j th knot, ni is the number of associated con-
trol points, and ni − pi is the resulting number of elements.
Let N i

di ,pi

(
ξ i

)
be univariate B-spline basis functions asso-

ciated with knot vectors �i . The continuity and order of
N i

di ,pi
depend on �i only. If �i has no repeated interior knot

ξ i
j , j ∈ [pi + 1, ni ], then the order-pi basis function N i

di ,pi

has continuity C pi −1. The order of continuity at a certain
knot is decreased by one for each repetition of this knot in
the knot vector.

The knot vectors together with the associated control
points and their weights constitute a patch. To mantain a
single-index notation, which is also used for T-splines, we
introduce a mapping between the tensor product space and
the global indexing of the basis functions and control points.
Let d1 = 1, . . . , n1, d2 = 1, . . . , n2, d3 = 1, . . . , n3, then in
two dimensions we define

Ã(d1, d2) = n2(d1 − 1) + d2 (2)

and in three dimensions

Ã(d1, d2, d3) = n3n2(d1 − 1) + n3(d2 − 1) + d3 (3)

With this definition, the control point coordinates and their
weights will be denoted as PA and wA, respectively, where
A = Ã(d1, d2), A = 1, . . . , n1n2 for surfaces, and A =
Ã(d1, d2, d3), A = 1, . . . , n1n2n3 for volumes.

NURBS basis functions for surfaces (ds = 2) and vol-
umes (ds = 3) are defined via a tensor product of univari-
ate B-spline basis functions. In two dimensions, the surface
NURBS basis functions are defined as

R p1,p2
A

(
ξ1, ξ2

)
=

N 1
d1,p1

(
ξ1

)
N 2

d2,p2

(
ξ2

)
wA

∑n1
d1=1

∑n2
d2=1 N 1

d1,p1

(
ξ1

)
N 2

d2,p2

(
ξ2

)
wA

(4)

Similarly, in three dimensions, the volume NURBS basis
functions are defined as

R p1,p2,p3
A

(
ξ1, ξ2, ξ3

)

= N 1
d1,p1

(
ξ1

)
N 2

d2,p2

(
ξ2

)
N 3

d3,p3

(
ξ3

)
wA∑n1

d1=1

∑n2
d2=1

∑n3
d3=1 N 1

d1,p1

(
ξ1

)
N 2

d2,p2

(
ξ2

)
N 3

d3,p3

(
ξ3

)
wA

(5)

Finally, we can define a NURBS surface as

S(ξ1, ξ2) =
n1n2∑
A=1

R p1,p2
A

(
ξ1, ξ2

)
PA (6)

and a NURBS volume as

V(ξ1, ξ2, ξ3) =
n1n2n3∑

A=1

R p1,p2,p3
A

(
ξ1, ξ2, ξ3

)
PA (7)

2.2 Limitations of NURBS discretizations

As a design tool NURBS surfaces and volumes have two main
shortcomings: their tensor product structure, and the inability
to produce watertight multi-patch geometries with no gaps
or overlaps. These NURBS-based design deficiencies lead to
corresponding drawbacks for the analysis [8]:

1. Many NURBS control points in a mesh are often only
needed to satisfy topological constraints and do not con-
tain significant geometric information. This implies that
a large percentage of the degrees of freedom (DOFs) are
needed just for topological reasons.

2. NURBS refinement is inherently global, due to the ten-
sor product structure of multi-dimensional meshes. Res-
olution of local features propagates globally and knot
lines extend through the entire domain, resulting in a pro-
hibitive computational cost. In the context of contact or
delamination problems, this global propagation of refine-
ment is especially deleterious as the interfacial response
may be highly localized and an accurate resolution of the
cohesive zone may only be needed along the bondline
ahead of the crack tip.

3. Complex geometry of arbitrary genus can only be
represented by multiple NURBS patches which are gen-
erally discontinuous across patch boundaries. For multi-
patch domains inconsistencies at patch boundaries lead
to C0 continuity at the interface or gaps and overlaps
between patches. This lack of watertightness destroys
the analysis-suitable nature of the discretization. By
“analysis-suitable” we mean the exact representation
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of the geometry due to the smooth geometric basis
functions with efficient mathematical properties (i.e. par-
tition of unity, non-negativity, convex hull property, lin-
ear independence), whereas “smooth” refers to the Cl

interelement continuity, where 0 ≤ l < p, and p is the
polynomial order.

T-splines [47,49] have been proposed as a step forward with
respect to NURBS in the aforementioned respects. They can
be locally refined and can represent complicated engineering
designs as a single, watertight geometry [21,45,46]. Multi-
ple NURBS patches can be merged into a single, watertight
T-spline surface and any trimmed NURBS model can be rep-
resented as a watertight T-spline model [50].

2.3 T-spline fundamentals

Hereafter, we briefly overview the main concepts of the
T-spline technology. Additional details can be retrieved in
[8,45–49], and references therein. We focus on cubic T-spline
surfaces due to their predominance in industry. An element
index is denoted by e and the number of non-zero basis func-
tions over an element e is denoted by n.

T-splines allow to build spaces that are complete up to a
desired polynomial degree, as smooth as those of an equiv-
alent NURBS basis, and capable of being locally refined
while keeping the original geometry and parameterization
unchanged. A T-spline is constructed from a global struc-
ture, named T-mesh, that defines the topology and para-
meterization for the entire T-spline object. For surfaces
(dp = 2) the T-mesh is a mesh of quadrilateral elements
whose edges are allowed to contain T-junctions, i.e. vertices
that are analogous to hanging nodes in finite elements. An
element with T-junctions is composed of four corner ver-
tices and any number of additional vertices on any side.
Another possibility allowed for by T-splines is the pres-
ence of extraordinary points in the T-mesh. An extraordi-
nary point is a vertex which is not a T-junction and whose
valence, i.e. the number of edges touching the vertex, is
different from four. The edges that touch an extraordinary
point are referred to as spoke edges, and the elements con-
tained in its two-ring neighborhood are denoted as irregular
elements.

A control point of coordinates PA ∈ R
ds (in the reference

configuration), a control weight wA ∈ R
+ and a T-spline

basis function are all associated to each vertex A of the T-
mesh. While global knot vectors are sufficient to define all
NURBS basis functions, for T-splines the T-mesh does not
contain enough information to construct the basis. A valid
knot interval configuration must be additionally assigned, in
order to endow the T-mesh with local parametric information
[48]. A knot interval is a non-negative real number assigned
to each edge of the T-mesh, and a valid knot interval con-

figuration is such that knot intervals on the opposite sides of
each element sum to the same value.

Once the T-mesh is equipped with a valid knot interval
configuration, the construction of the T-spline basis func-
tion associated to each vertex starts by inferring sequences
of knot intervals from the T-mesh in the neighborhood of
the vertex. A local knot interval vector is thus defined as a
sequence of knot intervals �� = {�ξ1,�ξ2, . . . ..,�ξp+1

}
,

such that �ξi = ξi+1 − ξi , from which a local knot vec-
tor can be derived as a sequence of non-decreasing knots,
� = {

ξ1, ξ2, . . . . . . , ξp+2
}
. A local knot interval vector pos-

sesses all the information in a local knot vector except an ori-
gin. In general, for T-splines, knot intervals are the method
of choice for assigning and retrieving parameter information
to and from the T-mesh since no origin is required. All clas-
sical B-spline algorithms can be rewritten in terms of knot
intervals [45].

For dp > 1, a set of local knot interval vectors, ��A ={��i
A

}dp

i=1 is assigned to each vertex A, from which a cor-

responding set of local knot vectors, �A = {
�i

A

}dp

i=1 can be
derived. Each set �A defines a local basis function domain

�̂A ⊂ R
dp , which carries a coordinate system ξ A = (

ξ i
A

)dp

i=1.

Over each �̂A the T-spline basis function NA is defined
as the tensor product of the univariate basis functions, i.e.

NA
(
ξ A|�A

) =
dp∏

i=1

N i
A

(
ξ i

A|�i
A

)
(8)

and the univariate T-spline basis functions, N i
A

(
ξ i

A|�i
A

)
, are

computed by the Cox-de Boor recursion formula applied over
the local knot vectors [45]. If A is not adjacent to an extraor-
dinary point, NA is comprised of a 4×4 grid of polynomials.
Otherwise, the polynomials comprising NA form an unstruc-
tured grid. In either case, the polynomials can be represented
in Bézier form. Hence, Bézier extraction can be applied to
an entire T-spline to generate a finite set of Bézier elements
such that

Ne(ξ) = CeB(ξ) (9)

where ξ ∈ �̃ is a coordinate in a standard Bézier par-
ent element domain, Ne(ξ) = {N e

a (ξ)}n
a=1 is a vector of

T-spline basis functions which are non-zero over Bézier ele-
ment e, B(ξ) = {Bi (ξ)}m

i=1 is a vector of tensor product
Bernstein polynomial basis functions defining Bézier ele-
ment e, and Ce ∈ R

n×m is the element extraction operator
featuring the following structure

Ce =

⎡
⎢⎢⎢⎣

ce
1,1 ce

1,2 . . . ce
1,m

ce
2,1 ce

2,2 ce
2,m

...
...

...

ce
n,1 ce

n,2 ce
n,m

⎤
⎥⎥⎥⎦ (10)

123



Comput Mech (2014) 54:369–388 373

The coefficients in the above matrix can be computed using
standard knot insertion algorithms for B-splines, see [10] and
[45] for more details. The matrix dimensions follow from n
T-spline basis functions and m Berstein polynomials being
defined over element e.

2.4 T-spline discretizations

The element geometric map, Xe : �̃ → �e, from the parent
element domain onto the physical domain in the reference
configuration can be defined as

Xe(ξ) = 1

(we)T Ne(ξ)

(
Pe)T WeNe(ξ) (11)

= (
Pe)T Re(ξ) (12)

where we introduced Re(ξ) = {Re
a(ξ)}n

a=1, i.e. a vector of
rational T-spline basis functions, the element weight vec-
tor we = {we

a}n
a=1, and the diagonal weight matrix We =

diag(we). Moreover, Pe is a matrix of dimension n × ds

that contains the reference coordinates of the element con-
trol points. For ds = 3 it is

Pe =

⎡
⎢⎢⎢⎣

Xe
1 Y e

1 Ze
1

Xe
2 Y e

2 Ze
2

...
...

...

Xe
n Y e

n Ze
n

⎤
⎥⎥⎥⎦ (13)

Using Eqs. (11) and (12) it is

Re(ξ) = 1

(we)T Ne(ξ)
WeNe(ξ) (14)

and using eq. (9)

Re(ξ) = 1

(we)T CeB(ξ)
WeCeB(ξ) (15)

Note that all quantities in Eq. (15) are written in terms of the
Bernstein basis defined over the parent element domain, �̃.

In the isoparametric framework, element mappings anal-
ogous to Eq. (12) are introduced for the unknown displace-
ment field, its variation, and the coordinates in the current
configuration

u(ξ) =
n∑

a=1

Ra(ξ)ua δu(ξ) =
n∑

a=1

Ra(ξ)δua

x(ξ) =
n∑

a=1

Ra(ξ)pa (16)

where the superscript e has been dropped for convenience
and ua, δua and pa are the unknown displacement, displace-
ment variation, and current coordinate of the control point
PA, respectively, with pa = Pa + ua . A = I E N (a, e) is a

mapping from the local element numbering to the global con-
trol point numbering [26]. Equation (16) can also be applied
to a NURBS interpolation as a special case where the num-
ber of control points n pertaining to each element is fixed,
as well as to a Lagrangian interpolation, in which case n is
simply the number of nodes per element.

Parameterization of the surfaces follows immediately
from that of the bulk by fixing the value of the appropri-
ate parametric coordinate. In this paper, we assume that the
third parametric coordinate takes a constant value on the
contact/cohesive surface. Additionally, the parameterization
of the slave and master surfaces, introduced in the interfa-
cial treatment, will be denoted by the superscripts s and m,
respectively.

3 Large deformation frictionless contact and mode-I
debonding problem

The formulation reported hereafter is largely based on the
GPTS contact formulation illustrated in [19]. This is an exten-
sion to the T-spline case of the NURBS-based formulation
termed “knot-to-surface” in [52] and “non-mortar” in [16].
In turn, this formulation is the isogeometric counterpart of
the contact algorithm proposed by [23] in the context of
Lagrange linear elements. A clarification regarding the ter-
minology has been reported in [19].

Hereafter, the formulation in [19] is extended to encom-
pass cohesive mode-I debonding in the tensile regime. Many
details which are shared with the unilateral contact formula-
tion are omitted, except for those that are needed to ensure a
self-consistent presentation. Further details can be retrieved
in the original reference.

3.1 Problem description

Two hyperelastic bodies are assumed to undergo finite defor-
mations including contact and cohesive debonding along a
pre-defined interface. One of them is denoted as the slave
body, Bs , and the other one is the master body, Bm . This
classical choice introduces a bias between the two interact-
ing surfaces, however, alternative unbiased formulations are
also possible [36,40]. The deformation of both bodies is
expressed by the coordinates of their generic point in the
current configuration xi = Xi + ui , where X is the coor-
dinate of the same point in the reference configuration, u is
its displacement, and the superscript i = (s, m) refers to the
slave and master bodies, respectively.

On the master surface, the convective coordinates ξm =
{ξα

m}ds−1
α=1 coincide with the parametric coordinates and define

the covariant vectors τα = xm
,α . We introduce the dis-

tance function d := ‖xs − xm(ξm)‖, describing the distance
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between a fixed point xs on the contact/cohesive boundary γ s
c

of the slave surface and an arbitrary point xm(ξm) on the con-
tact/cohesive boundary of the master surface γ m

c . Each point
xs is assumed to have a unique interacting partner on the mas-
ter surface, x̄m = xm(ξ̄m), whose position is computed via
the closest-point projection of xs onto γ m

c . This is equivalent
to minimizing the distance d previously defined. The closest
projection point and the related variables are often identified
in the literature with the (•̄) notation.

The contact/cohesive interface is pulled back to �c :=
�s

c �= �m
c , where �i

c is the contact/cohesive boundary of body
Bi in the reference configuration. The interface integrals are
all evaluated on �s

c for ease of linearization.
The normal gap, gN , between the two bodies is defined as

gN = (
xs − x̄m) · n (17)

where n = n̄m is the outward normal unit vector to the master
surface at the projection point. With this definition, for neg-
ative gN penetration between the bodies takes place and the
contact algorithm is activated, while for positive gN cohe-
sive tractions arise. The normal traction pN is defined as the
normal component of the Piola traction vector t = tm = −ts

t = pN n pN = t · n (18)

The non-penetration condition is here enforced in the
normal direction using the penalty method. Depending on
the gap status, an automatic switching procedure is used to
choose between contact and cohesive models. In the latter
case a bilinear CZ law is considered (Fig. 1). This simple
shape is able to capture the main characteristic parameters of
the interface, i.e. the cohesive strength, pNmax , the ultimate
value of the normal relative displacement, gNu , as well as the
linear-elastic stiffness (slope of the curve in the ascending
branch, pNmax

gNmax
, where gNmax is the normal relative displace-

ment at peak cohesive stress). Thus the interface law reads

pN =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εN gN for gN < 0
pNmax
gNmax

gN for 0 ≤ gN < gNmax

pNmax
gNu−gN

gNu−gNmax
for gNmax ≤ gN < gNu

0 for gN ≥ gNu

(19)

g
Nmax

g
Nu

p
Nmax

g
N

p
N

g
N

>0: cohesive law

g
N
<0: penalty method

G
IC

Fig. 1 Relationship between interfacial tractions and relative displace-
ments in the normal direction

where εN > 0 is the normal penalty parameter. The non-
penetration condition in compression is enforced exactly in
the limit as εN tends to infinity.

Note that, in this formulation, the interacting locations at
the two sides of the crack are continuously updated through
the closest-point projection procedure typical of large defor-
mation contact algorithms [60]. Through this choice, the
tangential components of contact and cohesive interfacial
forces vanish automatically, which is reasonable for friction-
less contact and mode-I cohesive debonding. In cases involv-
ing mode II or mixed-mode debonding where the interact-
ing bodies undergo significant relative displacements in the
normal as well as in the tangential directions as well as for
frictional contact, a different formulation is needed. E.g. a
possible approach is to assume that the cohesive force acting
across the interface at each slave Gauss point continuously
connects it to the same master projection point identified in
the initial bonded configuration, at least during the initial
stage of loading.

3.2 Interface contribution to the virtual work

The contribution of the interfacial tractions to the virtual work
can be expressed as

δWc =
∫

�c

pN δgN d� (20)

where δ is the symbol for virtual variation, the integral is eval-
uated on the pull back of the currently active interfacial region
(see also Sect. 3.4) and the normal component of the inter-
facial traction, pN , takes one of the expressions in Eq. (19)
depending on the sign and magnitude of gN . Linearization of
Eq. (20) for use in the Newton–Raphson iterative procedure
yields

�δWc =
∫

�c

∂pN

∂gN
�gN δgN d� +

∫

�c

pN �(δgN ) d� (21)

where � is the symbol for linearized increment. Based on
Eq. (19), it is

∂pN

∂gN
=

⎧⎪⎪⎨
⎪⎪⎩

εN for gN < 0
pNmax
gNmax

for 0 ≤ gN < gNmax

− pNmax
gNu−gNmax

for gNmax ≤ gN < gNu

0 for gN ≥ gNu

(22)

For the detailed expressions of δgN ,�gN , and �(δgN )

needed in Eqs. (20) and (21), see [29,60]. These are also
reported in [19].
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3.3 Variation and linearization of the contact
and debonding variables in discretized form

The quantities δgN ,�gN and �(δgN ) can be rewritten in
matrix form as follows (Dimitri et al. [19])

δgN = δuT N �gN = NT �u (23)

where the following vectors have been defined

δu=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δus
1

...

δus
ns

δum
1
...

δum
nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�u=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�us
1

...

�us
ns

�um
1

...

�um
nm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

N=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
1(ξ s)n

...

Rs
ns (ξ s)n

−Rm
1 (ξ̄m)n

...

−Rm
nm (ξ̄m)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

In Eq. (24) ns and nm are the number of basis functions hav-
ing support on the element of the slave and master body,
respectively, where the quantities are currently being eval-
uated; ξ s = {ξα

s }ds−1
α=1 are the parametric coordinates of the

point on the slave surface where the quantities are being eval-
uated, and ξ̄m = {ξ̄ α

m}ds−1
α=1 are the parametric coordinates of

the respective projection point on the master surface. The
linearization of the variation can be expressed as

� (δgN ) = δuT kgeo�u (25)

with

kgeo = gN N̄m−1N̄T + DN̂T + N̂DT − DkDT (26)

Here m−1 is the inverse metric tensor, whose components
mαβ are the inverse of those of the metric tensor evaluated at
the projection point, mαβ := τ̄α · τ̄β , and k is the curvature
tensor also evaluated at the projection point, kαβ = x̄m

α,β · n.
Moreover, the following definitions have been introduced

Tα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs
1(ξ s)τα

...

Rs
ns (ξ s)τα

−Rm
1 (ξ̄m)τα

...

−Rm
nm (ξ̄m)τα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Nα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0
−Rm

1,α(ξ̄m)n
...

−Rm
nm ,α(ξ̄m)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

N̂ = [
N1 N2

]
T̂ = [

T1 T2
]

(ds = 3) (28)

D =
[
T̂ − gN N̂

]
A−1 N = N̂ − Dk (29)

where A−1 is the inverse of tensor Aαβ = mαβ − gN kαβ .
All the equations reported in this section are valid for both
2D and 3D cases, except for Eq. (28) that in the 2D case is
substituted by N̂ = N1 and T̂ = T1.

For Lagrange and NURBS discretizations, the size of all
vectors is fixed and dictated by the order of the discretiza-

tion, while for T-spline discretizations the above vectors have
variable size depending on the number of basis functions hav-
ing support on each given slave or master element. This is
dictated not only by the polynomial order but also by the pres-
ence and number of T-junctions and extraordinary points.

3.4 The Gauss-point-to-surface (GPTS) contact
and cohesive debonding algorithm

As mentioned earlier, the interface is discretized with gener-
alized contact elements which account for both contact and
cohesive debonding. The computation of the interface contri-
bution is based on the GPTS algorithm. This formulation was
originally proposed by [23] for the solution of contact prob-
lems, extended to NURBS discretizations in [16,52] and then
to T-splines discretizations in [19]. The formulation is char-
acterized by the independent enforcement of the interfacial
constraints at each quadrature point associated with the con-
tribution δWc in Eq. (20). In other words, the interfacial con-
tribution to the virtual work δWc in Eq. (20) is integrated in a
straightforward fashion by locating a predetermined number
of Gauss-Legendre quadrature points (GPs) on each element
of the slave contact surface.

The GPTS algorithm is characterized by a remarkable sim-
plicity of formulation and implementation. It is also compu-
tationally inexpensive and passes (up to within the integration
error) the so-called contact patch test, which is a necessary
condition for convergence to the correct solution [23]. Its
main drawback is its overconstrained nature, as the interface
constraints are enforced (in simple but not rigorous terms)
at an “excessive” number of locations. This leads to LBB
instability when using the penalty method with very large
values of the penalty parameter. In our examples the values
of the penalty parameter for which the drawbacks of insta-
bility become appreciable for the GPTS algorithm seem to
lay beyond those needed for a solution of satisfactory quality
from the engineering perspective. Nevertheless, an interfa-
cial formulation in the framework of mortar methods would
certainly be more performant and may be pursued by the
authors in future research.

By substitution of Eq. (23) into Eq. (20), the contact con-
tribution to the residual vector for the Newton–Raphson iter-
ative solution of the non-linear problem is obtained as follows

Fig. 2 DCB problem: scheme
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Fig. 3 DCB problem: cubic
Lagrange, NURBS and T-spline
meshes (close-up). a–c D0 =
1698, d–f D0 = 3108

(a) L3

(b) N3

(c) T

(d) L3

(e) N3

(f) T

R =
∫

�c

pN N d� (30)

which is numerically computed on �c as

R =
∑

G P,active

pNgNgwg jg (31)

where the subscript g indicates that the quantity is computed
at the gth GP on �c, wg and jg are respectively the weight and
the jacobian associated to the same GP, and the summation
is extended to all active GPs. From Eq. (21) combined with
Eqs. (23) and (25) the expression of the consistent tangent
stiffness matrix results as

KT = KT,main + KT,geo (32)

where the “main” and “geometric” components are given by

KT,main =
∫

�c

∂pN

∂gN
NNT d� (33)

KT,geo =
∫

�c

pN kgeod� (34)

with kgeo given by Eq. (26). Finally, the numerical integration
of Eqs. (33) and (34) yields

KT,main =
∑

G P,active

∂pN

∂gN

∣∣∣∣
g

NgNT
g wg jg (35)

KT,geo =
∑

G P,active

pNgkgeo,gwg jg (36)
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A final remark is needed regarding the concept of “active”
GPs and, correspondingly, of “active” interface region.
Unlike in a unilateral contact formulation, in the presented
setting all GPs belonging to the predefined contact/cohesive
surface are potentially active, as the contact or cohesive con-
strains are activated for negative and positive normal gap,
respectively. However, in general loading cases attention
must be paid to distinguish between loading and unloading
conditions as well as to the previous history of each GP.
E.g., a GP which has fully debonded by reaching gN ≥ gNu

can no longer be considered active if its gap is found to
decrease below gNu at subsequent loading stages, unless the
gap changes sign and leads to contact conditions. Such gen-
eral situations can be accounted for e.g. within a damage for-
mulation but are not encountered in the examples reported
hereafter.

4 Numerical examples

The algorithm illustrated above has been implemented in the
finite element code FEAP (courtesy of Prof. Taylor [51]).
Some numerical examples are presented hereafter to demon-
strate its performance in combination with NURBS and
T-spline-based parameterizations. A user module has been
added to FEAP to input the control points, elements and
Bézier extraction operators of T-spline models exported from
the Autodesk T-spline plugin for Rhino3d [6].

T-splines, NURBS and Lagrange discretizations with the
same number of DOFs (D0), or equivalently with the same
number of control variables (control points or nodes) are
employed. The current T-spline technology only encom-
passes third-degree interpolations, whereas for NURBS and
Lagrange different degrees are adopted. Cubic T-spline dis-
cretizations are denoted by T , while NURBS and Lagrange
discretizations with order p in all parametric directions are
denoted as N p and Lp, respectively. Lagrange and NURBS
meshes are uniform, whereas in the T-spline parameteriza-
tions T-junctions are locally added to the meshes near the
interfaces.

The sets of comparisons presented hereafter should be
intended as follows. First, Lagrange and NURBS models
with the same number of DOFs are compared. Despite
Lagrange interpolations are capable of local refinement,
this possibility is not exploited here, in order for the
Lagrange/NURBS comparison to focus on the effect of the
different basis functions on performance. Second, NURBS
and T-spline models with the same number of DOFs are com-
pared, to quantify the increase in accuracy obtained through
the local refinement capability for a given computational cost.
The accuracy of NURBS for given DOFs may be improved
by using non-uniform knot vectors such as done e.g. in [19].
However, this possibility is not general enough and is not

exploited herein to avoid introducing additional problem-
dependent variables such as the grading ratios, which are
not believed to be significant for the purpose of the present
investigation.

The three presented examples consider the 2D double can-
tilever beam (DCB) specimen, the 2D peel test for bimaterial
joints and 3D edge peeling of thin laminates. Unless spec-
ified otherwise, a fixed number of 2 GPs is adopted for the
evaluation of the interface integrals on each surface element
in each surface parametric direction.

4.1 DCB test

As a first example, we consider the classical mode-I DCB test,
used in the ASTM3433 [5] standard to determine the mode-I
fracture toughness, and we assume plane stress conditions.
A specimen with length L = 14 mm, width w = 1 mm,
thickness h = 0.2 mm, and precrack length a0 = 4 mm, is
gradually pulled apart (Fig. 2) by applying a vertical displace-
ment u = 2.5 mm in 2500 time steps. An elastic isotropic
behavior is assumed for both master (upper) and slave (lower)
bodies, with material properties E = 120 GPa and ν = 0.2.
A penalty parameter εN = 105 MPa/mm is chosen as the
default value.

A prerequisite for accurate debonding computations is that
the element size ahead of the crack tip is sufficiently smaller
than the length of the FPZ where the cohesive traction-
separation law is activated and the energy is dissipated. While
the element size is obviously dictated by the discretization,
the length of the FPZ is essentially a function of the CZ para-
meters. In particular, for a given interfacial fracture energy,
G I C , and for a given ratio between the ultimate and maxi-
mum opening displacements, gNu/gNmax , the length of the
FPZ is known to decrease as the cohesive strength increases
(see [14,15] for detailed analytical solutions).

To investigate on the effect of the FPZ resolution on
results, both mesh refinement and size of the FPZ are varied in
the numerical analyses. The problem is solved with uniform
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Fig. 4 DCB problem: the CZ laws
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Fig. 5 DCB problem: load-displacement response for a Lagrange discretizations of different orders, b NURBS discretizations of different orders,
c cubic Lagrange, NURBS and T-spline discretizations. D0 = 1698, CZM 1

Lagrange and NURBS meshes, as well as with locally refined
T-spline meshes. Lagrange and NURBS discretizations of
different orders are first considered. Then, all third-order dis-
cretizations including T-splines are compared. All compar-
isons are made for the same number of total DOFs. Two
different levels of mesh refinement are studied, correspond-
ing to D0 = 1698 (mesh 1) and D0 = 3108 (mesh 2). Figure
3 shows a close-up of the two meshes for Lagrange, NURBS
and T-spline discretizations in the vicinity of the crack
tip. Whereas Lagrange and NURBS meshes are uniform,

T-discretizations have a larger number of elements concen-
trated in the vicinity of the interface due to analysis-suitable
T-spline local refinement [46]. Also, two different cohesive
strengths are considered (pNmax = 3 MPa and pNmax =
6 MPa), whereas G I C = 0.1 N/mm and gNu/gNmax = 12.5
are kept fixed (Fig. 4).

The response is evaluated in terms of load-deflection
behavior. The numerical results are compared with analyti-
cal predictions obtained by combining the concepts of elastic
bending theory and linear elastic fracture mechanics (LEFM)

123



Comput Mech (2014) 54:369–388 379

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
L1
L2
L3

0.34

0.36

0.38

0.4

0.42

0.44

1 1.1 1.2 1.3 1.4 1.5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
L1
L2
L3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
N1
N2
N3

0.34

0.36

0.38

0.4

0.42

0.44

1 1.1 1.2 1.3 1.4 1.5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
N1
N2
N3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
L3
N3
T

0.34

0.36

0.38

0.4

0.42

0.44

1 1.1 1.2 1.3 1.4 1.5

L
oa

d 
P

[N
] 

Displacement u [mm]

Analytical
L3
N3
T

(a)

(b)

(c)

Fig. 6 DCB problem: load-displacement response for a Lagrange discretizations of different orders, b NURBS discretizations of different orders,
c cubic Lagrange, NURBS and T-spline discretizations. D0 = 3108. CZM 1

[25]. Note that LEFM can be considered as the limit case of
CZ modeling where the cohesive strength tends to infinity
and the size of the FPZ accordingly tends to zero, so that
the crack tip singularity is recovered. As a result, the load-
deflection response as predicted by LEFM is not expected to
agree with the numerically computed response. Nevertheless,
the analytical curve is a useful benchmark which is expected
to be approached more closely as the cohesive strength is
increased.

Linear and higher-order interpolations are first considered
with Lagrange and NURBS basis functions, see Figs. 5 and
6a, b for the lowest cohesive strength (CZM 1) and Figs. 7 and
8a, b for the highest cohesive strength (CZM 2). L1 and N1
interpolations are coincident in this case due to the uniform
weights.

Linear interpolations deliver too stiff results in the ascend-
ing branch of the curves, due to shear locking effects. This
phenomenon is less pronounced for the finest mesh as this
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Fig. 7 DCB problem: load-displacement response for a Lagrange discretizations of different orders, b NURBS discretizations of different orders,
c cubic Lagrange, NURBS and T-spline discretizations. D0 = 1698. CZM 2

features a more favorable element aspect ratio. Note that the
seemingly good agreement of the stiffer results with the ana-
lytical curve in Figs. 5 and 7 does not imply a better accuracy,
as analytical results refer to the LEFM case.

NURBS discretizations evidently deliver results of higher
quality in comparison with conventional Lagrange finite ele-
ments. This is likely due to the higher (C p−1) order of inter-
element continuity achieved with NURBS, as opposed to C0

in the Lagrange case. The load-deflection curves obtained
from NURBS discretizations are smoother than the Lagrange

ones and are nearly unaffected by the interpolation order.
Conversely, results from higher-order Lagrange parameteri-
zations are quite irregular. For a given resolution, increasing
the order of the Lagrange discretization does not alleviate the
magnitude of oscillations but is rather unfavorable, as even
larger oscillations are produced. These results qualitatively
resemble those presented in [16,17,52] for unilateral contact
problems.

As the mesh is refined, the cohesive/contact regions are
better resolved and the quality of the solution improves, as
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Fig. 8 DCB problem: load-displacement response for a Lagrange discretizations of different orders, b NURBS discretizations of different orders,
c cubic Lagrange, NURBS and T-spline discretizations. D0 = 3108. CZM 2

visible by comparing Figs. 5 with 6 and 7 with 8. More
elements are enclosed within a FPZ of given size and the
debonding process is more accurately described. On the other
hand, the effect of the increase of the interfacial strength for
a constant fracture energy (i.e. for a decreasing ultimate sep-
aration, gNu) is also to reduce the length of the FPZ and
therefore to decrease the number of elements spanning this
zone. It is expected that if the fracture strength pNmax is
increased to a point where less than one element spans the
FPZ, convergence is no longer achieved or inaccurate results

are found. By comparing Figs. 5 with 7 and 6 with 8, it
is clear that increasing the cohesive strength leads to more
severe irregularities and oscillations in the global response
both for Lagrange and NURBS discretizations. The FPZ is
localized in a smaller region, and a higher mesh resolution
near the crack tip is necessary to improve the results.

The same problem is then solved with locally refined cubic
T-spline meshes, whose results are compared with those from
cubic Lagrange and NURBS interpolations in Figs. 5, 6, 7 and
8c. The curves obtained with T-splines feature significantly
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Fig. 9 DCB problem: effect of the number of Gauss points per parametric direction on each contact element. a L3, b N3, c T. D0 = 1698. CZM 2

Fig. 10 Peel test problem:
scheme u
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Fig. 11 Peel test problem: cubic Lagrange, NURBS and T-spline meshes (close-up)

smaller oscillations during the progressive debonding phase
(i.e. in the softening branch of the curves) in comparison
with those from NURBS interpolations with the same D0, as
a direct consequence of the locally refined FPZ.

For completeness, the number of GPs where the inter-
face constraints are enforced is varied in Fig. 9 for the most
unfavourable case here analysed, corresponding to the high-
est fracture strength pNmax (i.e. CZM 2), and the coarsest
mesh (i.e. mesh 1). An increasing number of GPs is benefi-
cial as it improves the resolution in the computation of the
cohesive or contact forces, especially for this coarse mesh.
This is much more evident for L3 and N3 discretizations,
for which the magnitude of the oscillations is reduced for
increasing number of GPs, until macroscopically smooth
curves are obtained. T-spline discretizations are less sen-
sitive to the number of GPs as a smooth curve is already
obtained with 2 GPs. From a qualitative observation valid
for this case, the T-spline curve with 2 GPs is similar to the
NURBS curve with 8 GPs and to the Lagrange curve with
16 GPs. These results indicate that increasing the number of
interface GPs in the GPTS formulation allows for the use of
coarse meshes even when the interface parameters lead to a
very small FPZ, thus decreasing the overall computational
cost. With IGA-based (and in particular T-spline-based) dis-
cretizations, coarse meshes with a small number of interface
GPs can be used.

4.2 Bimaterial peel test

The second example considers a peel test between a fiber-
reinforced polymer strip with length L2 = 150 mm and

thickness h2 = 2 mm and a concrete substrate with length
L1 = 120 mm and thickness h1 = 10 mm. The strip, ini-
tially bonded to the substrate throughout its length, is peeled
away by applying at the right boundary a vertical displace-
ment of 10 mm in 200 time steps, as shown in Fig. 10.
An elastic isotropic behavior is assumed for both bodies,
with material properties E1 = 5 MPa and ν1 = 0.2 for the
substrate and E2 = 250 MPa and ν2 = ν1 for the strip.
The lower surface of the strip is treated as slave, and the
upper surface of the substrate as master. A bilinear CZ law is
adopted with cohesive parameters pNmax = 6 MPa, G I C =
0.1 N/mm, gNu/gNmax = 10. Figure 11 shows the meshes
for the cubic Lagrange, NURBS and T-spline discretizations.
The penalty parameter εN is set to 105 MPa/mm, and 2 GPs
are considered for each element of the interface.

Figure 12 describes the peeling process in terms of load-
displacement curves for Lagrange and NURBS interpola-
tions of different orders. As in the previous example, the
Lagrange interpolations are shown to produce significant and
irregular load oscillations during the softening stage. These
oscillations tend to increase with the order of the discretiza-
tion and strongly affect the iterative convergence behavior.
Using NURBS parameterizations greatly improves the qual-
ity of results, as visible from the reduced magnitude of the
oscillations and the regularity of the pattern. Increasing the
order of the discretization from p = 2 to p = 3 does not
produce appreciable changes in results, although probably
smoother results would be obtained with further order eleva-
tion.

Figure 12b compares all third-order discretizations,
including the locally refined T-spline mesh. This performs
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Fig. 12 Peel test problem: load-displacement response for a Lagrange discretizations of different orders, b NURBS discretizations of different
orders, c cubic Lagrange, NURBS and T-spline discretizations

even better than the cubic NURBS mesh and leads to a macro-
scopically smooth curve due to the local refinement close
to the contacting/cohesive surfaces. This confirms T-spline-
based IGA as the most accurate and efficient choice when
studying debonding problems.

As finally shown in Fig. 13, increasing the number of
GPs reduces significantly the magnitude of oscillations for
Lagrange and NURBS discretizations, while having virtu-
ally no effect for T-spline discretizations as smooth results
are obtained already with 2 GPs. In this case, the T-spline
curve with 2 GPs is similar to the NURBS curve with 4 GPs,

whereas results of Lagrange interpolations remain oscillatory
even for the largest number of GPs investigated.

4.3 3D thin-walled laminates

In this section, the T-spline-based integrated contact and CZ
formulation is applied to a 3D laminated structure. The pri-
mary goal of this example is to demonstrate the effective-
ness of the proposed formulation in conjunction with 3D
T-spline discretizations using shell elements for the con-
tinuum. Figure 14 depicts two square laminae (dimensions
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Fig. 13 Peel test problem: effect of the number of Gauss points per parametric direction on each contact element. a L3, b N3, c T

25 × 25 × 0.2 mm3) bonded to each other and fixed on two
orthogonal sides. A concentrated displacement Uz = 12 mm
is applied in 120 time steps to the control point located at
the free corner of the upper lamina. The two laminae are dis-
cretized with 3D isogeometric Kirchoff-Love shell elements
[28]. Some irregular elements are generated in the T-mesh
by including T-junctions around the loaded control point.
Also in this case, the analysis is carried out by importing into
FEAP the extraction operator generated by the T-spline plu-
gin in the Rhino environment, where the mesh is generated

using standard CAD operations. An elastic isotropic mate-
rial behaviour is assumed for both bodies, with constants
E = 106 MPa and ν = 0.3. The lower shell is here treated as
master and the upper shell as slave. A bilinear cohesive model
with pNmax = 10 MPa and G I C = 0.3 N/mm is assigned to
the interface, and 4 × 4 GPs are used for integration of the
interface contribution to the virtual work.

Figure 14 shows the deformed mesh at time step 80, along
with the contours of the vertical displacement, whereas the
load-deflection history is reported in Fig. 15. In the initial
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Fig. 14 3D thin-walled
laminates: T-spline mesh and
deformed shape for time step 80
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Fig. 15 3D thin-walled laminates: reaction-displacement global response

loading phase, the two shells are bonded throughout the inter-
face and the slope of the load-deflection curve corresponds
to the stiffness of a single shell having double the thick-
ness of each lamina (dashed line). Soon thereafter debonding
starts taking place, leading to a markedly non-linear behavior.
The peak is reached approximately when the debonding front
reaches the diagonal of the laminate, at which point a sudden
drop in load is observed. The subsequent behavior returns to
linearity but the stiffness corresponds to that of the upper lam-
ina, now fully detached from the lower one (dash-dotted line).
The load-deflection response appears remarkably smooth
throughout all phases, including the abrupt transition from
the partially debonded to the fully debonded stage. This sug-
gests that the C2 continuity of the interface determines a
well-resolved deformed FPZ. Due to the large deformation
range, the slave GPs are projected onto different master seg-
ments as the deformation progresses. However, these tran-
sitions occur quite smoothly and do not lead to appreciable
oscillations in the global response despite the coarseness of
the mesh. A similarly smooth behaviour is also expected for
more complex meshes including extraordinary points with

C1-continuous local parameterizations. This has been suc-
cesfully verified in Dimitri et al. [19] for examples including
extraordinary points in unilateral frictionless contact.

5 Conclusions

This paper proposes a NURBS- and T-spline-based isogeo-
metric formulation for 2D and 3D interface problems with
non-matching meshes encompassing contact and mode-I CZ
debonding. A GPTS discretization of the interface constraints
is adopted whereby a desired number of quadrature points is
located on the slave contact/cohesive surface and the con-
tact/CZ constraints are enforced independently at each of
these points. The performance of Lagrange, NURBS and T-
spline discretizations is evaluated comparatively based on
the load-displacement responses from a DCB specimen, a
bimaterial peel test, and an edge debonding test between thin
laminates.

The results of the Lagrange discretizations are shown to
feature oscillations of increasing magnitude and irregularity
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as the order of the parameterization is increased. These oscil-
lations in turn lead to important iterative convergence issues
and potentially loss of convergence. Conversely, the NURBS
discretizations lead to very small oscillations whose magni-
tude is approximately constant with the interpolation order
within the range of order analyzed herein. In the comparison
between NURBS and T-spline models with the same number
of DOFs, T-splines deliver macroscopically smooth results
due to their ability of local refinement, which leads to a bet-
ter resolution of the FPZ in the vicinity of the interface and
ahead of the cohesive crack. Finally, increasing the number
of interface GPs in the GPTS formulation allows for the use
of coarse meshes even when the interface parameters lead to
a very small FPZ, thus decreasing the overall computational
cost. With IGA-based (and in particular T-spline-based) dis-
cretizations, coarse meshes with a small number of interface
GPs can be used.

In summary, the proposed formulation, combined with
T-spline isogeometric discretizations featuring high inter-
element continuity and local refinement ability, appears to
be a computationally accurate and efficient technology for
the solution of interface problems.
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