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Abstract A GSM–CFD solver for incompressible flows is
developed based on the gradient smoothing method (GSM).
A matrix-form algorithm and corresponding data structure
for GSM are devised to efficiently approximate the spa-
tial gradients of field variables using the gradient smooth-
ing operation. The calculated gradient values on various test
fields show that the proposed GSM is capable of exactly
reproducing linear field and of second order accuracy on all
kinds of meshes. It is found that the GSM is much more robust
to mesh deformation and therefore more suitable for prob-
lems with complicated geometries. Integrated with the artifi-
cial compressibility approach, the GSM is extended to solve
the incompressible flows. As an example, the flow simulation
of carotid bifurcation is carried out to show the effectiveness
of the proposed GSM–CFD solver. The blood is modeled as
incompressible Newtonian fluid and the vessel is treated as
rigid wall in this paper.

Keywords Incompressible GSM–CFD ·
Gradient smoothing · Matrix-form · Carotid bifurcation

1 Introduction

Computational fluid dynamics (CFD) has become a stan-
dard and popular tool widely utilized in almost all aspects
of fluid dynamics for both engineering and academic fields,
including aerospace, automotive, chemical reaction, biome-
chanics and so on. With the dramatic increases of computer
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power and advances in algorithm efficiency, the development
and application of CFD packages are always an active topic
in many decades for better robustness in handling compli-
cated engineering problems. The numerical methods used
in CFD generally fall into three categories, finite difference
method (FDM), finite element method (FEM) and finite vol-
ume method (FVM), and the detailed comments on the com-
parisons of the methods are given in [28]. There are also
some other approaches like smoothed-particle hydrodynam-
ics (SPH) [24,25,32] and lattice Boltzmann method [1,8]
that are developed for complex flows.

For hemodynamics, an important issue is how to model
the blood and to simulate its dynamic features during the
cardiac cycle. Physically, the blood is a complex mixture
of cells, proteins, lipoproteins, and ions, by which nutrients
and oxygen are delivered to the cells and the wastes and
carbon dioxide are transported outside [18,20]. During the
CFD computation at continuum-scale, the blood can be mod-
eled as incompressible Newtonian [20,38,40,46,48,53] or
non-Newtonian [13–17,36] flow. The non-Newtonian con-
stitutive equations are necessary if the shear rate is less than
100 s−1 when the shear-thinning phenomenon become sig-
nificant. In the regions of mid-range to high shear rate, the
Newtonian constitutive laws can give a good approxima-
tion [13,15]. The detailed distributions of velocity, pressure
and wall shear stress (WSS) can be obtained by using the
CFD and fluid–structure interaction (FSI) tools, combined
with the advanced medical image and modeling techniques,
more accurate patient-specific model can be constructed and
solved [2,6,7,38,40,42,46,48]. The advanced computational
tools can help to investigate the pathogenesis, predict disease
progression, design surgical planning, and can play an impor-
tant role in the development of medical devices.

The general purpose CFD codes developed based on
FEM [14,41,43–46], FVM [15,17] or commercial pack-
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ages [16,33] have been already used as the fluid solver
or FSI solver for hemodynamics. Tezduyar and his col-
leagues [37] have conducted extensive research on patient-
specific arterial FSI modeling of cerebral aneurysms for the
recent decade using the deforming-spatial-domain/stabilized
space-time (DSD/SST) formulation. This formulation is
developed based on the streamline-upwind/Petrov–Galerkin
(SUPG) and pressure-stabilizing/Petrov–Galerkin methods,
and designed with moving mesh features to handle the flow
problems with moving boundaries. The stabilized space-time
FSI (SSTFSI) technique is developed based on DSD/SST for-
mulations with various special techniques for the arterial FSI
simulations, with emphasis on arteries with aneurysm. These
techniques include a special mapping technique for determin-
ing the inlet velocity profile with non-circular shape [38],
techniques for using variable arterial wall thickness [38,39],
mesh generation techniques for building layered meshes
near the arterial walls for CFD computation [38,39,46],
the sequentially coupled arterial FSI (SCAFSI) technique
[46,47], and techniques for the projection of fluid–structure
interface stresses, calculation of the WSS [39] etc. The
detailed descriptions of these techniques are well summa-
rized in [37].

Another popular approach for FSI simulation of hemody-
namics is to use arbitrary Lagrangian–Eulerian (ALE) formu-
lation to handle the moving mesh and the interaction between
fluid and solid [11,31,35,50]. In the ALE formulation, the
displacement of the fluid domain is introduced as a third
field of solution variables in the coupled systems. An aux-
iliary solver may be needed to compute the deformation of
the meshes, and proper coupling boundary conditions (con-
tinuity of velocities and traction forces) are applied on the
fluid–structure interface.

As the first step of the development of a new FSI formu-
lation, the purpose of this paper is to present an incompress-
ible CFD solver based on the gradient smoothing method
(GSM) [21,22,28]. The GSM has been recently developed
as a strong form method for solving general partial differ-
ential equations (PDEs) for both solid and fluid dynam-
ics, named as smoothed finite element method (S-FEM)
[23,26,27] and GSM–CFD [19,28,51,52,54], respectively.
In the proposed GSM–CFD solver, the gradient smooth-
ing operation is consistently used to approximate the first
and second order derivatives at different locations. Differ-
ent types of smoothing domains and smoothing functions
can be constructed based on compactness, efficiency and
accuracy. The previous research on GSM–CFD has shown
that the solver is conservative, conformal, stable, efficient
and accurate [28,51,54]. Another very attractive feature of
GSM–CFD is that it is insensitive to mesh distortion. This is
favorable to FSI simulation where the mesh deforms due to
the moving boundaries and thus the mesh quality cannot be
guaranteed.

The Green’s theorem is adopted for gradient approxi-
mation in both GSM and widely used FVM–CFD solvers,
and thus the two methods can be considered as similar
approaches in this regard. However, when approximating
the first-order derivatives, different smoothing functions [19]
can be adopted to provide results with different orders of
accuracy. That means the GSM is a more versatile, flexible
and designable method. Another crucial difference is how to
approximate the second-order derivatives of a field variable,
for which the first-order derivatives at the midpoint of cell
edges are needed. In the standard FVM, the first-order deriv-
atives at the midpoint of cell edges are usually obtained by
interpolating the derivatives at the two end points of the edge.
Therefore, special ad hoc techniques are required to “cor-
rect” the interpolation to overcome the checkerboard prob-
lem. A typical choice of this kind of ad hoc techniques is
the directional correction that are currently widely used for
CFD solvers [4,34]. Such an technique could be very useful
for many cases, however, it can fail in some cases, especially
on domain boundaries. A systematic and fully proofed tech-
nique for second-order derivative approximation is needed.
The GSM uses, in a consistent manner, smoothing opera-
tions for approximating both first- and second-order deriva-
tives on the smoothing domains created in a nested fashion.
This not only removes the need for any ad hoc technique
for correction, it also ensures conservation at all times even
for highly distorted meshes. This has been confirmed for 2D
cases [28,54]. In this paper, we focus on the verification of
3D GSM on the structured and hybrid meshes.

It should be noted that the GSM–CFD is originally
designed for unstructured T-mesh (triangular for 2D and
tetrahedral for 3D) to reduce the meshing difficulties of com-
plex geometries. However, for viscous and turbulent flows,
we prefer the structured mesh with large aspect ratio to dis-
cretize the boundary layer regions to reduce the number of
nodes and elements, especially for 3D cases where the hexa-
hedral or prismatic mesh should be used instead of tetrahe-
dral mesh. During the generation of hybrid mesh, first, the
boundary surfaces are discretized using triangles or quad-
rangles or their mixture, and several layers of hexahedral or
prismatic elements “grow” orthogonally from the discretized
surfaces. For the other regions, the unstructured mesh can
still be adopted. Since the previous research on GSM–CFD
mainly focus on 2D unstructured mesh, we need to extend
the GSM–CFD to 2D and 3D structured and hybrid meshes,
for which a clean data structure is needed for effective imple-
mentations. In this paper, a new matrix-form algorithm for
approximating gradients using GSM is developed, and the
corresponding data structure is also devised to improve the
numerical efficiency. As indicated in [13,18], for a medium-
sized artery, the blood can be treated as laminar incompress-
ible Newtonian flow, thus only the GSM–CFD solver for
incompressible Navier–Stokes is developed using the artifi-
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cial compressibility approach at this step, and will be further
developed for non-Newtonian and turbulent flows.

The codes for GSM–CFD is developed using C++ based
on an open-source SU2 (Stanford University Unstructured)
tool suite [34], which is a collection of C++ software tools for
solving PDEs, especially focusing on fluid dynamics. During
the development of GSM–CFD solver, we can use the frame-
work of SU2 and reuse the basic codes such as mesh manipu-
lation and linear equation solvers. Our efforts are focused on
the development of new modules for construction of gradient
smoothing domains (GSD) and spatial gradients approxima-
tion using GSM.

There are six more sections in this paper. In Sect. 2, differ-
ent kinds of GSDs are constructed on 3D primitive meshes,
and a uniform expression for GSD is given. The construc-
tion of local and global sparse matrix for gradient calcula-
tion and the algorithm for matrix-form GSM are introduced
in Sect. 3. The verifications of gradient approximation on
structured meshes are carried out in Sect. 4. In Sect. 5, the
incompressible GSM–CFD solver are developed using GSM
and artificial compressibility method. The numerical exam-
ple for 3D unsteady carotid bifurcation is given in Sect. 6
to show the effectiveness of the proposed GSM–CFD solver
and some conclusions are drawn in the final section.

2 Construction of smoothing domains

2.1 Gradient smoothing operations

The gradients of a field variable U at a point xi in domain
Ωi can be approximated in the integral form of [22,25,30]

∇Ui ≡ ∇U (xi ) ≈
∫

Ωi

∇U (x)ŵ(x − xi )dΩ (1)

where ∇ is the gradient operator, and ŵ is a smoothing func-
tion. The smoothing function should satisfy the following
conditions:

1. Unity condition: the integration of smoothing function
over the smoothing domain should produce unity.

∫

Ωi

ŵ(x − xi )dΩ = 1 (2)

2. Compact condition: define the effective (nonzero) domain.

ŵ(x − xi ) = 0 when x /∈ Ωi (3)

If the above conditions are satisfied, the smoothing function
can be properly chosen based on the accuracy required by the

Fig. 1 Illustration for gradient smoothing operation

gradient approximation. The piecewise constant smoothing
function is mostly used in our previous works, and it can be
written as

ŵ =
{

1/Vi , x ∈ Ωi

0, x /∈ Ωi
(4)

where Vi is the volume of smoothing domain Ωi .
Integrating Eq. (1) by parts gives

∇Ui ≈
∫

∂Ωi

U (x)ŵ(x − xi )nds −
∫

Ωi

U (x)∇ŵ(x − xi )dΩ

(5)

where ∂Ωi represents the external boundary of the gradient
smoothing domain, and n denotes the outward unit normal
vector of ∂Ωi , as shown in Fig. 1. We can see that there are
two parts of the integration, the boundary integration and
the domain integration. If the piecewise constant smoothing
function is adopted, the domain integration vanishes and we
have

∇Ui ≈ 1

Vi

∮

∂Ωi

Unds (6)

For the approximation of second-order spatial gradients,
we can successively use the gradient smoothing operation
with piecewise constant smoothing function, and have

∇ · (∇Ui ) ≈ 1

Vi

∮

∂Ωi

n · ∇Uds (7)

We should note that the first-order derivatives at the bound-
ary of the smoothing domain is needed for second-order gra-
dients approximation. Hence, the spatial derivatives at any
location of interest can be approximated using Eqs. (6) and
(7) together with the properly defined smoothing domains.

The first step for gradient approximation using GSM is to
construct smoothing domains on the primitive mesh. Basi-
cally, there are two kinds of smoothing domains, the node-
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associated gradient smoothing domain (nGSD) for the gradi-
ent approximation at node, and the midpoint-associated gra-
dient smoothing domain (mGSD) for the gradient approx-
imation at midpoint of edge. The triangular and quadrilat-
eral meshes are usually used to discretize the 2D domains,
and the tetrahedral and hexahedral, as well as the prismatic
and pyramidal meshes are usually used for 3D domains. The
construction of nGSD and mGSD will be introduced in the
following subsections.

2.2 Construction of nGSD

The nGSD in 3D is constructed in a similar way as 2D [28]
by connecting the midpoint of edges, the centroid of cell
faces (denoted as ci in the figure) and the centroid of cells
surrounding the node of interest, as shown in Fig. 2. To illus-
trate the smoothing domains more clearly, we only show one
partition of the nGSD within the cell. In Fig. 2, the shaded
faces denote the outer surfaces of the nGSD, and nij denotes
the outward normal vectors of the boundary surfaces of the
smoothing domain. It should be pointed out that the four
points which form the quadrilateral outer surface, for exam-
ple, the edge midpoint mk , two cell face centroids c2 and
c3, and the cell centroid c, may not lie on the same plane,

(a)

(b)

Fig. 2 Node-associated gradient smoothing domain (nGSD) within a
cell. a nGSD in a tetrahedral cell and b nGSD in a hexahedral cell

especially when moving mesh is involved. Thus, during the
computation, we usually divide this quadrilateral into two
triangles both connected by the edge midpoint, cell face cen-
troid and the cell centroid. In this way, all the nGSDs are
conservative and compact, and thus the local and global con-
servation are ensured.

To sum up, the nGSDs are constructed by all the subedges
connecting the edge midpoint and cell centroid in 2D
domains, or all the subtriangles connecting the edge mid-
point, face centroid and cell centroid in 3D domains, which
finally form a closed polygon for 2D or a closed polyhedron
for 3D which surrounds the node of interest.

2.3 Construction of mGSD

For the compact mGSD in 3D domain, the smoothing domain
is constructed by connecting the endpoints of the edge of
interest, the centroids of cell faces and the centroids of of
cells surrounding the edge of interest. To show the smoothing
domain more clearly, we plot the mGSD within a cell in
Fig. 3. The shaded faces in the figure denote the outer surfaces
of a part of the smoothing domain for edge i − jk within the
current cell.

(a)

(b)

Fig. 3 Compact midpoint-associated gradient smoothing domain
(mGSD) within a cell. a mGSD in a tetrahedral cell and b mGSD in a
hexahedral cell
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To sum up, the mGSDs are constructed by all the subedges
connecting the edge endpoint and cell centroid in 2D
domains, or all the subtriangles connecting the edge end-
point, face centroid and cell centroid in 3D domains, which
finally form a closed polygon in 2D or a closed polyhedron in
3D surrounds the edge of interest. The mGSDs constructed in
this fashion are also compact, and both locally and globally
conservative.

3 Spatial gradient approximation based on GSM

Using the gradient smoothing operation, the spatial gradients
can be approximated in an integral form on the nGSD and
mGSD constructed on the primitive mesh. In this section, the
matrix-form GSM is introduced for the gradient approxima-
tion, by which the gradients at nodes or midpoint of edges
can be calculated as the product of a sparse matrix and a
vector storing the field variables. In finite element method,
the strains (gradients of displacements at nodes) can be cal-
culated using a strain–displacement matrix B. Similarly, we
can construct a B matrix for gradient approximation based
on GSM rather than the shape function in FEM, and the gra-
dients can be calculated as

∂U
∂s

= B · U (8)

Apparently, B is a block-wise sparse matrix, and can be
assembled from the element matrix Be like in FEM. The first
and the most important task of gradient approximation is to
assemble global B matrix. It should be noted that the assem-
blies of the global B matrix for both nGSD and mGSD are
only need to be carried out once if the mesh keeps unchanged.

3.1 Approximation of first-order gradients at nodes

The global B matrix for gradient approximation at nodes
should have N ×N blocks, including all the zero and nonzero
blocks, where N is the number of nodes in the domain. For
the i th row of B, the nonzero blocks only exist at the nodes
associated or surrounding node i . When we assemble the
global matrix, we only need to accumulate the element matrix
Be to its corresponding global indexes.

During assembling process, for any element or cell, each
edge has its associated normals as shown in Fig. 4a. It should
be noted that these kinds of edge data structures are indepen-
dent of element types. If the piecewise constant smoothing
function and the one-point quadrature scheme [28] are used,
the flux contribution of current edge i− jk to its two endpoints
can be written as

Ui jk ,i = Umk A
n
|n| , Ui jk , jk = −Umk A

n
|n| (9)

(a) (b)

Fig. 4 Edge structure for assembling Be. a Edge structure for nGSD
and b edge structure for mGSD

given that the direction of vector n is defined as from node i
to node j . In the above equation, A denotes the sum of two
subtriangles (CL − c − mk and CR − c − mk), and Umk =
(Ui +U jk )/2. Therefore, the block-wise contribution of edge
i − jk to the current element written as: for node i , i.e., the
i th row of Be,

Be(i, i) = Be(i, i) + 1

2
A

n
|n|

Be(i, jk) = Be(i, jk) + 1

2
A

n
|n|

(10)

and for node jk , i.e., the jk th row of Be,

Be( jk, jk) = Be( jk, jk) − 1

2
A

n
|n|

Be( jk, i) = Be( jk, i) − 1

2
A

n
|n|

(11)

The element Be matrix is fully assembled as soon as the loop
of edges in this element is finished, and we have Be as a
Nn × Nn block-wise matrix as

Be =

⎡
⎢⎢⎢⎢⎢⎢⎣

Be(1, 1) · · · Be(1, j) · · · Be(1, Nn)
... · · · ... · · · ...

Be(i, 1) · · · Be(i, j) · · · Be(i, Nn)
... · · · ... · · · ...

Be(Nn, 1) · · · Be(Nn, j) · · · Be(Nn, Nn)

⎤
⎥⎥⎥⎥⎥⎥⎦

(12)

where Nn is the number of nodes in the element.
When the element Be is obtained, we can accumulate it to

the global B as

B(I, J ) = B(I, J ) + Be(i, j) (13)

where I and J are the global indexes of local nodes i and j .
It should be noted that if B is formed using the above pro-
cedures, we only accumulate the boundary fluxes around the
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node of interest, the gradients calculate by Eq. (8) still need
to be divided by the volume of the smoothing domain Vi , i.e.,

∂Ui

∂s
= ∂Ui

∂s
/Vi (14)

3.2 Approximation of first-order gradients at edge midpoint

The approximation of gradients at edge midpoints can also be
realized using matrix vector multiplication as Eq. (8), and the
global B matrix for mGSD can also be assembled in a similar
way as for nGSD. The B matrix for mGSD should have Ne ×
N blocks, including all the zero and nonzero blocks, where
Ne is the number of edges in the domain. For the i th row of
B, the nonzero blocks only exist at the nodes associated or
surrounding edge i . When we assemble the global matrix, we
only need to accumulate the element matrix Be for mGSD to
its corresponding global indexes. During assembling process,
for any element or cell, each edge has its associated normals
for mGSD as shown in Fig. 4b. It should be noted that these
kinds of edge data structures are also independent of element
types same as for nGSD.

For each edge in the current element, the edge data struc-
ture includes the node indexes of the two endpoints, and the
corresponding normals of boundary surfaces of part of the
mGSD within this element. Since the normals on the bound-
aries are quite different, we cannot use the one-point quadra-
ture for mGSD, and we have to calculate the fluxes on each
boundary separately. For 3D cases, it can be written as the
sum of the fluxes through the four subtriangles

Uie =
4∑

s=1

ns

|ns |Us As (15)

In the above equation, ns/|ns | and As denote the unit outward
normal and the area, and Us denotes the average field variable
at center of the boundary surface of smoothing domain.

For 3D cases, since there are three points in the each sub-
triangle which serves as the boundary face of the mGSD, the
nodes in the elements will fall into three levels with different
contributions to the edge flux. For each node in the element,
they will all contribute to the element average Uc like

Be(ie, m) = Be(ie, m) + 1

3Nn

(
nL1 AL1

|nL1|
+nL2 AL2

|nL2| + nR1 AR1

|nR1| + nR2 AR2

|nR2|
)

(16)

For the nodes on the left or the right surface, there will be
an extra contribution to the element face center. Take the left
face as example, we have

Be(ie, k) = Be(ie, k) + 1

3

(
nL1 AL1

|nL1|
1

N f cL1

+nL2 AL2

|nL2|
1

N f cL2

)
(17)

For the two endpoints of the edge i− jk , the extra contribution
to the node itself in the boundary surfaces of the smoothing
domain can be written as

Be(ie, i) = Be(ie, i) + 1

3

(
nL1 AL1

|nL1| + nR1 AR1

|nR1|
)

Be(ie, jk) = Be(ie, jk) + 1

3

(
nL2 AL1

|nL2| + nR2 AR1

|nR2|
) (18)

From the above equations, we can clearly see the different
weights of all the nodes in the elements to the edge fluxes. The
two endpoints have the largest weights and then the nodes
share the same faces as the edge endpoints, and all the other
points in the element have the same smallest weights.

The element Be matrix is fully assembled after finishing
the loop of all the edges in the current element, and we have
an Ne × Nn block-wise matrix with Ne is the number of
edges and Nn is the number of nodes in the element. Also,
we can accumulate the element Be matrix to the global B
matrix according to the edge and node indexes as

B(I E, I ) = B(I E, I ) + Be(ie, i) (19)

where I E and I are the global indexes of local edge index ie
and local node index i . When the global B matrix is obtained,
the gradients at edge midpoints can be calculated as the prod-
uct of sparse matrix B and variable vector U as Eq. (8). Simi-
larly to nGSD, we have to divide the gradients by the volume
of corresponding mGSD.

4 Verification of gradient approximation on mGSD

The GSM with piecewise constant smoothing function on
nGSD is the same as the Green–Gauss theorem used for gra-
dient approximation in traditional FVM. The validation and
verification of this kind of method are already well estab-
lished. The GSM for gradient approximations are also exten-
sively verified on unstructured meshes [19,28,54]. There-
fore, we mainly focus on the verification of mGSD on hexa-
hedral and prismatic mesh for 3D. For CFD applications, the
gradient at midpoint of edges are used to calculate the viscous
terms. In this region, the structured meshes with large aspect
ratio are usually used and the mesh quality can be affected
greatly when moving boundaries are involved.
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4.1 Basic equations for gradient verification

The most straightforward method to calculate the gradients
at the midpoint of an edge is to obtain simple arithmetic mean
of the gradients at the two endpoints of the edge as

∂Umk

∂s
= 1

2

(
∂Ui

∂s
+ ∂U jk

∂s

)
(20)

However, it is known that it can lead to decoupling solution
(checkerboard problem) when approximating the second-
order gradients (gradients of viscous fluxes for CFD). The
average gradient method with directional correction [10,29,
49] (denoted as CAVG) is proposed to circumvent the decou-
pling problem. The directional correction takes the form of

∇Umk = ∇U mk −
[
∇U mk · ti jk −

(
∂U

∂l

)
i jk

]
(21)

where ∇U mk is the simple average of gradients calculated
using Eq. (20), and

(
∂U

∂l

)
i jk

≈ U jk − Ui

�li jk
(22)

ti jk = x jk − xi (23)

�li jk = |x jk − xi | (24)

The modification leads to strongly coupled stencils on tetra-
hedral as well as on prismatic or hexahedral grids [4], and
therefore prevent the checkerboard problem. Here, we will
compare the gradient results obtained from GSM and CAVG.
The magnitude of gradient errors at each edge midpoint is
calculated as

ε =
√√√√nDim∑

i=1

(
∂Um

∂xi

∣∣∣
a

− ∂Um

∂xi

∣∣∣
n

)2

(25)

where |a and |n denote the analytical and numerical solution
of the gradient. The relative error of gradient approximation
is defined as the ratio of absolute error norm to the norm of
accurate gradients.

4.2 Verification of mGSD on perturbed hexahedral and
prismatic mesh

The verifications of 3D gradient approximation are carried
on a cube domain by 0.5 × 0.5 × 0.1. The perturbed hexa-
hedral and prismatic meshes are used to discretize the 3D
domain as shown in Fig. 5. The perturbed meshes are gen-
erated by slightly and randomly changing the locations of
nodes and keeping the boundaries unchanged. The variable

(a)

(b)

Fig. 5 3D perturbed structured hexahedral and prismatic mesh of a
square domain for gradient verification of mGSD. There are 6,000 cells
and 7,506 nodes in the mesh in the hexahedral mesh, and 12,000 cells
and 7,506 nodes in the prismatic mesh. a Perturbed hexahedral mesh
and b perturbed hexahedral mesh

fields are chosen to be linear, quadratic polynomial, harmonic
and exponential.

U (x, y, z) = x + 2y + 3z

U (x, y, z) = (x + 2y + 3z)2

U (x, y, z) = z sin 2πx cos 2πy

U (x, y, z) = ex+2y+3z

(26)

The norms of relative errors of gradient approximations on
the regular and perturbed meshes are summarized in Table 1.
From the error data, we can see that:

1. On the perturbed hexahedral mesh, the GSM can exactly
reproduce the linear field almost to machine accuracy
while CAVG produces much large error, see Fig. 6.
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Table 1 Relative errors of different variable fields on 3D domains

Function Linear Polynomial Harmonic Exponential

CAVG-Ha 1.27E−2 1.49E−2 1.22E−2 5.87E−3

GSM-Ha 1.40E−13 1.01E−3 9.39E−3 5.16E−4

CAVG-Pb 1.29E−2 1.47E−2 1.74E−2 5.82E−3

GSM-Pb 2.34E−13 1.07E−3 1.07E−2 5.02E−4

a H denotes the results are calculated on perturbed hexahedral mesh
b P denotes the results are calculated on perturbed prismatic mesh

0.0250

0.0500

0.0750

0.100 

Linear

0

0.125

(a)

0.0250

0.0500

0.0750

0.100 

Linear

0

0.125

(b)

Fig. 6 Distributions of gradient errors of linear field U (x, y, z) = x +
2y + 3z on perturbed hexahedral mesh. a CAVG and b GSM

2. On this perturbed mesh, neither method can reproduce the
quadratic field anymore, but the gradient results obtained
using GSM are much better than the those obtained using
CAVG. For both quadratic and exponential fields, the rel-
ative error norms of CAVG are several times or 1–2 orders
of magnitude larger than those obtained using GSM. For
harmonic field, the two methods produce similar results,
but the GSM results have smaller errors. The error distri-

butions of exponential and harmonic fields are shown in
Figs. 7 and 8.

3. When the regular prismatic mesh slightly perturbed as
shown in Fig. 5b is used, GSM can still reproduce the
linear field. For all the four kinds of variable fields, GSM
consistently performs better CAVG method on the given
perturbed mesh. The relative error norms obtained using
GSM can be several times or even one order of magnitude
smaller than the errors calculated using CAVG method,
depending on the type of variable field. The error dis-
tributions on all the four variable fields are shown from
Figs. 9, 10, 11 and 12.

4. GSM can exactly reproduce the linear field for all kinds
of mesh due to the conservative property of the method.
On the perturbed hexahedral and prismatic meshes, the
GSM performs better than CAVG method for all the four
variable fields considered here, and from the distributions
of the gradient approximation errors, we can observe that
the errors of CAVG are globally larger than those of GSM
where the mesh is perturbed.

Through the gradient verifications, we can see that when
the regular meshes are slightly perturbed, the GSM can get
much better results than CAVG for all the variable fields
considered here. Thus, we can conclude that the proposed
GSM are more robust to mesh deformation than the CAVG
method.

5 Solution procedures of GSM–CFD solver for
incompressible flows

In this work, the artificial compressibility method [9] is used
to solver the incompressible N–S equations. In this approach,
the fluid is treated as being slightly compressible, so that an
additional pseudo-time (τ ) derivative of the pressure is added
to the mass conservation equation, and the compact vector
form governing equations can be written in a dual time step
fashion as

∂Q
∂τ

+ ∂W
∂t

+ ∇ · (Fc − Fv) = 0 (27)

where W, Fc and Fv represent, respectively, the vectors of
conservative variables, the convective and viscous fluxes, and

Q =

⎡
⎢⎢⎣

p
ρu1

ρu2

ρu3

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

1
ρu1

ρu2

ρu3

⎤
⎥⎥⎦ , Fcj =

⎡
⎢⎢⎣

βρu j

u1u j + pδ1 j

u2u j + pδ2 j

u3u j + pδ3 j

⎤
⎥⎥⎦ ,

Fv j =

⎡
⎢⎢⎣

0
τ1 j

τ2 j

τ3 j

⎤
⎥⎥⎦ (28)
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Fig. 7 Distributions of gradient errors of exponential field
U (x, y, z) = ex+2y+3z on perturbed hexahedral mesh. a CAVG
and b GSM

with δi j is the Kronecker delta, and u j ( j = 1, 2, 3) denotes
the three components of velocity. In the above equations,
ρ, p, u, v and w, denote the density, static pressure and
velocity components in x-, y- and z-direction under Cartesian
coordinate system, respectively. The the viscous stresses of
incompressible (∇ · v = 0) Newtonian fluids can be written
as

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
(29)

with μ denotes the dynamic viscosity.
Physically speaking, the parameter

√
β is the speed of arti-

ficial pressure wave [52], but it can be tuned to speed up the
convergence rate of the overall iterative solution procedures.
Based on numerical experiments, the value of β is defined as
[55]

β2 = max
(
β2

min, Cβ |u|
)

(30)
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Fig. 8 Distributions of gradient errors of exponential field
U (x, y, z) = z sin 2πx cos 2πy on perturbed prismatic mesh. a
CAVG and b GSM

with β2
min = 1 and Cβ = 2.5 for non-dimensionalized equa-

tions.

5.1 Approximation of convective fluxes

The most straightforward way to calculate the convective flux
at the midpoint of cell edge is to use the average of the fluxes
at the two endpoints as

(Fc)i jk = 1

2
[Fc(QL) + Fc(QR)] (31)

where QL and QR denote the left and right state of the field
variables, and they can be the variables at nodes for the most
simple cases, but may need some reconstructions (such as
different kinds of limiters [4]) to improve the stability or
accuracy. However, for convection dominated flow, it is nec-
essary to use upwind schemes rather than the simple linear
interpolation of the fluxes at the two constitutive nodes to
discretize the convective fluxes to guarantee the numerical
stability and reduce the numerical diffusion. There are vari-

123



1008 Comput Mech (2014) 54:999–1012

0.0400

0.0800

0.120 
Linear

0

0.125

(a)

0.0400

0.0800

0.120 
Linear

0

0.125

(b)

Fig. 9 Distributions of gradient errors of linear field U (x, y, z) = x +
2y + 3z on perturbed prismatic mesh. a CAVG and b GSM

ous methods to approximate the convective fluxes, such as the
central differential with dissipation, Roe’s scheme, AUSM,
etc. These methods are quite standard in FVM solvers, so we
will not elaborate them here.

5.2 Approximation of viscous fluxes

During solving the Navier–Stokes equations shown as
Eq. (27), the viscous stresses τi j at the midpoint of edges
are needed for calculating the gradients of viscous fluxes
using the GSM. According to Eq. (29), the spatial deriva-
tives of velocity at the edge midpoint are needed. In tradi-
tional FVM–CFD solvers, the gradients at edge midpoint are
approximated using simple interpolation method shown in
Eq. (20) or corrected interpolation method in Eq. (21). In the
GSM–CFD solver, the spatial gradients are calculated using
GSM on the compact mGSD introduced in Sect. 3. We have
proven that the proposed GSM can be more accurate than
the interpolation method when approximating the gradients
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Polynomial
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0.324

(a)

0.1
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0.3

Polynomial

0

0.324

(b)

Fig. 10 Distributions of gradient errors of polynomial field
U (x, y, z) = (x + 2y + 3z)2 on perturbed prismatic mesh. a CAVG
and b GSM

at midpoints on perturbed structured mesh which is mostly
used to discretize the boundary-layer regions. The viscous
fluxes at midpoint of edge i − jk can be directly calculated
as

Fv
i jk
rs = μ

(
∂umk ,r

∂xs
+ ∂umk ,s

∂xr

)
(32)

where r and s denote the axial directions in Cartesian coordi-
nate system, and

∂umk ,r

∂xs
and

∂umk ,s

∂xr
are calculated using GSM.

After the residuals are calculated based on the gradients of
fluxes, the N–S equations can be solved explicitly or implic-
itly [4,34].

6 Application GSM–CFD to blood flow simulation of
carotid bifurcation

In this section, the 3D unsteady blood flows through carotid
bifurcation are solved. The geometry and mesh are shown
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Fig. 11 Distributions of gradient errors of harmonic field U (x, y, z) =
z sin 2πx cos 2πy on perturbed hexahedral mesh. a CAVG and b GSM

in Fig. 131, and the dimensions of the model are listed in
Table 2. The geometry surface is discretized using triangular
mesh, and several layers of prismatic mesh are generated to
resolve the boundary layer. During the simulation, we apply
velocity inlet boundary condition at common carotid artery
(CCA), zero back pressure (free of constrains) outlet bound-
ary condition at internal carotid artery (ICA) and external
carotid artery (ECA), and non-slip wall boundary condition
at the artery walls. Several layers of elements are extruded
from the inlet and outlet surfaces to reduce the influences of
the boundary conditions on the internal flow.

In this case, the blood flow through the bifurcation is only
determined by inflow, geometry and friction. The blood is
modeled as incompressible Newtonian flow with density ρ =
1,041 kg/m3, and the dynamic viscosity μ = 2.9×10−3 Pa s
[12]. The unsteady flow rate in a cardiac cycle shown in
Fig. 14 is applied at the CCA as inlet boundary condition.

1 The model is obtained from http://grabcad.com/library/carotid-bifur
cation
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Fig. 12 Distributions of gradient errors of exponential field
U (x, y, z) = ex+2y+3z on perturbed prismatic mesh. a CAVG and b
GSM

Fig. 13 Geometry and mesh of carotid bifurcation. There are 111,949
elements and 38,760 nodes in the mesh. In the figure, CCA denotes
common carotid artery, ICA internal carotid artery and ECA external
carotid artery

The fast Fourier transform is carried out for the discretized
data to obtain the approximated flow rate at any time.

The streamlines at t = 0s, t = 0.14s (near peak systole),
t = 0.52s (second peak systole) and t = 0.9s (diastole) are
shown in Fig. 15. In the figures, the streamlines are colored

123

http://grabcad.com/library/carotid-bifurcation
http://grabcad.com/library/carotid-bifurcation


1010 Comput Mech (2014) 54:999–1012

Table 2 Geometry information
of the carotid bifurcation

The extended parts at inlet and
outlet are not included

ACC A RCC A AI C A RI C A AEC A REC A L

29.82 mm2 3.08 mm 14.82 mm2 2.17 mm 7.22 mm2 1.52 mm 35.8 mm
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Fig. 14 The unsteady flow rates obtained from phase-contrast MRI
velocity measurements [5] in vivo

with axial velocity. The velocity contours at different axial
locations at t = 0.14s are shown in Fig. 16. A steady-state
solution with inlet flow rate 4.0 mL/s is used as the initial step
for the unsteady simulation. At the beginning of the cardiac
cycle, the blood has the lowest speed, and smallest amount
of flow rate at the ECA. With the rapid increase of flow rate
(actually the inlet blood pressure), the blood flow speed also
increases rapidly. After the peak systole, the blood velocity
decreases gradually. We can also observe that, under the given
boundary conditions, much more blood will flow through
the ICA during the cardiac cycle. For example, the the peak
velocity at ECA is about 0.262 m/s, and ICA 0.411 m/s, and
the peak velocity ratio VEC A/VI C A ≈ 0.64 (which usually
ranges from 0.4 to 0.7 [3]).

Fig. 15 Streamlines at different
times during the cardiac cycle of
the carotid bifurcation. a t = 0s,
b t = 0.14s, c t = 0.52s and d
t = 0.9s
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Fig. 16 Velocity contours at
different axial locations of the
carotid bifurcation near peak
systole
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7 Conclusions

The main purpose of this paper is to develop a 3D GSM–CFD
solver for incompressible flow. The governing equations of
incompressible flows are solved in a strong form but all the
spatial gradients are approximated in a weak form based on
the GSM. A matrix-form algorithm is devised to calculate the
spatial derivatives of field variables on the compact smooth-
ing domains. The proposed GSM–CFD solver is used to solve
the blood flows through the carotid bifurcation. According
to the results of gradient approximation and flow simulation,
the following conclusions can be drawn:

1. On the perturbed structured meshes, much more accu-
rate gradients results at midpoint of cell edges can be
obtained using GSM than using average gradient method
with directional correction. Thus, we can conclude that
the GSM is more robust than the modified interpolation
method for gradient calculation.

2. Even on perturbed hexahedral and prismatic meshes, the
GSM can still exactly reproduce the linear field. This is
the most distinguished feature of the first-order conser-
vative GSM method, and would play an important role
in solving problems with complicated geometries and in
the fluid structure interaction simulations.

3. The GSM is also used to calculate gradients of the con-
vective and viscous fluxes in incompressible governing
equations to form a GSM–CFD solver with artificial com-
pressibility approach. The carotid bifurcation example
shows the effectiveness of the proposed solver.

As the first step for the blood flow simulation using
GSM–CFD solver, two important assumptions are made: the
blood is incompressible Newtonian flow and the vessel is
treated as solid wall. In further development, we will add
the non-Newtonian properties and the interaction between
flexible and deformable vessel to the proposed GSM–CFD
solver.
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