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Abstract Cell migration is fundamental in a wide variety
of physiological and pathological phenomena, among other
in cancer invasion and development. In particular, the migra-
tory/invasive capability of single metastatic cells is funda-
mental in determining the malignancy of a solid tumor. Spe-
cific cell migration phenotypes result for instance from the
reciprocal interplay between the biophysical and biochem-
ical properties of both the malignant cells themselves and
of the surrounding environment. In particular, the extracel-
lular matrices (ECMs) forming connective tissues can pro-
vide both loosely organized zones and densely packed barri-
ers, which may impact cell invasion mode and efficiency.
The critical processes involved in cell movement within
confined spaces are (i) the proteolytic activity of matrix
metalloproteinases (MMPs) and (ii) the deformation of the
entire cell body, and in particular of the nucleus. We here
present an extended cellular Potts model (CPM) to simulate
a bio-engineered matrix system, which tests the active motile
behavior of a single cancer cell into narrow channels of dif-
ferent widths. As distinct features of our approach, the cell is
modeled as a compartmentalized discrete element, differen-
tiated in the nucleus and in the cytosolic region, while a direc-
tional shape-dependent movement is explicitly driven by the
evolution of its polarity vector. As outcomes, we find that, in
a large track, the tumor cell is not able to maintain a direc-
tional movement. On the contrary, a structure of subcellular
width behaves as a contact guidance sustaining cell persis-
tent locomotion. In particular, a MMP-deprived cell is able
to repolarize and follow the micropattern geometry, while
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a full MMP activity leads to a secondary track expansion
by degrading the matrix structure. Finally, we confirm that
cell movement within a subnuclear structure can be achieved
either by pericellular proteolysis or by a significant deforma-
tion of cell nucleus.
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1 Introduction

Cell migration is a complex process which plays a critical role
in a wide array of physio-pathological phenomena, among
other cancer growth and development. For instance, solid
tumors first undergo through a relatively simple, avascular
stage of growth, with nutrient and growth factor supply by
diffusion from the local microenvironment [1,34,57]. Then,
the search of available quantities of critical substrates results
in a subsequent aggressive phase, with the invasion of the
surrounding tissue [1,6]. In particular, a part of the malig-
nant mass remains densely packed, while a number of iso-
lated cells detach and begin to invade the neighboring spaces.
These shed individuals, which are difficult to be clinically
detected, have the greatest potential to invade the host and
further metastasize. They display in fact an evident ability to
wonder in the close proximity and to spread in the surround-
ing tissue. The scattered individuals, evading destruction by
the immune system, may subsequently enter the host blood-
stream or lymphatics, extravasate at a distant site, metasta-
size and establish secondary colonies with devastating con-
sequences for the wellbeing of the patient, as the likelihood
of success of therapeutic interventions strongly decreases.
For these reasons, the analysis of the migratory properties of
malignant individuals, as long as the discovery of the relative
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biomedical therapies, is a pivotal issue in cancer research and
treatment.

The motile behavior of metastatic tumor cells is deter-
mined by a set of specific determinants of both the malignant
individuals themselves and of the surrounding environment,
whose basic component, in connective tissues, is the extracel-
lular matrix (ECM). In particular, in vivo interstitial ECMs
are heterogeneous in composition, density and organization,
and are characterized by degree of alignment, width of pores
and stiffness. Loose matrix regions are mainly composed
of random collagenous fibers, which form gap and clefts
with variable diameters, providing an optimal scaffold for
cell adhesion, dissemination and movement. On the oppo-
site, matrix regions of high density, constituted by tightly
packed collagen fibers, result in physical barriers, adjacent to
channel/track-like spaces, which, depending on their dimen-
sionality, may either guide, hinder, or completely prevent cell
movement [20,60].

For instance, quantitative relations between micro-struc-
tural properties of fibrous ECMs and specific cell migration
parameters, such as speed and persistence time, have been
provided both experimentally [7,13,27,61] and theoretically
[45,63,64]. In particular, different studies have reported that
tumor cells can achieve a significant displacement in highly
constrained environments by localized pericellular proteoly-
sis (via matrix metalloproteinases, MMPs) and/or by dras-
tic morphological deformations, that require the substan-
tial reorganization both of the cytoskeleton and of other
organelles, in particular of the nucleus, the most voluminous
and rigid intracellular compartment [11,12,41,59].

At this regard, the most used cell migration assays used
to analyze the different molecular mechanisms (i.e., MMP-
dependent and MMP-independent) underlying cell migration
in dense matrices is based on collagen lattices with well-
controlled spatial characteristics [10,20,61]. In particular, in
recent years, defined in vivo-like trails have been created
by combining a fibrillar matrix random polymerization with
laser microsurgery procedures, that are able to generate pre-
defined tracks of defined width and length [22].

Such a type of experimental system is here reproduced
and simulated by an extended cellular Potts model (CPM,
[2,14,15,17,30,44]). It is a grid-based Monte Carlo tech-
nique which employs a stochastic energy minimization prin-
ciple to display the invasiveness of an individual cancer cell
into a matrix environment characterized by specific topolo-
gies. In particular, in this paper, we will extend the series of
models proposed by the Czirok’s group [51–55], by integrat-
ing them with the compartmentalization approach proposed
in [44,45]. As distinct features of the proposed approach, the
migrating malignant cell will be in fact modeled as a discrete
physical unit, compartmentalized into the nucleus and the
cytosol, whereas its directional shape-dependent movement
will be not imposed a priori, but it will be the result of the

evolution of its polarity vector and of the relative asymmetric
bias added to the minimization algorithm. Finally, for the first
time in a CPM, the activity of the cell proteolytic machin-
ery will be described taking into account the transition from a
MMP-dependent to a MMP-independent sustained cell loco-
motion.

As outcomes of the model, we will focus on experimen-
tally addressable characteristics of cell locomotion, i.e. over-
all displacement and velocity, predicting how these quan-
tities are influenced by the specific geometrical feature of
the matrix. In particular, we will analyze how the biophys-
ical properties (i.e., nucleus elasticity/MMP activity) of the
malignant cell determine its migratory phenotype and affect
the directional component of its movement.

The remaining parts of this publication are organized as
follows: in Sect. 2 (Mathematical Model), we clarify the
assumptions on which our approach is based. The computa-
tional findings are then presented in Sect. 3 (Results), where
we separate the analysis of the MMP-dependent and MMP-
independent cell motion. Finally, the results are discussed in
Sect. 4 (Discussion).

2 Mathematical model

The cell-matrix system is modeled at the mesoscopic level
using an extended Cellular Potts Model, a grid-based sto-
chastic approach, which realistically preserves the identity of
the single cell-scale individuals and describes their behavior
and interactions with the local microenvironment in ener-
getic terms and constraints. The simulation domain is a
two-dimensional regular lattice � ⊂ R2, formed by iden-
tical closed grid sites that, with an abuse of notation, will be
identified by their center x ∈ R2. Each grid site is labeled
by an integer number, σ(x) ∈ N , that can be interpreted as
a degenerate spin originally coming from statistical physics
[25,37]. The border of a lattice site x is identified as ∂x, one
of its neighbors by x′, while its overall neighborhood by�

′
x,

i.e. �
′
x = {x′ ∈ � : x′ is a neighbor of x}. Subdomains of

contiguous sites with identical spin form discrete objects�σ
(i.e., �σ = {x ∈ � : σ(x) = σ }) which have an associated
type τ(�σ ).

Following the compartmentalization approach proposed
in [44], the cancer cell, denoted by η, is defined as a com-
partmentalized element, composed of two subregions which,
in turn, are classical CPM objects �σ : the nucleus, a central
cluster �σ=1 of type τ = N , and the surrounding cytosol,
�σ=2 of type τ = C . Each cell compartment is obviously
characterized, as an additional attribute, by the cluster id η.
The extracellular matrix environment is classically differen-
tiated in a medium-like state, τ = M , and a polymeric-like
state, τ = P , see also [3,40,45]. The medium-like state rep-
resents the mixture of soluble components, which, together
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with the water solvent, compose the interstitial fluid. It is
assumed to be a single object �σ=0 isotropically distributed
throughout the simulation domain, forming no large-scale
structures. The polymeric state, given by an extended ele-
ment �σ=3, represents instead the fixed structure of a dense
collagen lattice, that is typically used for in vitro migration
assays. Based on the re-assembly of monomeric collagen fib-
rils, such scaffolds are in fact able to mimic the structure of
in vivo connective tissues, which provide barrier functions to
moving cells [10,61]. In particular, the spatial characteristics
of the simulated matrix will be described in the next section.

Cell movement results from an iterative and stochastic
series of elementary steps of a modified Metropolis method
for Monte Carlo–Boltzmann dynamics [17,32]. This algo-
rithm is in fact able to implement the natural exploratory
behavior of biological individuals. Procedurally, at each time
step t , called Monte Carlo Step (MCS, the basic unit of time
of the model), a lattice site xs (s for source) belonging to a
cell compartment �σ(xs ) is selected at random and attempts
to copy its spin, σ(xs), into one of its unlike neighbors,
xt ∈ �′

xs
: xt /∈ �σ(xs ) (t for target), also randomly selected.

Such a trial spin update is accepted with a Boltzmann-like
probability function P(σ (xs) → σ(xt )), that, as specified
later, will involve both a symmetric minimization of a sys-
tem free energy and two asymmetric biases relating to spe-
cific cell behavior.

For any given time t , the system energy is defined with an
hamiltonian functional, as:

H(t) = Hshape(t)+ Hadhesion(t)+ Hpersistence(t). (1)

Hshape models the geometrical attributes of the subcellular
compartments, which are written as non-dimensional relative
deformations in the following quadratic form (see again [44]
for a more detailed explanation):

Hshape(t) = Hsurface(t)+ Hperimeter(t)

=
∑

�σ

[
κ�σ

(
s�σ −Sτ(�σ )

s�σ (t)

)2

+ν�σ
(

p�σ −Pτ(�σ )
p�σ

)2
]
,

(2)

which depend on the actual surface and perimeter of the
subcellular units (we recall that here the model is two-
bidimensional, but the 3D-extension is straightforward),
s�σ (t) and p�σ (t), as well as on the same quantities in the
relaxed state, Sτ(�σ ) and Pτ(�σ ), which correspond instead to
their initial measures. κ�σ (t) and ν�σ (t) ∈ R+ are mechan-
ical moduli in units of energy: in particular, κ�σ (t) refer
to surface changes, while ν�σ (t) relate to the deformabil-
ity/elasticity of the related subcellular compartment, i.e. the
ease with which it is able to remodel changing its perime-
ter. Establishing that the tumor cell does not significantly
grow during migration (which is consistent with the time-
scale of the phenomenon of our interest), the fluctuations

of its surface are kept negligible with high constant values
κ�1 = κ�2 = κ � 1.

Moreover, assuming that malignant cells moving in matrix
environments are typically deformable, we set ν�2 = νC <

1. In principle, cell nucleus is typically stiffer than the sur-
rounding cytosolic region: however, intracellular cascades
increasing its elasticity can be activated when the all the
MMP activity is inhibited, as widely demonstrated in the
recent experimental literature for different tumor cell lines
[11,12,41,59]. Following these considerations, we set

ν�σ=1 = νN

(
1 + a πm

1 + b πm

)
, (3)

where a = 2, b = 1, νN >> 1 and πm is the MMP produc-
tion rate, that will be defined in Eq. (11). However, even if
πm = 0, we opt to maintain ν�1 > νC , since the cytoplasmic
region of the cell remains typically softer than the nuclear
cluster.

Hadhesion is the general extension of Steinberg’s Differen-
tial Adhesion Hypothesis (DAH) [17,49,50]. In particular, it
is differentiated in the contributions due to either the general-
ized contact tension between the nucleus and the cytoplasm
within the cancer cell, or to the effective adhesion between
the malignant individual and an extracellular component:

Hadhesion(t) = H int
adhesion(t)+ H ext

adhesion(t)

=
∑

(∂x∈∂�1)∩
(∂x′∈∂�2)

J int
N ,C +

∑

(∂x∈∂�2)∩
(∂x′∈∂�0)

J ext
C,M +

∑

(∂x∈∂�2)∩
(∂x′∈∂�3)

J ext
C,P ,

(4)

where x and x′ are two neighboring sites (i.e., x′ ∈ �
′
x)

and �σ(x) and �σ(x′) two neighboring elements (i.e., ∂�σ
is intended as the border of �σ ). The coefficients J s ∈ R
are binding forces per unit area, and are obviously symmet-
ric w.r.t. the indices. In particular, J int

N ,C implicitly models
the forces exerted by intermediate actin filaments and micro-
tubules to anchor the nucleus to the cell cytoskeleton, pre-
venting the cell from fragmenting. J ext

C,M and J ext
C,P evaluate

the heterophilic contact interactions between the cell and an
extracellular component. On one hand, J ext

C,M accounts for the
adhesiveness between the cell membrane and specific soluble
ligands present in the medium. On the other hand, J ext

C,P mea-
sures the affinity between integrins complexes on the cell sur-
face and the collagenous molecules forming the dense scaf-
fold. In particular, given J int

N ,C � 0 to prevent cell splitting,
we give null contribution to the adhesive interactions between
the moving cell and an extracellular component (i.e., we
assume J ext

C,M = J ext
C,P = 0). This choice, successfully used in

another similar model of in vitro cell migration [42], is done
to analyze the direct influence of cell deformability and/or
proteolytic activity on its motile behavior, and is consistent
with experimental literature, which widely demonstrates that
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most cell lines display sustained ameboid motility in confined
environments in a poorly adhesive mode [18,28,39].

The Boltzmann probability function implemented in the
model, whose specific form is commented in [44], reads as:

P(σ (xs) → σ(xt ))(t) =

tanh(T�σ(xs )
(t))min

{
1 , exp

(−�H + ∑
j w j

T�σ(xs )
(t)

)}
.

(5)

�H is the net difference of the system energy, which is
defined by the hamiltonian H , due to the proposed change of
domain configuration. Thewi s are instead asymmetric biases
describing specific mechanisms taken into account: their
expression will be clarified below. Finally, T�σ(xs )

(t) ∈ R+
is a Boltzmann temperature, that measures the agitation rate
of moving object �σ(xs ). In particular, if xsource ∈ �σ=1,
T�1 = TN gives the agitation rate of cell nucleus, while, for
if xs ∈ �σ=2, T�2 = TC is a measure of the intrinsic motility
of the overall malignant individual, as it gives the frequency
of the ruffles of its cytosol (which, on a molecular level,
are determined by polarization/depolarization processes of
the actin cytoskeleton, refer to [33,36,38] and references
therein). TN is a low value, resulting in the passive motion
of the nucleus, which, unable to have an autonomous move-
ment, is dragged by the surrounding cytosol, characterized
instead by a high TC (see [42] for a more detailed mechanical
explanation). The ECM polymeric components are instead
assumed fixed and immutable, representing a restriction for
cell movement. Only the activity of cell secreted proteolytic
enzymes (i.e., MMPs) can degrade ECM-contained sites,
opening space for cell locomotion.

The minimization of the hamiltonian allows to choose
the system configurations which are energetically more con-

venient. However, as explained in details in [51–53], spe-
cific cellular behavior that directly influence cell movement
can be implemented by introducing the relative bias (i.e., the
terms wi ) to each elementary step. In particular, following
[51,53,54], we here take into account the possible polariza-
tion of the moving tumor cell (i.e., its ability to differenti-
ate in a leading and a trailing surface) and the resulting (1)
persistent directional motility and (2) specific non-uniform
membrane dynamics along its perimeter. The inertial shape-
dependent self-propulsion of the cell is modeled by altering
the probability assigned to each spin update, as:

w1(σ (xs) → σ(xt )) = Ppers
pη
|pη| (xt − xs), (6)

where Ppers sets the magnitude of the cell autonomous motil-
ity and pη is the polarity vector of η, see Fig. 1 (left panel),
which, on a molecular level, may represent spatial differences
in its biochemical state (see [47] and references therein). The
coefficient Ppers is here set constant in time: however, it may
vary with the specific length of an individual or with the
intracellular level of motile proteins. The cell polarity vector
is then updated by considering a spontaneous decay and a
reinforcement from cell displacements as, for each MCS,

�pη = − 1

tp
pη +�xC M

η , (7)

where tp is a characteristic memory length of the polarization
vector, which can be also defined as the inverse of a rate of
spontaneous decay, and�xC M

η is the net displacement of the
cell center of mass during the MCS considered. It is useful
to remark that, once the value of tp is established, it does not
vary during cell migration (i.e., tp 	= tp(t)). Relation (7) is
introduced according to the statistical analysis of single cell

Fig. 1 Left panel geometrical characteristics of the moving tumor cell.
xC M
η(�σ(xs ))

indicates the center of mass of cell η, whose site xs is attempt-
ing to move. The red vector pη represents the cell polarity vector, which
forms the angle φ with the direction of vector (xs − xC M

η ). The width
of the leading edge is instead defined by the angle ψ , which is formed
by the segments connecting xC M

η with extreme sites of the frontal part
of the cell membrane, see also [53]. Right panel: MMP-production

mechanism. Only a cell site located in the frontal part of the border
of a cell can secrete proteolytic enzymes. In particular, the quantity of
produced proteases is proportional to the quantity of ECM insoluble
components in its first neighborhood. The bold black border indicate
the membrane of the cell, the red dot its center of mass. We recall that
label P stands for matrix polymeric-like state, whereas label M stands
for matrix medium-like state. (Color figure online)
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motility data performed in [46]. The term w1 establishes a
direct positive feedback loop involving cell movement and
polarity [55], which corresponds to the molecular feedback
regulation of the activation of rho GTPases and processes
involved in cellular motility such as expansion of the cytosol
and polymerization of cytoskeletal elements [8,58].

The termw2, introduced in [53], models the fact that mem-
brane dynamics (i.e., extensions/retractions of filopods and
pseudopods) are more pronounced at the leading edge of a
polarized cell, while they are almost poor at the sides and
trailing edge [29]. Indeed, defined as ψη the width of the
leading edge of cell η, we set

w2(σ (xs) → σ(xt ))

= Pdyn f

(
ψη

2
− φ(pη , xs − xC M

η )

)
, (8)

where Pdyn sets the magnitude of this effect. φ( · , · )
denotes the absolute value of the angle between vectors pη
and (xs −xC M

η ), see again Fig. 1 (left panel). Finally, f (α) =
2�(α) − 1 is conveniently constructed using a Heaviside
function �(α).

It is useful to emphasize that the asymmetric corrections
wi replace and are preferable to the standard Hpersistence con-
tribution to the hamiltonian typically used in other similar
papers [42,43], which only implicitly defines the polarization
process of the moving cell as its ability to maintain the direc-
tion of the velocity characterizing its recent past movements.
More in details, Hpersistence forces the moving individual to
choose configurations that do not change its velocity, as it is
a sort of “passive” term. In fact, a cell, once taken a direction
of movement for a specific reason (i.e., due to chemical or
geometrical stimuli), keeps such a path because it is energeti-
cally convenient. On the contrary, the biaseswi implement an
“active” self-propulsion, since at each time step the cell rein-
forces its polarization with localized membrane fluctuations.

The matrix metalloproteinases secreted by the cancer cell
to facilitate its locomotion are defined as m(x, t) and assumed
to evolve following a standard reaction-diffusion equation:

∂m(x, t)

∂t
= P(x, t)︸ ︷︷ ︸

production

+ Dm∇2m(x, t)︸ ︷︷ ︸
diffusion

− λmm(x, t)δ(τ (�σ(x)),M)︸ ︷︷ ︸
decay

,
(9)

where δ(τ (�σ(x)),M) = 1 in the interstitial medium M
and 0 elsewhere. λm and Dm are, respectively, the decay
rate and the effective diffusion coefficient of proteolytic
enzymes, constant and homogeneous in the whole extra-
cellular environment. A low value of Dm is set to model
a proteolytic mechanism strongly localized in the regions
close to the cell membrane, in agreement with experimen-
tal evidence in [41,60]. P(x, t) models the local produc-

tion of proteases from the cell surface. In particular, using
the above-introduced notation, it is possible to describe the
MMP-secretion process only by i) the leading edge and ii) the
neighboring parts of the lateral edges of the cell membrane,
as widely demonstrated in literature both in general [1,26]
and in particular for vascular [48] and metastatic cells [56]:

P(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑

∂x∈∂�σ=2:
�
σ(x′∈�′

x)
={0,3}

�m(∂x, t)

if φ(pη , x − xC M
η ) ∈ (0, π2 );

0 else.

(10)

Moreover, we set

�m(∂x, t) = πm

∑

x′∈�′
x:�σ(x′)=3

1x′ , (11)

where 1x′ is the indicator function, to allow MMP production
only when it is really needed, i.e., only when the cell senses
a matrix component in its close neighborhood, which indeed
represents an obstacle for its movement, see the right panel
of Fig. 1 for clarity. Summing up, the condition in Eq. (10)
localizes the parts of the cell membrane where the MMP can
be produced, whereas the condition in Eq. (11) establishes the
effective quantity of secreted proteolytic enzymes (Table 1).

Finally, to reproduce matrix degradation, a lattice grid
site x belonging to the polymeric part of the ECM becomes

Table 1 Summary of the parameters used in the model. (∗) indicates
those that vary in the different sets of simulations

Parameter Value Refs.

Channel length 270 (µm)

*Channel width 12; 25; 60 (µm)

SN (surface of nucleus) 190 (µm2) [5,39]

PN (perimeter of nucleus) 51 (µm) [5,39]

SC (surface of cytosol) 610 (µm2) [5,39]

PC (perimeter of cytosol) 230 (µm) [5,39]

TN (motility of nucleus) 0.25 [43,45]

TC (motility of cytosol) 9 [43,45]

κ (cell compressibility) 15 [43,45]

νC (rigidity of cytosol) 0.5 [43,45]

*νN (basal rigidity of nucleus) 5 [43,45]

J int
N ,C (intracellular adhesion) −20 [43–45]

J ext
C,M (cell-medium adhesion) 0 [43]

J ext
C,P (cell-matrix adhesion) 0 [43]

Ppers (self propulsion coefficient) 0.8 [54]

*tp (memory length of p) 20 (s) [54]

Pdym (membrane dynamics rate) 1

Dm (MMP diffusion constant) 5−4 (µm2 s−1) [41,60]

λm (MMP decay rate) 2 × 10−3 (s−1) [60]

*πm (MMP production rate) 5 × 10−3 (s−1) [60]
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a generalized medium (fluid) site when the local level of
MMPs (m(x, t)) is sufficiently high (in our simulations above
2.5 µM). This change is implemented by switching its type
τ from P to M , as done in [16,45].

3 Simulation characteristics and results

The simulation domain� ⊂ R2 is a 400 × 400 regular grid,
with no flux conditions in both directions. The characteristic
size of each grid site is 1 µm. The lattice reproduces an in
vitro dense collagenous matrix characterized by well-defined
microtraks, which can be experimentally generated by laser
ablation (see for instance [22] and references therein). In
particular, the scaffold pattern consists of two perpendicu-
lar channels, which are equal in length (270 µm) and width.
In order to exploit different geometries, the diameter of the
microtracks will be varied in the different sets of simulations,
see Fig. 2. It is useful to remark that the smallest channel
can be experimentally obtained only by the use of a single-
line scan, as it represent a technical limit of laser-dissection
procedures [22]. The temporal resolution of the model is,
as seen, a MCS, which is set to correspond to 2 s in order
to compare the simulated cellular dynamics with the rela-
tive experimental observations. To ensure the development
of sufficiently long migration paths, the overall observation
time is set equal to 16,200 MCS (≈9 h). The PDE for the
evolution of tumor MMPs is numerically solved with a finite
difference scheme on a grid with the same spatial resolution
as�, characterized by 30 diffusion steps per MCS. This tem-
poral scale is sufficiently small to guarantee the stability of
the numerical method.

In all simulations, the tumor cell has an overall target area
of 800 sites (≈800 µm2), which would correspond to a diam-

eter of 30 µm in a resting, un-polarized, morphology. The
nucleus is instead a central and round cluster of 8 µm (8
sites) of radius. These dimensions reflect the mean measures
of typical cancer cells [1].

In all simulations, the cell is initially seeded just near the
entrance of the vertical channel with an elliptical shape, as it
and it is characterized by a polarity vector pη directed towards
the vertical direction. This translates the assumption that the
individual has already penetrated the microtrack and, chosen
the direction of movement, it has accordingly organized its
shape. Finally, 10 annealed MCS are run before each simu-
lation in order to let the cell realistically arranges its body
within the structure.

3.1 MMP-independent cell migration

In first set of simulations, we study the migration of a tumor
cell with disrupted proteolytic machinery, obtained by impos-
ing πm = 0 in Eq. (11). The matrix structure represents
indeed a fixed and undegradable barrier, whose walls delimit
the space for cell locomotion. However, the inhibition of
MMP activity activates intracellular signals resulting in the
enhancement of nuclear elasticity, as modeled by Eq. (3).

In the case of the microtrack with the largest cross-
section, the malignant cell quickly loses its initial polar-
ization and turns back to a roundish shape. Then, in the
absence of chemotactic (or other) cues, it starts to fluctuate
and “rebound” between the channel walls, without display-
ing a significant penetration within the structure. The large
microtrack does not in fact represent a significant geomet-
rical contact guidance for the moving cell, which remains
almost in the middle of the pattern in a resting, non-motile
morphology, see Fig. 3a.

Fig. 2 The simulation domain � reproduces a bidimensional dense
collagenous lattice with microtracks of well-defined dimensions. In par-
ticular, we will analyze cell migration within channels (i) larger than

the overall cell diameter, which is 30 µm; (ii) smaller than the overall
cell diameter but larger than the nuclear diameter, which is 16 µm; and
(iii) smaller than the nucleus size
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Fig. 3 MMP-independent cell migratory behavior within different
microchannels. a The widest channel does not provide a geometrical
guidance for the tumor cell, which indeed assumes a stationary round
morphology and display a short-range random movement. b–c In the
case of both the middle and the small channel, the malignant individual
maintains a polarized morphology and invades the vertical structures.

Then, it autonomously remodels and changes direction, as it can not
overcome the undegradable barrier represented by the matrix. In par-
ticular, the cancer cell is able to move within the smallest track by only
compressing and squeezing its nuclear cluster. In all panels, the nucleus
is manually encircled for the reader’s convenience

At the intermediate channel width (i.e., smaller than cel-
lular dimensions but bigger than nuclear dimensions), the
cancer cell is able to maintain the polarized morphology and
to undergo a persistent movement within the vertical micro-
track. Such an inertial shape-dependent migration is actively
reinforced at each MCS by the asymmetric biases added to
the Boltzmann probability function. At the end of the vertical
channel, the malignant individual spontaneously reorganizes
and then turns the direction of motion, thereby invading the
horizontal structure. From a modeling view point, the shape
transition is driven by the evolution of the cell polarity vec-
tor: referring to Eq. (7), the cell center of mass in fact slowly

displaces towards the open space on the right, as the cell can
not overcome the vertical barrier. Once the cell has repolar-
ized, the new direction of movement is finally established
and maintained by the terms wi . In this case, the elasticity
of the nucleus is not fundamental for the overall cell move-
ment, since the track is large enough. However, it allows a
more efficient deformation of the entire cell body in the angle
between the channels, see indeed Fig. 3(b, third panel).

Finally, in the smallest track, both the cell and its nucleus
adopt a cigar-like shape to invade the structure. With the
inhibition of the proteolytic activity, the only way for the
cell to move within such a confined space is in fact an ame-
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boid motion, which requires the substantial deformation and
squeezing also of its more voluminous compartment. In par-
ticular, the individual is again able to turn morphology and
direction of movement, but it takes a longer time ( Fig. 3c).
At the end of the observation time (i.e., at t = 9 h), the malig-
nant cell still localizes in the central part of the channel, as
it does not reach the opposite border of the scaffold. This is
indicative of a slower velocity of migration (see below for a
more detailed analysis).

The computational findings are consistent with the out-
comes of similar models reproducing cell migration both in
fibrous scaffolds and in microchannel devices [43,45]. In
particular, in [43], we analyzed in great detail the relation
between the cell migratory ability within fixed subcellular
and subnuclear structures and the elastic/mechanical proper-
ties of both the cell cytosol and of the nucleus. The same topic
is also approached with a number of experimental models.
In [4], glioma cell lines have been shown to squeeze through
narrow locations in a brain model in vivo, thereby increasing
their metastatic potential, by significantly compressing their
nucleus upon recruitment of nonmuscle myosin II (NMMII).
Moreover, very recently, Irimia et al. [23,24] have provided
that the directional persistence of cancer cells in microsized
structures is mainly regulated by the steric hindrance due
to the presence of a rigid and voluminous nucleus. In [5,39],

Panc-1 cells have instead been shown to overcome size exclu-
sion in microchannels architectures upon treatments with
bioactive SPC.

3.1.1 Migration velocities and turning time

In Fig. 4(left panel), we analyze the average velocity of the
cancer cell, defined as the average velocity of its center of
mass [31,35,42], within the different channel structures. This
comparison allows to elucidate and to further quantify the
differences between cell migratory phenotypes in specific
geometric conditions. Cell migration in the largest channel
is characterized by a low 0.65 µm/min: this confirms that a
structure whose dimension is greater than cellular measures
does not represent a guidance cue, but rather behaves as an
open space, where a cell undergoes a slow random move-
ment. In the case of the intermediate channel, the malignant
individual displays an approximately 2.5-fold increment in
its migration speed (≈1.65 µm/min). Finally, in the case
of the smallest channel, the cell average velocity slightly
decreases again to nearly to 1.15 µm/min. The explanation
resides in the fact that, although the nucleus is deformable, it
is however stiffer (and less motile) than the surrounding cyto-
plasm and therefore takes more time to deform and move,
slowering the overall individual.

Fig. 4 MMP-independent cell migratory behavior within different
microchannels. Left panel bimodal behavior of the average cell migra-
tion velocity within the different microtracks. Cell velocity in the larger
channel is substantially low. Within the intermediate structure, it under-
goes a more than two-fold increment. Cell speed decreases again within
the subnuclear track. Right panel turning time vs. memory length of the
cell polarity vector, tp. Both in the middle and in the smallest chan-

nel, the time needed for the tumor cell to reorganize and to change
direction is closely dependent to the value of tp. In particular, in the
subnuclear structure, the turning time is constantly higher because the
nucleus, which has to to completely squeeze and remodel, is stiffer than
the cytosolic region. All the values in the plots are represented as means
± SD over 50 realizations
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Such a bimodal behavior of speeds allows to identify an
optimal channel dimension for cell migration: smaller than
the cellular diameter but larger than the nuclear diameter.
In particular, the use of subcellular structures as a contact
guidance, which results in a sustained cell locomotion, relies
upon the deformation ability of the moving individual and,
mainly, of its voluminous nucleus, which needs to adapt to
the geometrical characteristic of the tracks.

The drastic differences in cell migration speeds due to the
specific environment dimensionality, captured by the model,
are consistent with recent studies performed on NIH-3T3
fibroblasts [9], leukocytes [28] and pancreatic cancer cells
[39]. Analogous conclusions have been found also by differ-
ent theoretical models. In [19], Hawkins et al. have reported
that the migration of cells in a microsized channel strongly
depends on partial pressure differences formed between the
channel walls and either the leading or the rear edge of the
individual. In [43], a compartmentalized CPM reveals two
distinct migratory phenotypes, that are proposed to occur
for cells placed either in open structures (i.e., 2D surfaces
or large channels) or in confined architectures (i.e., chan-
nels smaller than cellular dimensions). In particular, the cell
velocities measured in that model are surprisingly similar
to those evaluated in the presented CPM, even if the persis-
tent cell-dependent motion is, as already underlined, mod-
eled with different approaches. This is indicative of the fact
that both assumptions provide, although with different view-
points, a realistic description of the directional locomotion
of polarized cells.

We finally investigate the relation between the turning time
of the tumor cell, i.e., the time needed to remodel and estab-
lish the new direction of movement, and the value given to
the memory length of the polarity vector, tp, see Fig. 4(right
panel). For both the intermediate and the small channel, we
observe that increments in tp correspond to increments in the
cell turning time, until a saturation value. This is biologically
realistic, as tp models the time needed to the intracellular
machinery to resynchronize the polarity in the new direc-
tion of movement, i.e. to activate molecular pathways able to

reinforce cytoskeletal actin polymerization towards the open
space. The same graph also gives a further proof of the fact
that a subnuclear structure represents a steric hindrance for
cell movement, partially inhibiting its locomotion. In fact,
although the malignant cell is able to compress and pull its
nuclear region within the smallest tracks, it takes a signifi-
cantly longer time to remodel and turn direction of motion.

3.2 MMP-dependent cell migration

In the previous section, we have demonstrated that a tumor
cell is able to move within highly constrained matrix envi-
ronments, that act as constraints, deforming both its overall
body and its nucleus. However, as an additional mechanism to
overcome limited spaces, it can activate proteolytic enzymes
degrading the ECM structure [62]. As a result, barrier-free
matrix spaces may be created resulting in longer distance
traveling.

Given that the largest track does not represent a signi-
ficative obstacle for cell migration, therefore not requiring
MMP-activity, we first focus on the intermediate channel.

As reproduced in Fig. 5, the cancer cell maintains the
polarity and easily invades the vertical track. In particular,
the extracellular scaffold is not significantly altered by the
proteolytic machinery, as the ECM structure does not repre-
sent a steric obstacle for cell persistent migration along the
channel walls. The directional movement is then maintained
despite the horizontal wall of the channel: the fully activated
MMP activity is in fact able to generate a de novo vertical
track, allowing the cell to maintain the polarity and the rela-
tive direction of motion.

The creation of secondary invasion zones by migrating
malignant individuals has been described in details in the
case both of mouse mammary tumor (MMT) cells [22] and
of fibrosarcoma cells [60], placed in 3D collagenous scaffolds
and organized in multicellular spheroids. It is useful to under-
line that, in these cases, cell movement is slowered by inter-
cellular adhesive interactions, as the matrices are invaded by
compact multicellular strands.

Fig. 5 MMP-dependent cell migration in the intermediate track. The proteolytic machinery is able to generate a de novo vertical channel, which
allows the malignant cell to maintain the polarization and the relative directional movement. In all panels, the nucleus in manually encircled for
the reader’s convenience
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Fig. 6 MMP-dependent cell migration in the intermediate track. A
fully activated proteolytic machinery (i.e., πm = 5 ·10−3 s−1) allows
the tumor cell to create a de novo vertical track and therefore to main-
tain the direction of movement. For decreasing values of the MMP
secretion rate (i.e., πm = 10−3 s−1 and πm = 10−4 s−1), a new and well-
defined vertical track is no longer created and the cell constantly reverts

back to a round stationary morphology and starts a random fluctuation,
while slowly degrading the surrounding matrix. Finally, an almost com-
plete inhibition of the MMP activity (i.e., πm = 10−5 s−1) results in the
above-described repolarization of the malignant individual, which turns
direction of movement. In all panels, the nucleus in manually encircled
for the reader’s convenience

Interestingly, as soon as the MMP secretion rate slightly
decreases, a well-defined de novo part of the vertical track
is not longer generated, see Fig. 6. Consequently, the tumor
cell loses its polarity, reverts back to a roundish morphology
and starts wandering in the close proximity, while slowly
degrading the surrounding matrix in a random-isotropic way.
This behavior, which does not change after the observation
time set for the representative simulations (not shown), is
somewhat consistent for a large region of values assumed
by πm , see again Fig. 5. An almost complete inhibition of
the proteolytic machinery (i.e., πm = 10−5 s−1) eventually
results in an ameboid movement of the malignant cell. As
done in the case of the MMP-independent migration, it in
fact repolarizes and spontaneously turns direction of motion,
following the contact cues provided by the undegraded matrix
structure (refer to Fig. 3 and to the last panel of Fig. 6).

These results are biologically relevant, as they clearly
demonstrate that the most efficient cell migration within a
confined subcellular structure can be achieved

1. with the maximal activity of cell matrix-degrading enz-
ymes, which for instance allow the malignant individual
to maintain the predefined direction of movement (i.e.,
mesenchymal locomotion);

2. with an ameboid sustained locomotion, which allows the
malignant individual to use the surrounding environment
as a geometric guidance.

Analogous outcomes would be obtained by keeping fixedπm ,
while increasing the value of the amount of MMPs needed to
degrade a matrix component (which is set equal to 2.5 µM).

We finally analyze the MMP-dependent cell migration
within the vertical subnuclear track. The entrance of the chan-
nel is widened to allow the entrance of the cell nucleus, which

is characterized by a constant stiffness as the cell proteolytic
machinery is activated (refer to Eq. 3). After the penetration
of the cytosolic part of the cell, the subnuclear part of the
track is laterally enlarged by the MMPs, so that the result-
ing space matches the diameter of the voluminous and rigid
nuclear cluster. The tumor cell is then able to maintain the
predefined direction of movement, see the left panels in Fig.
7. The velocity of migration of the cell in such a small chan-
nel increases with the MMP secretion rate, until a threshold
value, which, interestingly, matches the speed of the MMP-
deprived cell within the intermediate channel, see the plot in
Fig. 7.

At the end of the vertical channel, only a cell with a fully
active proteolytic machinery (i.e., πm = 5 ×10−3 s−1) would
be able to create a de novo track large enough to maintain its
directional movement. In all the other cases, it would slowly
lose the polarity and start an isotropic Brownian movement
(these model outcomes are not explicitly shown since they are
very similar to the case of the intermediate 25 µm-channel).

Together with the results presented in the previous sec-
tion, these observations show that the inhibition of both the
proteolytic machinery and of the contractility of cell nucleus
results in a significative disruption of malignant cell inva-
sion within highly constrained extracellular matrices, such
as those forming in vivo connective tissues.

4 Discussion

Due to the increasingly recognized importance of cell migra-
tion processes in cancer growth and development, and
their exploitation for therapy and for tissue engineering, an
increasing number of experimental models has been devel-
oped. These approaches analyze the relative importance of
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Fig. 7 MMP-dependent cell migration in the subnuclear track. Left
panels the proteolytic machinery generates a lateral widening of the
microchannel, allowing the tumor cell to pull into its voluminous and
rigid nucleus, which is manually encircled for the reader’s convenience.
Right graph the velocity of migration increases with the value of the
MMP secretion rate, πm , until a threshold limit. In particular, the speed

of a cancer cell with fully activated MMPs nearly matches the one
observed for the MMP-deprived cell moving within the intermediate
channel. The numerical labels within the graph indicate the exact val-
ues assumed by πm . In each case, we represent means ± SD over 50
realizations

single and interrelated parameters to predict the migratory
behavior of cancer cells in matrix scaffolds, which mimic in
vivo connective tissues. In particular, new perspectives on
this issue have been developed by in vitro assays that con-
sist in micropatterned collagenous devices useful to study the
migratory phenotype of tumor cells in predefined channel-
like structures, as described in [22] and in the references
therein.

We have here employed a specific version of the Cellular
Potts Model to simulate such experimental systems. As a dis-
tinct feature of the proposed model, the cancer cell is repre-
sented as physical object compartmentalized into nucleus and
cytoplasm. Cell movement is then driven by explicit interac-
tions with the extracellular environment, which is in turn
differentiated into the medium and in a collagenous dense
and insoluble structure. Moreover, the polarization process
of the malignant individual, as well as its directional shape-
dependent locomotion is explicitly obtained by asymmetric
biases added in the Metropolis algorithm, as done by Czirok
and colleagues [51–55]. The integration of these two exten-
sions of the basic CPM allows to have a realistic and detailed
description of the MMP activity, which is not present in sim-
ilar models.

The resulting model has been able to analyze both the
MMP-dependent and the MMP-independent cell migration
within different microtracks, which vary in width. In par-
ticular, a tumor cell moving in a structure larger than its
overall diameter has been provided to lose its polarity and
therefore the relative directional movement. This is consis-
tent with the experimental observation that the predominant
mechanism underlying cell migration in open spaces mainly
depends on adhesive interactions and not on geometrical con-
siderations, as steric hindrances have only a minor influence
[9,28].

On the opposite, cell migratory ability in subcellular chan-
nels closely depends on its proteolytic machinery. In particu-
lar, a full MMP activity has been shown to generate secondary
paths which allow the malignant cell to disrupt steric barriers
and maintain the direction of movement. An MMP-deprived
cell is instead forced to switch to an ameboid migration, as its
polarity and morphology follows the geometry of the open
pattern.

Finally, a subnuclear track represents an obstacle for
migration. In this case, the model has provided the fact that
the cancer cell can achieved a sustained locomotion by either
using a pericellular proteolysis or by dramatically deforming
its nucleus.

Taken together, these considerations demonstrate the fact
that the pathways which are able to control the switch
between a mesenchymal MMP-dependent and an ameboid
MMP-independent movement are fundamental promigratory
factors for metastatic individuals.

As a clear advantage of a theoretical approach, we have
been able to independently vary and modulate in a graded
fashion both biophysical cell parameters and micro-structural
properties of the matrix environment. However, the presented
model has disregarded some other mechanisms underlying
tumor cell motion in matrix environments such as (i) the
additional matrix deposition of moving individuals, which
leads to altered traction generation, adhesion and contact
guidance; (ii) soluble or matrix-bound gradients of chemoat-
tractants; (iii) molecular signals transmitted from the ECM to
cells (outside-in signaling), thereby changing the activity of
polarization or contractility-mediating proteins (Rac, Rho)
[12]; (iv) a nonproteolytic displacement of the matrix inter-
face, which results in secondary track widening. As shown
in [22], despite inhibition of MMPs, invading individual
can in fact employ an adaptive pressure-driven process that
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adjusts the geometry of a confined ECM (obviously, as far
as the matrix elasticity permits). Such cell-derived compres-
sion of a fibrillar tissue may lead to scaffold condensation,
thus locally increasing ECM tension and density, although
the current literature does not permit to directly measure
the pressure forces exerted by the cells for such a space
enlargement.

It would be biologically relevant to adapt our approach to
specific tumor cell lines, characterized by distinct biophysi-
cal phenotypes (i.e., intrinsic motility, elasticity, or proteases
activity). This can be easily done by inheriting the model
parameters from experimentally-measured quantities, char-
acteristic of the selected cell population. It would be also
interesting to analyze collective migrations of malignant cel-
lular ensembles, which characterize different type of tumors,
as commented in [16,21]. A differentiation may also occur
among individuals of the same aggregate, whereas compe-
titions for nutrients or altered heterotypic interactions may
significantly affect the migratory capacity of an entire cell
lineage (for example, cancer cells of epithelial origin inhibit
the motility and induce apoptosis in neighboring normal indi-
viduals). Obviously, in this case, it would be necessary to
define in the model framework all cell types, with the rela-
tive phenotypic parameters and the rules for their behavior
and mutual interactions.
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