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Abstract A coupled cohesive zone model based on an anal-
ogy between fracture and contact mechanics is proposed to
investigate debonding phenomena at imperfect interfaces due
to thermomechanical loading and thermal fields in bodies
with cohesive cracks. Traction-displacement and heat flux–
temperature relations are theoretically derived and numeri-
cally implemented in the finite element method. In the pro-
posed formulation, the interface conductivity is a function
of the normal gap, generalizing the Kapitza constant resis-
tance model to partial decohesion effects. The case of a cen-
tered interface in a bimaterial component subjected to ther-
mal loads is used as a test problem. The analysis focuses on
the time evolution of the displacement and temperature fields
during the transient regime before debonding, an issue not
yet investigated in the literature. The solution of the nonlin-
ear numerical problem is gained via an implicit scheme both
in space and in time. The proposed model is finally applied
to a case study in photovoltaics where the evolution of the
thermoelastic fields inside a defective solar cell is predicted.

Keywords Thermoelasticity · Interface debonding ·
Cohesive zone model · Photovoltaics

1 Introduction

The problem of stress and heat transfer across an interface
between elastically dissimilar materials is relevant in engi-
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neering applications. If the bodies are initially separated and
then pressed into contact, surface roughness is a limiting fac-
tor to achieve the conductivity of the bulk. A strategy to take
into account the effect of roughness in finite element (FE)
computations has been proposed in [1] by implementing a
modified penalty formulation with a contact law based on a
thermo-plastic microscopic contact model [2] in the node-
to-segment contact geometry. In case of geometrically linear
problems where finite displacements in the contact region
do not take place, a simplification of the rigorous formu-
lation in [1] by using two-node contact elements has been
proposed in [3]. Since the adopted physical law contains
dependencies from variables whose values change during
the analysis, an elegant consistent linearization of the con-
stitutive equations was proposed for the nonlinear iterative
procedure.

Another set of problems where stress and heat transfers
across an interface have to be computed is when initially fully
bonded bodies progressively debond in tension due to ther-
momechanical deformations. The constitutive relations have
to characterize the progressive reduction of stress transfer and
heat flux due to increasing interfacial damage. In the frame-
work on nonlinear fracture mechanics, a thermomechanical
cohesive zone model (CZM) for bridged delamination cracks
in laminated composites has been proposed in [4,5]. This
thermomechanical CZM formulation has been revisited in [6]
and an application to polycrystalline materials under Mixed
Mode deformation was presented. In building physics, the
interface conductivity of bonded joints is an important prop-
erty for the assessment of reliability of insulation by using the
well-known Glaser diagram. In this field, a coupled problem
between the thermal field and the moisture diffusion can be
of interest to avoid humidity condensation inside insulated
walls. In certain cases, coupling with the elastic field has to
be considered to predict the occurrence of plaster decohe-
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sion. In this class of problems, interface cracks require spe-
cific constitutive models to depict decohesion, moisture and
heat transfer. This led in [7] to a hygro-thermomechanical
CZM specific for modelling the phenomena of conduc-
tion in porous media. Other computational work in this
area regards hygro-mechanical problems at interfaces [8–
10], a coupled problem which shares some features with
thermomechanics.

In the aforementioned contributions related to the thermo-
mechanical behaviour of interfaces, either in compression
or in tension, the heat flux is considered to be dependent
on the interface closure (for contact mechanics) or opening
(for fracture mechanics). However, there are several applica-
tions in the field on nanocomposites [11] where a constant
interface conductivity is used. This approach, called Kapitza
model, can be regarded as a constant spring in the framework
of nonlinear spring elements. In spite of its simplicity, this
approach permits to simulate a range of interface behaviors
from highly conductive to perfectly insulated, depending on
the value of the Kapitza resistance. Examples restricted to
the thermal problem without coupling with the mechanical
one are discussed in [12,13]. Although the mathematical for-
mulation is simpler due to the lack of coupling between the
elastic and the thermal variables in the interface constitutive
relation, the Kapitza coefficient is hard to be identified unless
the interface is a well defined intermediate material region
with a given thickness.

In this study, a novel thermomechanical CZM is pro-
posed for the study of decohesion at material interfaces
due to thermal and mechanical loads. As compared to the
state-of-the-art literature on this matter, several novelties are
presented. The interface contact conductivity relation and
its coupling with the crack opening is derived by exploit-
ing an analogy with contact mechanics of rough surfaces,
using the recent results established in [14,15]. This leads
to an interface constitutive relation with a limited number
of free parameters of physical meaning that can be identi-
fied from the quantitative analysis of roughness of cracked
interfaces. Moreover, the thermal analysis focuses on the
transient regime, obtained according to a solution strategy
implicit both in space and in time. Previous studies were
limited to the analysis of the steady state solution. A com-
parison between the proposed approach with a fully coupled
heat-conduction model dependent on the displacement field
and the uncoupled formulation based on the Kapitza model
is proposed. Contrary to the contact problem in [3], where
the coupling term was found to be of low importance for the
considered example, in the present case the unsymmetrical
coupled term of the stiffness matrix is relevant due to the non-
linearity of the thermoelastic CZM. Finally, an application
to photovoltaics is proposed to show the effect of cohesive
cracks on the thermoelastic fields inside a defective solar
cell.

Fig. 1 Solid body with a cohesive interface

2 Formulation of the thermomechanical problem with
cohesive interfaces

The partial differential equations governing the mechanical
equilibrium in a solid body (Fig. 1) with volume V and sur-
face S written in vectorial form are:

∇T S + f = 0, (1)

where ∇ is the gradient vector, S is the Cauchy stress tensor
and f is the vector of body forces. By introducing the dis-
placement vector w and the stress vector σ, the weak form
corresponding to Eq. (1), i.e. the principle of virtual works,
writes:∫

V

S : ∇(δw)dV =
∫

V

fT δwdV +
∫

S

σ T δwd S +
∫

Sint

σ T δ(�w)d S, (2)

where σ is the vector of prescribed tractions on the boundary,
while Sint represents the internal surface. Note that in Eq. (2)
the notation

S : ∇(δw) = Si j
∂δwi

∂x j
,

has been adopted.
The partial differential equation governing the transient

heat conduction problem in the solid reads:

−∇T q + Q = dmcṪ , (3)

where q is the heat flux vector, Q is the heat generation per
unit volume per unit time, dm is the material density, c is the
specific heat and T is the temperature. By means of Fourier’s
law q = −k∇T, k being the material conductivity, Eq. (3)
can be rewritten as:

k∇2T + Q = dmcṪ . (4)
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Fig. 2 Bi-dimensional linear interface element

The weak form related to the heat conduction problem, i.e.
the variational form of the energy balance, is then expressed
as:∫

V

qT ∇(δT )dV = −
∫

V

k(∇T )T ∇δT dV =
∫

V

(
dmcṪ −Q

)
δT dV +

∫

S

qδT d S +
∫

Sint

qδ(�T )d S, (5)

where q represents the prescribed external heat flux per unit
area, normal to the boundary.

The last terms in Eqs. (2) and (5) represent the contribution
of the cohesive tractions and heat flux for the displacement
jump, �w, and temperature jump, �T, across the interface.

3 FE discretization of thermoelastic cohesive interfaces

The coupled thermomechanical problem for the continuum
can be discretized by using standard four-node quadrilateral
FEs with a mixed formulation. As regards the cohesive inter-
faces, a four-node linear interface element compatible with
the elements used to discretize the continuum can be intro-
duced, as sketched in Fig. 2. As compared to the 2D for-
mulation for mechanical problems [16,17], each node has
three generalized degrees of freedom in the global reference
system instead of two: the horizontal displacement ui , the
vertical displacement vi and the temperature Ti . In 3D, four
degrees of freedom for each node have to be specified. These
generalized displacements can be collected in the element
vector u :
u = (u1, v1, T1, u2, v2, T2, u3, v3, T3, u4, v4, T4)

T .

(6)

A local reference system defined by the tangential vector t
and the normal vector n to the interface element is introduced,
see Fig. 2. The origin O of the local reference system is placed
in the center of the element, which is in general rotated with
respect to the global x-axis by an angle θ. The generalized
vector u∗ of the i-th node in the local coordinate system can
be computed via a pre-multiplication by a rotation matrix,
ui

∗ = rui, i.e.:

⎧⎨
⎩

u∗
i

v∗
i

T ∗
i

⎫⎬
⎭ =

⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

⎧⎨
⎩

ui

vi

Ti

⎫⎬
⎭ . (7)

Therefore, the generalized displacement vector of the whole
interface element in the local reference system, u∗, can be
related to u as follows:

u∗ = Ru, (8)

where R is obtained by the collection of the individual rota-
tion matrices r :

R =

⎡
⎢⎢⎣

r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r

⎤
⎥⎥⎦ . (9)

The relative generalized displacement vector �u∗ = (u∗
4 −

u∗
1, v∗

4 − v∗
1 , T ∗

4 − T ∗
1 , u∗

3 − u∗
2, v∗

3 − v∗
2 , T ∗

3 − T ∗
2 )T can

now be computed as �u∗ = Lu∗, where the operator matrix
L relates the displacement and temperature field components
to the relative displacements and temperatures between the
upper and the lower sides of the interface, Γ + and Γ − :

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0 0 +1 0 0
0 −1 0 0 0 0 0 0 0 0 +1 0
0 0 −1 0 0 0 0 0 0 0 0 +1
0 0 0 −1 0 0 +1 0 0 0 0 0
0 0 0 0 −1 0 0 +1 0 0 0 0
0 0 0 0 0 −1 0 0 +1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10)

The vector of the tangential, normal and temperature gaps
for a generic point along the interface element, g =
(gt , gn, gT )T , can be determined from �u∗ using standard
interpolation functions, g = N�u∗, where N is given by

N =
⎡
⎣ N1 0 0 N2 0 0

0 N1 0 0 N2 0
0 0 N1 0 0 N2

⎤
⎦ . (11)

In the present case, N1 = (1 − s)/2 and N2 = (1 + s)/2 are
the linear shape functions. The s-coordinate ranges between
−1 and +1, as for standard two-node isoparametric FEs.

The vector g can therefore be related to the nodal gener-
alized displacement vector as follows:

g = NLRu = BRu. (12)

At this point, the constitutive relations for the interface, relat-
ing tractions and heat flux to displacement and temperature
gaps, have to be introduced. For the sake of generality, we
consider now a whatever nonlinear relation between those
quantities. In the next section, a specific model will be intro-
duced and the equations particularized to that case. The con-
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tribution to the weak form by the interface elements (Eqs.
(2), (5)) written in a compact way is:

δGint =
∫

Sint

δgT pd S, (13)

where p = (τ, σ, q)T . Since the cohesive traction compo-
nents σ and τ and the heat flux q may depend on quantities
whose values vary during the simulation, a consistent lin-
earization of the interface constitutive law has to be adopted
for its use in the Newton–Raphson iterative method [17]:

p = Cg = CBRu, (14)

where the matrix C is the tangent constitutive matrix of the
element:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂τ

∂gt

∂τ

∂gn
0

∂σ

∂gt

∂σ

∂gn
0

∂q

∂gt

∂q

∂gn

∂q

∂gT

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

This matrix is in general not symmetric if the Mixed Mode
CZM has different parameters for the Mode I and the Mode II
traction components. Moreover, examining the coupling with
the thermal field, two off-diagonal terms arise in the third
row of Eq. (15) if the heat conduction constitutive relation
is dependent on the opening and sliding displacements. As
we will show in the sequel, these two terms are equal to zero
in the Kapitza model, which allows for the use of uncoupled
schemes and symmetric solvers.

By introducing Eqs. (12) and (14) into Eq. (13) we get:

δGint = δuT Ku, (16)

where

K = RT
∫

Sint

BT CBd SR, (17)

is the tangent stiffness matrix of the element. In the following
analysis, the integral in Eq. (17), as well as for the residual
vector

F = RT
∫

Sint

BT pd S, (18)

will be computed using a two-point Gaussian quadrature
scheme. The heat capacity matrix M is not considered for
the interface element, since it is supposed to have a zero
thickness. The transient regime will be solved according to
the backward Euler method (implicit Euler method), which
is a suitable scheme for the solution of the Fourier heat con-
duction equation.

Fig. 3 Different shapes of the CZMs available in the literature

This thermoelastic interface element has been imple-
mented as a new user element in the FE programme FEAP
[18].

4 A thermomechanical CZM based on microscopical
contact relations

The progressive separation of an interface due to the prop-
agation of a crack can be modelled by the CZM ([19,20]).
According to the CZM, a relation between the normal (Mode
I) and tangential (Mode II) cohesive tractions and the rela-
tive opening and sliding displacements experienced by the
two opposite surfaces has to be defined. The various formu-
lations for a pure Mode I problem are characterized by the
peak cohesive traction, σmax , and the Mode I fracture energy,
G I C , which is the area beneath the CZM curve. When the
opening displacement gn equals a critical value, gnc, a stress-
free crack is created. Different shapes of the CZM, inspired
by atomic potentials, have been proposed so far (see the qual-
itative sketch in Fig. 3): linear or bilinear softening CZMs are
usually selected in case of brittle materials, whereas trape-
zoidal or bell-shape CZMs are used in case of ductile fracture.
In some cases, linear and bilinear CZMs have an initial elas-
tic branch with very high stiffness. This branch is necessary
when interface elements are embedded from the very begin-
ning of the numerical simulation into the FE mesh along
pre-defined interfaces.

If a suitable relationship between the thermal flux across
the crack faces and the temperature jump is considered, the
basic mechanical CZM formulation can be extended to ther-
moelastic problems leading to the so-called thermomechani-
cal CZM. At this point, examining the state-of-the-art litera-
ture, the heat conduction equation was derived independently
of the mechanical part of the CZM [4–6]. Therefore, addi-
tional parameters were introduced, whose identification is
not trivial.

In case of an interface without fibers, an analogy with
contact mechanics can be put forward to simplify the matter.
During contact, a compressive pressure p (negative valued)
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Fig. 4 Cracked solid loaded by thermal and mechanical loads

is applied to the rough surface and it ranges from zero (first
point of contact corresponding to the tallest asperity) to the
full contact pressure, pc (see Fig. 4). In case of fracture,
the process is basically reversed. The full contact regime
can be regarded as an intact interface and a (positive) tensile
traction, equal in modulus to pc, has to be applied to separate
the two bodies and create a stress-free crack. The process
of debonding progressively produces a rough surface which
finally leads to the microscopically rough stress-free crack
(from left to right in Fig. 4). Hence, the Mode I cohesive
traction σ which, by definition, opposes to crack opening,
can be evaluated for any mean plane separation between the
rough surfaces, gn, as the opposite of the applied contact
pressure p for the same separation.

In case of elastic contact between two bodies with flat or
rough boundaries, a theorem by Barber [14] demonstrates
that the contact conductance is proportional to the normal
contact stiffness. Hence, taking advantage of this result, it
is possible to estimate the interface contact conductance
directly from the solution of the normal contact problem,
without the need of introducing additional ad hoc constitu-
tive relations for the thermal response. In general, since the
contact stiffness is dependent on the applied pressure, which
is a function of the interface closure, the interface contact con-
ductance will be dependent on the separation [15]. Dimen-
sional analysis considerations and numerical results in [15]
have demonstrated that the conductance–pressure relation is
of power-law type, with an exponent close to unity. The linear
case is admissible, and has been suggested by Greenwood and
Williamson [21] with a microscopical contact model which
assumes an exponential distribution of asperity heights. Inde-
pendently, the linear relation between conductance and pres-
sure has been proposed by Lorenz and Persson [22] in his
contact model rigorously valid in the full contact regime.

Since we are considering a problem of decohesion, where
the full contact regime is the starting point, we consider
a linear conductance–pressure relation as by Greenwood
and Williamson and by Persson and we propose an exten-
sion for the application to decohesion problems. The linear
conductance–pressure relation implies an exponential decay
of the cohesive traction wrt the mean plane separation gn

between the rough surfaces. In the range 0 ≤ gn < l0 (very

low separations near the full contact regime), a linear reg-
ularization has to be introduced. With the use of intrinsic
interface elements [23] already embedded in the FE mesh
from the beginning of the simulation, an initial compliance
of the CZM is necessary for the equilibrium with the contin-
uum in the linear elastic regime. Although this regularization
could be regarded as a pure numerical artefact, actually it can
be related to the Young modulus and to the thickness of the
interface region in case of adhesives [24,27]. Finally, for sep-
arations gn larger than gnc, a cut-off to the cohesive tractions
corresponding to the formation of a stress-free crack is intro-
duced. For real rough surfaces, this cut-off can be set at a
distance equal to three–four times the rms roughness R of
the crack profile.

Another modification is needed to consider the weaken-
ing effect of Mixed-Mode deformation, including the effect
of the tangential sliding displacement gt in the formulation.
This can be done by adding a multiplicative term dependent
on gt and with the same form as for gn . According to these
modeling assumptions, the resulting expression for the nor-
mal cohesive traction is the following:

σ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σmax exp

(−l0 − |gt |
R

)
gn

l0
, if 0 ≤ gn

R
<

l0
R

,

σmax exp

(−gn − |gt |
R

)
, if

l0
R

≤ gn

R
<

gnc

R
,

0, if
gn

R
≥ gnc

R
.

(19)

A similar relation can be proposed for the tangential cohe-
sive tractions:

τ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

τmax exp

(−l0 − gt

R

)
gt

l0
, if 0≤ gt

R
<

l0
R

,

τmax sgn (gt ) exp

(−gn − |gt |
R

)
, if

l0
R

≤ gt

R
<

gtc

R
,

0, if
gt

R
≥ gtc

R
,

(20)

where τmax and gtc can be different from σmax and gnc,

respectively.
The interface contact conductance can now be determined

via the first derivative of the normal pressure–separation rela-
tion wrt gn [14]:

kint =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

ρint
, if 0 ≤ gn

R
<

l0
R

,

2σ

ρint Eint R
, if

l0
R

≤ gn

R
<

gnc

R
,

0, if
gn

R
≥ gnc

R
,

(21)

where a dependency on the normal contact pressure comes
into play in the range l0 ≤ gn < gnc. The resistivity ρint and
the Young modulus Eint of the interface can be evaluated as
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ρint = ρ++ρ− and Eint = [(1−ν2+)/E++(1−ν2−)/E−]−1,

where the subscripts − and + refer to the two materials sepa-
rated by the interface and ν is the Poisson’s ratio. In the range
0 ≤ gn < l0, a constant interface conductivity is selected.
Since the maximum interface conductivity in contact prob-
lems can be attained for a small separation larger than zero,
the parameter l0 can be chosen according to this physical
argument. In this range, with a constant kint = 1/ρint , the
present approach is equivalent to the Kapitza model, where
the coefficient ρint should be regarded as the Kapitza resis-
tance.

As compared to previous thermomechanical CZMs, the
main advantage of the proposed formulation relies in the fact
that the thermal part of the CZM is simply derived from the
normal stiffness and therefore it does not introduce addi-
tional independent model parameters. The complete ther-
momechanical CZM is therefore fully defined in terms of
the maximum (peak) normal and shear tractions σmax and
τmax , the critical gaps gnc and gtc, the rms roughness R,

an internal length l0, the composite thermal resistance ρint

and the composite Young’s modulus Eint . Parameter iden-
tification should be carried out by choosing σmax and τmax

to capture the peak stresses deduced from tensile and shear
tests on representative volume elements. The parameters gnc

and gtc should be chosen to match the fracture toughness of
the material. The additional parameter l0 should be selected
according to the physical compliance of the interface as pro-
posed in [27]. The rms roughness R can be quantified from
a profilometric analysis of the crack path at failure. Finally,
ρint has to be related to the resistivities of the bulk materials
and it should be equal to the Kapitza resistance.

The normal cohesive traction (19) is plotted versus gn

in Fig. 5. It is interesting to note the similitude between the
present formulation deduced according to contact mechanics
considerations and the CZM by Xu and Needleman [25] and
its subsequent generalizations [26]. In [25], the shape of the
CZM is the result of the product between a linear function of
the gap (dominating for small separations) and an exponential
decay (prevailing for large separations), see the dashed curve
in Fig. 5a. Although the shape of the Xu and Needleman CZM
is not so different from the proposed expression and has the
advantage of being defined by a single equation for the whole
range of separations, if we attempt at estimating the interface
contact conductance by differentiating it wrt gn we obtain
an unphysical result. The interface contact conductance is
negative at the beginning and it approaches that predicted by
the present model only for very large separations, see Fig. 5b
obtained from the curves in Fig. 5a.

As a result of the proposed model, the interface conduc-
tance (21) does depend on the separation. The heat flux nor-
mal to the interface is given by q = −kint gT . Its consistent
linearization according to Eq. (15) provides the following
terms for 0 ≤ gn/R < l0/R :

(a)

(b)

Fig. 5 Comparison between the proposed CZM and that by Xu and
Needleman [25] with matched parameters

∂q

∂gt
= 0,

∂q

∂gn
= 0,

∂q

∂gT
= − 1

ρint
,

and for gn/R < gnc/R :
∂q

∂gt
= − 2gT

ρint Eint R

∂σ

∂gt
,

∂q

∂gn
= − 2gT

ρint Eint R

∂σ

∂gn
,

∂q

∂gT
= − 2σ

ρint Eint R
.

5 Numerical results

In this section we propose a simple example where we com-
pare the present CZM predictions with those based on the
Kapitza constant resistance model.

A bi-material composite of lateral side L , clamped at x =
0 and at x = L is considered (Fig. 6). A cohesive interface

123



Comput Mech (2014) 53:845–857 851

Fig. 6 Square domain with a cohesive crack

is placed at x = L/2. For the sake of simplicity, the bodies
are assumed to have identical material properties.

An initial temperature Ti is prescribed over the whole bod-
ies and a temperature TL (TL < Ti ) is imposed along the right
side (x = L , Fig. 6). We let the temperature vary inside the
two bodies and along the other boundaries. Due to cooling
of the right hand side, the material region + will shrink more
than the region − and will progressively put in tension the
interface until a possible debonding. This could be the case
of a building wall with exposed surface on the right side.

According to dimensional analysis arguments, for a given
y, once the parameters ν, l0 and R are prescribed, the tem-
perature field T throughout the body is a function of nine
parameters:

T = T (x, L , Ti , TL , t, D, E, gnc, σmax ) , (22)

where D = k/(dmc) is the thermal diffusion coefficient of the
bulk. A dimensionless temperature T ∗ = (T −Ti )/(Ti −TL)

can be introduced for the analysis of the results. A straightfor-
ward application of Buckingham theorem allows us reducing
the dependency of T ∗ on four parameters:

T ∗ = T ∗ (
x∗, t∗, g∗

nc, σ ∗
max

)
, (23)

where

x∗ = x

L
,

t∗ = t D

L2 ,

g∗
nc = gnc

L
,

σ ∗
max = σmax

E
.

Notice that, when dealing with Kapitza’s model, also the
interface dimensionless conductivity k∗ = k/kint will be
introduced (Eq. (4)), for the sake of clarity.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

x*=x/L

T
* =(

T
−T

i)/
(T

i−T
L

)

 

 

t*=12.5

t*=25.0

t*=50.0

t*=100

t*=200

Fig. 7 Kapitza’s model, k∗ = 0.001 : dimensionless temperature field
versus dimensionless time

In the next sections, numerical predictions will refer to
y/L = 0.5 by assuming plane stress conditions. The fol-
lowing parameters will be selected: ν = 0.1, l0/R =
0.01, σ ∗

max = 0.032 and g∗
nc = 0.05.

5.1 Predictions according to Kapitza model

To provide a reference solution for quantifying the role
of thermomechanical coupling in the interface constitutive
relations, we first consider the simplified Kapitza model
where the interface conductivity is a constant value. Hence,
kint = const and this is the only non vanishing term entering
the tangent constitutive matrix (15). The partial derivatives
of the heat flux with respect to the normal and tangential
gaps are zero. Therefore, the heat conduction equation and
the equations of equilibrium become uncoupled in this case.
This simplification allows for the implementation in FE codes
where the mechanical and the thermal fields are solved sep-
arately. In particular, the thermal field should be solved first.
Afterwards, the thermoelastic deformation has to be com-
puted by solving the mechanical problem. The evolution of
debonding will depend on the normal and tangential gaps at
the interface and the stress field in the horizontal direction
will be imposed by the mechanical part of the CZM consti-
tutive relations.

Three cases are examined depending on the value of k∗,
i.e., k∗ = 0.001, 1 and 1,000. In Fig. 7, k∗ = 0.001 and the
interface is highly conductive. A parabolic profile of the tem-
perature, with no discontinuities, is initially observed along
x∗. At t∗ � 125, the interface debonds and the interface
conductivity suddenly jumps from the value of k∗ to zero.
Increasing time, the temperature of the two half bodies sta-
bilize: the dimensionless temperature of the right part is pro-
gressively decreasing with time t∗ down to −1.

For k∗ = 1 (see Fig. 8), a temperature discontinuity is
observed across the interface, since it is no longer highly
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Fig. 8 Kapitza’s model, k∗ = 1 : dimensionless temperature field
versus dimensionless time
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Fig. 9 Kapitza’s model, k∗ = 1, 000 : dimensionless temperature field
versus dimensionless time

conductive and it imposes a localized additional resistance
to the system. Debonding takes place at t∗ � 130, similarly
to the previous case.

For k∗ = 1, 000 (see Fig. 9), the interface plays the role
of an insulator and only the temperature of the right hand
side varies with time, tending to the imposed value of −1. A
negligible heat flux enters the left hand side, whose tempera-
ture remains nearly constant and equal to the initial one. For
the chosen CZM parameters and the imposed dimensionless
temperature jump, debonding does not take place in this case.

5.2 Proposed CZM predictions

The coupled thermomechanical CZM predictions are now
presented. In this case, all the terms entering the tangent
constitutive matrix (15) are different from zero and are con-
sidered. The solution is gained by solving for the thermal
and the mechanical fields at the same time, since the crack
opening influences the interface conductivity and therefore
the solution of the thermal field. Moreover, an unsymmetri-
cal solver is used due to the non symmetry of the interface
element stiffness matrix.
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Fig. 10 CZM predictions, dimensionless temperature field versus
dimensionless time
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Fig. 11 CZM predictions, dimensionless displacement field versus
dimensionless time

The temperature and the horizontal displacement distrib-
utions predicted by the proposed CZM are shown in Figs. 10
and 11, respectively, for different dimensionless times t∗.

Examining Fig. 10, the temperature jump at the interface
is initially an increasing function of t∗ due to the cooling of
the right-hand side. Then the jump decreases: this process is
relatively slow, due to the progressive opening of the cohesive
crack which reduces the interface conductivity. Debonding
takes place for t∗ � 400.

Looking at the displacement field (Fig. 11), two differ-
ent stages are observed in the transient regime. In the range
0 < t∗ ≤ 12.5, the temperature of the right part decreases
and the body progressively shrinks (positive displacements,
i.e., displacements directed to the right). Due to the cohe-
sive tractions transmitted by the interface, whose dilatation
effect initially overcomes the thermal contraction in the left
part of the body, a net positive displacement is observed for
x∗ < 0.5. For t∗ > 12.5, the cohesive tractions reduce
in magnitude due to the increased normal gap (softening
regime) and the thermal contraction effect prevails. As a
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Fig. 12 Temperature gap gT at the interface: comparison between
CZM and Kapitza model
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Fig. 13 Normal gap gn at the interface: comparison between CZM and
Kapitza model

result, the left part experiences negative displacements, i.e.,
leftward.

A closer comparison with the Kapitza model can be made
by comparing the CZM predictions with those predicted by
the Kapitza model with the same kint . The absolute tempera-
ture gap gT and the normal displacement gap gn at the inter-
face are shown in Figs. 12 and 13, respectively, as functions
of time t∗.

At the very beginning of the simulation, for gn/R < l0/R,

the proposed thermoelastic CZM and the Kapitza model pro-
vide the same response. Later on, the predictions of the two
models diverge, due to the reduction of interface conductance
related to the increased normal gap in the thermoelastic CZM.

As already observed, the thermal gap predicted by the pro-
posed thermoelastic CZM rapidly rises. Later on, it decreases
slowly until debonding takes place for t∗ � 400, where a
small discontinuity in gT is observed. The Kapitza model
presents a similar trend, but debonding takes place much
earlier, for t∗ � 130.
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Fig. 14 The effect of σ ∗
max on the temperature field predicted by the

proposed CZM
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Fig. 15 The effect of σ ∗
max on the horizontal displacement field pre-

dicted by the proposed CZM

The interface normal gap, gn is shown in Fig. 13. After
an initial matching (imputable to combined thermoelastic
effects, holding also for gn > l0 where the two constitutive
models are different), the crack opening predicted by the
proposed CZM is smaller than that by the Kapitza model,
due to the reduced interface conduction. Debonding takes
place at the same gnc, since the mechanical part of the CZM
is the same for both simulations, but for very different times.

Finally, the effect of the CZM parameter σ ∗
max (g∗

nc =
0.05) is shown in Figs. 14 and 15 for t∗ = 200. By reduc-
ing σ ∗

max , debonding takes place earlier. This is due to the
competition between the strain inducted by the mechanical
CZM tractions and the shrinkage due to thermal strains. For
small values of σ ∗

max , the net displacement in the left part
of the body is negative (thermal strain prevailing over the
mechanical one) and the normal gap is amplified. For large
values of σ ∗

max , the opposite situation takes place, the hor-
izontal displacement is positive everywhere and the normal
gap is reduced.
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Fig. 16 Effect of the gas
conductivity (dashed line) on
the temperature and
displacement fields. Predictions
without gas conductivity are
shown with continuous line
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A similar trend is observed by varying g∗
nc keeping fixed

σ ∗
max = 0.032.

5.3 Effect of gas conductivity

In previous studies [4,6], the contribution of the gas to the
interfacial conductivity was found to be significant. Clearly,
this might depend on the problem at hand and no general
rules can be put forward. To assess its effect for the present
CZM formulation, the gas contribution can be included as
follows:

q = −kint�T + kgas, (24)

where kgas is the gas conductivity. In the present work, we
assume kgas = k/1, 000 as in [4,6]. Results are shown in
Fig. 16. The gas contribution to the conductivity is significant
only for significant crack openings and in general for t∗ ≥
400. The gas conductivity has a negligible influence on the
time for fracture initiation.

6 Application to photovoltaics

The present research on thermomechanical CZM is the con-
tinuation of the previous study in [28], where a multi-scale
and multi-physics computational approach has been pro-
posed to investigate the effect of cracking in silicon used
for solar cells. Experimental results in [29] have shown that
the electric conductivity of cracks is highly dependent on the
temperature field. This effect is attributed both to the physics

of the semiconductor whose governing equations strongly
depend on the temperature, and by possible self-healing of
cracks due to closing induced by thermoelastic deformation
[30].

Examining the problem in more details, we know that
during the production of a photovoltaic module crack-free
cells made of mono- or polycrystalline silicon are laminated
inside a stack composed of an encapsulating polymer and a
cover glass at a temperature of about T0 = 150 ◦C. Later on,
the module is brought to the environmental temperature and
cracks can be inserted by handling, transport and installation
operations. In proximity of a crack, the local temperature
can rise significantly, leading to the so called hot spot, as
evidenced in the thermal images of Fig. 17.

As a model example, we consider a solar cell made of
monocrystalline silicon with a crack on one corner, see
Fig. 18, similar to the real case shown in Fig. 17a. The crack is
modelled by inserting interface elements along the two crack
segments. The vertical sides of the cell are constrained to dis-
placements in the horizontal direction, whereas the vertical
sides are constrained in the vertical direction.

An initial temperature is applied to the cell boundaries.
According to Fig. 18a, the crack separates the cell in two
domains, a small one potentially insulated from the electrical
point of view, Ω1, and the rest of the undamaged cell, Ω2.

The whole external boundary, ∂Ω, can also be partitioned
into two parts: ∂Ω1 and ∂Ω2. On ∂Ω1, an initial tempera-
ture excursion �T1 = −100 ◦C from the stress-free state at
T = T0 is imposed, which corresponds to the jump from
the lamination temperature to an operating temperature of
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Fig. 17 Thermal images obtained with a thermocamera showing local
temperature rises (hot spots) in silicon cells in case of cracks (a, b
adapted from [29], c from [31])

50 ◦C, to simulate the presence of a hot spot. On ∂Ω2, we
set �T2 = −120 ◦C, i.e., a lower operating temperature of
30 ◦C. Different FE meshes are considered by varying the
parameter n, see Fig. 18b.

The underlying nonlinear transient heat conduction
problem is solved in order to determine the temperature
distribution in the solar cell versus time. According to the
symbology introduced in Sect. 2, the material parameters of
silicon are E = 169 GPa, ν = 0.16, dm = 3, 100 kg/m3,

k = 114 W/(m ◦C), c = 715 J/(kg ◦C). The coefficient of
thermal expansion is α = 1.1 × 10−6 1/C ◦. The cell thick-
ness is 0.166 mm. Regarding the CZM, we simulate a mate-
rial with a tensile strength of about 1 GPa, in the range of
typical values reported for silicon. The fracture energy is
G I C = 5.92 N/m. From this toughness and the functional
form of the CZM we can deduce the values of the remain-
ing parameters: gnc = 0.2 µm, R = 3.135 × 10−2 µm, and
l0 = 3.135 × 10−4 µm.

The temperature field in the solar cell is shown in Fig. 19
for a sequence of times. The region of the cell in the cor-
ner, separated by the crack, tends very rapidly to a uniform
temperature equal to that imposed along its boundary.

The result of a mesh convergence study by varying the
parameter n setting the number of interface elements per

(a)

(b)

Fig. 18 a Sketch of the geometry of a solar cell with a crack in a cor-
ner. Temperature excursions �T1 = −100 ◦C and �T2 = −120 ◦C
from the reference stress-free temperature T0 = 150 ◦C are imposed
along external boundaries ∂Ω1 and ∂Ω2, respectively. b FE mesh gen-
erated with block commands in FEAP. Different discretizations can be
achieved by varying n

Fig. 19 Time evolution of the temperature field in the solar cell with a
crack in the corner. The reference stress-free temperature is T0 = 150 ◦C

crack segment from 2 to 16 (see an example in Fig. 18b for
n = 8) is shown in Fig. 20. It depicts the temperature jump
across the crack faces between region 1 (warmer) and region
2 (cooler) versus a curvilinear coordinate moving along the
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Fig. 20 Mesh convergence study: temperature jump T1 − T2 across
the crack faces versus position along the crack for different number of
interface elements n used to discretize the crack segments

two crack segments and starting from the emergent point of
the crack on the vertical left side. FE solutions by varying
n converge very fast and the discrepancy between the solu-
tions for n = 8 and 16 elements per crack segment is almost
negligible.

7 Conclusions

A coupled thermo-mechanical CZM derived according to an
analogy with contact mechanics between rough surfaces has
been proposed: the crack conductivity results to be a func-
tion of the normal cohesive tractions and the model captures
the transition from the Kapitza constant resistance approach,
valid for a negligible crack opening, to a crack-opening
interface conductivity in case of partial debonding. Thermo-
elastic effects related to the transient regime have been inves-
tigated, with particular attention to: (i) the time evolution of
the temperature and displacements fields; (ii) the influence of
the cohesive parameters on fracture initiation; (iii) the influ-
ence of the gas conductivity. It has also been evidenced that,
neglecting thermoelastic coupling, as assumed by Kapitza’s
model, very different thermal and mechanical responses are
obtained. Therefore, the application of the Kapitza model to
thermomechanical configurations where the phenomenon of
interface debonding may occur should be checked with care.

An application to photovoltaics has been finally provided,
showing the potentiality of the method to model the tran-
sient regime in the thermoelastic field in bodies containing
cohesive cracks. Future perspectives of this work regard the
further coupling with the electric field which, according to the
physics of the solar cell, takes place in the direction orthog-
onal to the surface of the solar cell and is significantly influ-
enced by cracks and defects.
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