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Abstract Extended multiscale finite element method
(EMsFEM) has been proved to be an efficient method for the
mechanical analysis of heterogeneous materials. The key fac-
tor for efficiency and accuracy of EMsFEM is the numerical
base functions (NBFs). The paper summarizes the general
method for constructing NBFs and proposes a generalized
isoparametric interpolation based on the rigid displacement
properties (RDPs) of NBFs. We prove that the NBFs con-
structed by linear, periodic and rotational angle boundary
conditions satisfy the RDPs, which is independent with the
shape and material properties of unit cells. The properties
of NBFs for oversampling technique are also comprehen-
sively discussed. The algorithm complexity is discussed in
theoretical and numerical aspects, which concludes that the
computation quantity of EMsFEM is much smaller than the
direct solutions. The algorithm is validated by linear analy-
sis of the materials with random impurities and holes and the
efficiency is improved further by parallel computing.
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1 Introduction

Many kinds of materials are heterogeneous in microscop-
ical scale. For example, composite materials combine the
advantages of each phase and improve performance such as
the strength and fracture toughness. The specified-functional
materials could be manufactured artificially by changing the
microscopical structure of the materials. Numerical simula-
tions are preferred ways to analyze and design such kinds of
materials, which are promising to be a substitution of costly
field tests.

However, highly efficient and reliable numerical methods
remain a challenge. As pointed out in [1–5], an extremely
fine spatial discretization mesh is necessary for the direct
numerical simulation of heterogeneous materials to capture
the effects of microscale heterogeneities, and the computa-
tion quantity exceeds the ability of a general computer, even
for the supercomputer. As indicated by Zohdi [3], solutions
to a small elastic model with a few heterogeneities at the
infinitesimal strains are still open questions. In short, com-
plete solutions are virtually impossible. Multiscale model-
ing, with such features as high efficiency of macroscopical
models and considerable accuracy of microscopical models,
is a promising method to overcome the difficulty [5]. Other
advantages of multiscale modeling on science and engineer-
ing are summarized in the review paper by Horstemeyer [6].

Nowadays, many kinds of multiscale methods are devel-
oped, which can be, on the whole, classified by hierarchi-
cal methods and concurrent methods [5–8]. For the hier-
archical multiscale methods, the mechanical information is
passed from microscopical to macroscopical scale. This kind
of methods include homogenization method [3], the sec-
ond order homogenization method [9], multilevel multiscale
method [10,11], mean field approaches [1,12], statistical
homogenization [13] and so on. Multiscale methods based
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on the homogenization technique have been extended to
multi-physical field problems (such as electroactive [4] and
thermal elasticity materials [14,15]) and all kinds of nonlin-
ear problems (such as elasto-plastic problem [10,11], finite
deformation [16,17] and material instability [18]). Readers
could refer to [19] for a comprehensive summary of the
homogenization method. Meanwhile, some drawbacks of the
homogenization methods arise in simulations. As indicated
by Unger and Eckardt [7], after the homogenization process
of the fine scale model, the essential properties are averaged
and the actual failure state is only captured in a homogeneous
way. However, fracture or electric breakdown will depend on
specific detail in the microstructure and the averaging is not
acceptable [20]. For the concurrent multiscale methods, the
domain is decomposed into fine-scale and coarse-scale mod-
els, which could be considered as one of the DDMs [8,21].
Different models are solved concurrently and the informa-
tions between the subdomains are passed on by strongly cou-
pling. Typical examples of the concurrent multiscale models
include atomistic/continuum multiscale methods [22,23] and
quantum/atomistic/continuum multiscale methods [24,25].
A comprehensive summary on Atomistic/continuum multi-
scale methods can be found in the review article by Miller
and Tadmore [26]. A general framework for designing mul-
tiscale algorithms is reviewed in a recent paper by Abdulle
et al. [27] and the references therein.

Extended multiscale finite element method (EMsFEM) is
a new multiscale method proposed by Zhang et al. [28,29] in
recent years, which aims to deal with the mechanical analysis
for heterogeneous materials. The idea of EMsFEM could be
traced back to the work presented by Babuška and cowork-
ers [30,31], in which the concepts of NBF is proposed.
Afterwards, a multiscale finite element method (MsFEM)
is developed and push forward further by the work of Hou
et al. [2,32], in which the convergence of the method is dis-
cussed comprehensively. A recently published monograph
by Efendiev and Hou [33] makes an extensive theoretical
discussion on the MsFEM with many applications, such as
transport equations, Richards’ equations and fluid-structure
interactions. In comparison with the method developed by
Babuška and Hou, EMsFEM extends the elliptical problems
of scalar field to vector field. Moreover, the solution accu-
racy is improved by introducing coupling terms to NBFs
and developing new boundary conditions for constructing
NBFs. The microscopical stress could be obtained by the
downscale calculation, which is essential for the nonlinear
mechanical analysis. The basic principles of EMsFEM are
explained in details in [28] and the applications of the method
to mechanical problems, such static and dynamic analysis
[28,34], elasto-plastic analysis [29,35], and strain localiza-
tion analysis [36], are also investigated.

The core technique of EMsFEM is the construction of
NBFs, which shows great influence on the accuracy of the

results. The assumptions that are central to the homogeniza-
tion theory, such as periodicity and separation of length scales
[19], are no longer necessary for EMsFEM. Analogous to
analytical base functions, the necessary conditions of NBFs
are the rigid displacement properties (RDPs). Many kinds of
construction modes, such as linear or periodic boundary con-
ditions and oversampling technique, have been investigated
[28]. However, verifications of the RDPs of NBFs depend
only on the numerical tests and, especially, the rotational
RDP has not been explained yet. It is no doubt that inves-
tigations on the NBFs in the theoretical aspect are of great
significance to avoid heavy labor of trial and error. Thus, the
paper makes a detailed discussion on the RDPs of NBFs and
the principles for constructing NBFs for the first time, which
aims to provide a rational construction scheme for NBFs. All
kinds of boundary conditions are investigated, among which,
a new one with rotational angle DOFs on the coarse mesh is
proposed based on the proposed principles, which seems to
be helpful for improving accuracy without increasing com-
putational costs. As pointed out above, the aim of EMsFEM
is to overcome the shortages of computational resource in
the numerical simulations of heterogeneous materials. In this
context, the algorithm complexity of EMsFEM is analyzed
in both theoretical and numerical aspects and a theoretical
formulation for determining the optimal size of coarse mesh
approximately is proposed to minimize the computational
time.

The paper is organized as follows. In Sect. 2, the basic
principle of EMsFEM is reviewed simply. In Sect. 3, the con-
ditions ensuring the RDPs of NBFs are deduced in the two-
dimensional case, of which, the rotational RDP is newly pro-
posed. Moreover, the general construction modes of NBFs
are discussed and the properties of additional terms are also
investigated. In Sect. 4, the construction methods and prop-
erties of NBFs for all kinds of boundary conditions, such as
linear, periodic and rotational angle boundary conditions, are
discussed and extended to more general geometries and mate-
rial distributions. Oversampling technique for constructing
oscillating NBFs is explored thoroughly in Sect. 5. Section 6
makes a discussion on algorithm complexity of EMsFEM and
corresponding numerical examples are given. As for Sect.
7, some numerical examples concerning the heterogeneous
materials with random holes or impurities are considered.
Finally, some conclusions are presented in Sect. 8.

2 Principle of EMsFEM

The direct discretization and solution of heterogeneous mate-
rials which contain many micro structures at the mesoscopic
scale as shown in Fig. 1, lead to enormous DOFs of the fine
mesh model. The basic idea of EMsFEM is to convert the
boundary value problems (BVPs) of the fine mesh model
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Fig. 1 The basic idea of EMsFEM

to the coarse mesh one by constructing the NBFs of UCs,
which act as the bridges of different scales. The UC with a
specific size contains some microscopical structures for het-
erogeneous materials and the NBFs are obtained by solving
a group of BVPs of the UC. The displacement field of the UC
is expressed by linear combination of the NBFs whose coef-
ficients correspond to the DOFs of the coarse-mesh nodes,
as depicted in Fig. 1. Afterwards, the principle of EMsFEM
would be reviewed following the work in [28].

The microscopical displacement field of a two-dimension-
al UC is defined by

u =
n∑

i=1

Nxi ûxi +
n∑

i=1

N yi ûyi (1)

where ûxi and ûxi denote the displacement of the coarse-
mesh nodes, Âi , i = 1, . . . , n, in the x and y directions,
respectively. Here, n is the number of coarse-mesh nodes
(macroscopical nodes). The displacement vector of the UC,

u, could be expressed as u = {
uT

1 , uT
2 , . . . , uT

N

}T
, where

uk = {
uxk, uyk

}T are assumed to be the displacement vec-
tor of the microscopical node, Bk, k = 1, . . . , N . Here, N
is the total amount of the microscopical nodes within the
UC. The NBFs, Nxi and N yi , could be obtained by applying
some specific boundary conditions on the UC and solving
the BVPs. The coupling terms are included in Nxi and N yi

comparing with the traditional analytical base function. For
example, the value of Nxi on Bk is

Nxi (k) = [Nxxi (k) , Nyxi (k)
]T

where the coupling terms Nyxi (k) reflect the influence of the
unit displacement of Âi in the x direction on the NBF of Bk

in the y direction.
The simplified form of Eq. (1) could be expressed as

u = Nû (2)

where N = [N1, . . . , Nn], Ni = [
Nxi , N yi

]
, û =

{
ûT

1 , ûT
2 , . . . , ûT

n

}T
, ûi = {ûxi , û yi

}T . The equivalent stiff-

ness matrix and external force at the macroscopical level
are computed using the NBFs. The UC is assumed to be
discretized by four-node elements (microscopical elements),
whose energy functional and stiffness matrix are

�e = 1

2
uT

e Keue, Ke =
∫

�e

BT
e DeBed�e (3)

where ue is the element displacement vector, Be and DεDe

are the strain matrix and constitutive matrix, respectively.
Subsequently, from Eq. (2), the equation which relates the
displacement of the microscopical element and that of the
UC can be defined by

ue = Neû (4)

where

Ne =
[
RT

e1, . . . , RT
e4

]T
,

Rei =
[

Nxx1 (i) Nxy1 (i) . . . Nxyn (i)

Nyx1 (i) Nyy1 (i) . . . Nyyn (i)

]
(5)

The energy functional of the microscopical element and UC,
expressed by the macroscopical variable, are as follows

�e = 1

2
ûT NT

e KeNeû,

�E =
ne∑

i=1

�ei = 1

2
ûT

( ne∑

i=1

NT
ei Kei Nei

)
û (6)

where ne is the number of the microscopical element in the
UC. Thus, we obain the equivalent stiffness matrix of the UC
and the assembled global one at the macroscopical level
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K E =
( Ne∑

e=1

NT
e KeNe

)
, K = ANE

i=1K Ei (7)

where NE is the number of coarse mesh and A is the stiff-
ness matrix assembly operator. Thus, the final problem is
transformed into the macroscopical level equation

KU = Fext (8)

where Fext is the external force vector [29]. The displacement
at microscopical level can be obtained by downscale calcula-
tion using Eq. (4) and the element strain and stress could be
achieved by the displacement results, similar to the traditional
finite element analysis. One could refer to [28] for the details.

It could be found that the informations between the macro-
scopical and microscopical level are passed on by the NBFs,
and the constitutive equation in the macroscopical level is
not necessary. Thus, the scale separation assumption is of
no necessity to be taken into consideration for EMsFEM,
which differs significantly from the other multiscale meth-
ods based on the homogenization. One of superiorities of
NBFs is to implement the downscale calculation and obtain
the strain and stress in the microscopical level, which provide
convenience for nonlinear analyses. Meanwhile, as the whole
solution domain is divided into several UCs, the parallel com-
puting could be implemented without hard work, which is
similar to the famous domain decomposition method (DDM)
[21]. However, the NBFs is not introduced for DDM, with-
out considering the deformation features of heterogeneous
materials, and the equilibrium iterations are always needed
at the interfaces of subdomains, which may be negative for
the computation efficiency.

3 Basic properties of numerical base function

3.1 Rigid displacement properties

Similar to the analytical base function, Nxxi and N yyi should
be able to describe the rigid displacement mode of UC
and satisfy the Kronecker delta property at the coarse-mesh
node, Â j :

Nxxi
∣∣

Â j
= δi j , N yyi

∣∣
Â j

= δi j (9)

which is satisfied automatically after applying the boundary
conditions on a UC. The rigid displacements of NBFs include
two translational modes and a rotational one for the plane
problems. In this part, we will discuss the property in details.

1. Translational RDP

The property demands that, given a rigid translational dis-
placement of the coarse-mesh node in the x direction: ûxi =

1, û yi = 0, i = 1, 2, . . . , n or û = 1̂x , displacement of
microscopical nodes in the UC should be uxk = 1, uyk =
0, k = 1, 2, . . . , N or u = 1x . Substitution of û and u into
Eq. (2) yields

1x = N1̂x or
∑

i

Nxi = 1x (10)

which ensure the RDP of NBFs in the x direction. Equation
(10) could be expressed as a more specified form [28]
∑

i

Nxxi = 1,
∑

i

N yxi = 0 (11)

In analogy to the RDP in the x direction, the following equa-
tion ensures the RDP in the y direction

1y = N1̂y or
∑

i

N yi = 1y (12)

2. Rotational RDP

This property requires that, given a small rigid rotational dis-
placement of the coarse-mesh node at the vicinity of initial
configuration, the displacements of the microscopical nodes
in the UC should be the same rotational rigid displacement.
As depicted in Fig. 2, after a small rigid rotation ϕ, the dis-
placement vector of the coarse-mesh node, Âi

(
x̂i , ŷi

)
, is

ûi = ϕ
∣∣r̂i
∣∣ t̂i = ϕr̂i {− sin θi , cos θi }T = ϕ

{−ŷi , x̂i
}T

= ϕr̂wi (13)

where t̂i is orthogonal to r̂i and
∣∣r̂i
∣∣2 = x̂2

i + ŷ2
i . Similarly,

the displacement of the microscopical node, Bk (xk, yk), is
uk = ϕ {−yk, xk}T = ϕrwk . Thus, the rotational rigid dis-
placement vector of macroscopical and microscopical nodes

Fig. 2 A small rigid rotation of a UC at the vicinity of the initial con-
figuration
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could be expressed as, respectively,

û = ϕr̂w, u = ϕrw (14)

Here, r̂w =
{

r̂T
w1, r̂T

w2, . . . , r̂T
wn

}T
and rw = {

rT
w1, rT

w2,

. . . , rT
wN

}T
. Substituting Eq. (14) into Eq. (2), one obtains

rw = Nr̂w (15)

which could be written as a more detailed form

rw = −
∑

i

Nxi ŷi +
∑

i

N yi x̂i (16)

or

y =∑
i

Nxxi ŷi −∑
i

Nxyi x̂i , x

= −∑
i

N yxi ŷi +∑
i

N yyi x̂i (17)

where y and x are composed by the coordinates of microscop-
ical nodes in the UC. Supposing that Nxyi = N yxi = 0 and
Nxxi = N yyi in Eq. (17), then we obtain the isoparametric
interpolations

y =
∑

i

N yyi ŷi, x =
∑

i

Nxxi x̂i (18)

Therefore, the above isoparametric interpolation, degener-
ated from Eq. (17), fulfills the rotational RDP automatically.
Hence, the rotational RDP of NBFs could be considered as
an extension of the traditional isoparametric interpolations.
It should be noted that for scalar field problems, such as heat
conduction and seepage analysis, no coupling terms appear
in the NBFs, which means that the rotational RDP is not nec-
essary and only the translational RDPs, shown in Eq. (10)
or Eq. (12), is indispensable [2]. Thus, it is much easier to
construct NBFs for scalar fields than that for vector fields.

The analytical base functions with coupling terms are also
constructed by Zhang et al. [37]. The proposed element is
called the generalized isoparametric element, which adds
coupling terms to the traditional bilinear isoparametric ele-
ment. The displacement interpolations of the element are

u =
4∑

i=1

Niξ (ξ, η) ui +
4∑

i=1

Niξη (ξ, η) νi ,

ν =
4∑

i=1

Niη (ξ, η) νi +
4∑

i=1

Niηξ (ξ, η) ui (19)

where

Niξ = Niη = 1

4
(1 + ξiξ) (1 + ηiη) ,

Niξη = Niηξ

5 (1 + μ)

32 (3 − μ)
βiξiηi

(
1 − ξ2

) (
1 − η2

)
(20)

Here, Niξη and Niηξ are the coupling base functions, μ is

the Poisson’s ratio and βi = 2S�pqr
S with p = mod (i, 4) +

1, q = mod (i + 1, 4) + 1, r = mod (i + 2, 4) + 1. The
symbol mod (·, ·) denotes the remainder after division. The
DOF of the element doesn’t increase, while the accuracy
is promoted a lot by the coupling terms. The translational

RDPs are verified easily by the equations:
4∑

i=1
Niξ (ξ, η) =

4∑
i=1

Niη (ξ, η) = 1 and
4∑

i=1
Niξη (ξ, η) =

4∑
i=1

Niηξ (ξ, η) =
0. Due to the determinants

det

∣∣∣∣∣∣∣∣

x1 x2 x3 x4

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

∣∣∣∣∣∣∣∣
= 0 and det

∣∣∣∣∣∣∣∣

y1 y2 y3 y4

1 1 1 1
x1 x2 x3 x4

y1 y2 y3 y4

∣∣∣∣∣∣∣∣
= 0

(21)

we have
4∑

i=1
βiξiηi xi = 0 and

4∑
i=1

βiξiηi yi = 0, and then,

−y = −
4∑

i=1

Niξ (ξ, η) yi +
4∑

i=1

Niξη (ξ, η) xi ,

x =
4∑

i=1

Niη (ξ, η) xi −
4∑

i=1

Niηξ (ξ, η) yi (22)

Consequently, the base functions of the generalized isopara-
metric element satisfy the rotational RDP, which are also
verified by the numerical tests in [34].

Equations (10), (12) and (15) are the necessary and suffi-
cient conditions for the RDPs of NBFs in two-dimensional
cases, which could be used to illustrate feasibilities of the
NBFs on the boundary or interior of UCs.

3.2 Construction theory of NBFs

In this section, we will prove that if the NBFs on the boundary
of a UC satisfy the RDPs, then so will the NBFs inside the
UC.

The BVPs for solving two-dimensional NBFs of a UC
could be expressed as

{
LNi = 0 in K

Ni
∣∣



= N̂, i = 1, 2, . . . , n
(23)

where L is the elasticity operator satisfying Lu = div
(
D : 1

2(∇u + (∇u)T )) and 
 is the boundary of the domain K . The
above BVPs come down to the block equation

[
Kbb Kbs

Ksb Kss

]{
Nb

Ns

}
=
{

f b

0

}
(24)
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where the subscripts, b and s, denote the terms related to the
boundary and interior of the UC, respectively. The interior
NBFs could be solved from the second equation of Eq. (24):

Nsi = −K−1
ss KsbNbi (25)

There are three multiple zero eigenvalues of the coeffi-
cient matrix in Eq. (24) for plane problems. The eigen-
values correspond to three orthogonal eigenvectors: Ni ={

N
T
bi N

T
si

}T
, i =1, 2, 3, which satisfy Nsi =−K−1

ss KsbNbi .

The arbitrary rigid displacement G could be expressed as the
linear combination of Ni :

3∑

i=1

ai Ni = G (26)

Here, G = {
GT

b , GT
s

}T
and ai = N

T
i G. Provided the RDPs

of Nbi , there are three coefficients ci which make the equation
established

3∑

i=1

ci Nbi = Gb (27)

Subsequently, utilizing Eqs. (25)-(27), we have

3∑

i=1

ci Nsi = −K−1
ss KsbGb = −K−1

ss Ksb

3∑

i=1

ai Nbi

=
3∑

i=1

ai Nsi = Gs (28)

which indicates that Gs could be composed by Nsi with the
same coefficients ci . Equations (27) and (28) illustrate the
conclusion made in the start of this section, which implies the
principle for constructing NBFs by solving the BVPs of a UC
and for determining whether the NBFs satisfy RDPs or not.
Although the shapes and material distributions of a UC have
influence on a single NBF, the RDPs of NBFs just depend
on that of UC’s boundary. Moreover, the constructions of
NBFs in two-dimensional domains are transformed into one-
dimensional UC’s edges and the difficulties for achieving
reasonable NBFs are alleviated a lot.

3.3 Additional terms of NBFs and its properties

3.3.1 Additional terms of NBFs

The performance of NBFs, such as the one constructed by
periodic boundary condition (PBC) in Sect. 4.2, could be
improved by superposing the additional terms Ñxi and Ñ yi

to the original ones N̂xi and N̂ yi :

Nxi = N̂xi + Ñxi , N yi = N̂ yi + Ñ yi (29)

where the original NBFs are assumed to satisfy the RDPs.
The translational RDPs of Nxi and N yi lead to the equations∑
i

Nxi = 1x and
∑
i

N yi = 1y , which could deduce the

relations about the additional terms
∑

i

Ñxi = 0,
∑

i

Ñ yi = 0 (30)

Then, substituting Eq. (29) into the condition about the rota-
tional RDPs of the new NBFs, Eq. (16), the additional terms
are found to follow
∑

i

Ñxi ŷi −
∑

i

Ñ yi x̂i = 0 (31)

Thus, the additional terms meeting Eqs. (30) and (31) could
certify the RDPs of the final NBFs. One could calculate the
additional terms directly by Eqs. (30) and (31). However, the
equations are overdetermined in general, which is an unreal-
istic way to construct NBFs.

Afterwards, two possible construction methods for the
NBFs with additional terms will be discussed: (1) applying
external force on the interior DOF of a UC; (2) introducing
multipoint constraints on the boundary DOF of a UC.

3.3.2 Method I: applying external force

Introducing an external force f s on the interior DOF of a UC,
the second equation in Eq. (24) becomes

KsbNb + KssNs = f s (32)

Given Nbi and f si , the displacement of the interior DOF could
be deduced as

Nsi = −K−1
ss KsbNbi + K−1

ss f si = N̂si + Ñsi (33)

In the above equation, if Nbi meets the RDPs, then so will
N̂si , due to the conclusions in Sect. 3.2, and Ñsi could be
treated as the additional term, which should satisfy Eqs. (30)
and (31). Thus, the properties about the external force are
∑

i

f sxi = 0,
∑

i

f syi = 0 (34)

∑

i

f sxi ŷi −
∑

i

f syi x̂i = 0 (35)

Equations (34) and (35) guarantee the translational and rota-
tional RDPs, respectively.

3.3.3 Method II: introducing multipoint constraints

The new NBFs on the UC’s boundary could be expressed,
similar to Eq. (29), as

Nbi = N̂bi + Ñbi (36)

where N̂bi and Ñbi denote the original NBF and its additional
term, respectively. It could be verified that, if appropriate
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multipoint constraints are applied on the boundary of the
UC, the RDPs of Nbi could be guaranteed. The multipoint
constraints of Nbi could be expressed as a general form

Nbi = N̂bi + Ñbi = N̂bi + TÑ
′
bi (37)

where Ñ
′
bi is the independent DOF after the constraints are

introduced, T is a constant matrix, the element of which is
related to the type of constraint. For example, applying fixed
constraints on the pth DOF of Ñbi , then, we have T (p, :) =
0, which means that the elements at the pth row are zero.
If the pth DOF of Ñbi is equal to that of the qth and the

qth DOF is retained in Ñ
′
bi , then, T (p, q) = 1 and other

elements at the pth row are zero accordingly.
Introducing Eq. (37) into the energy functional, concerned

with the boundary DOF, by the Lagrange multiplier, it yields

� = 1

2
NT

bi KbbNbi −
(

Nbi − N̂bi − TÑ
′
bi

)T
λ (38)

There are three independent variables in the above equation,

i.e., Nbi , Ñ
′
bi and λ. Utilizing the variational equation, δ� =

0, we get the equilibrium and constraint equations

⎧
⎪⎨

⎪⎩

KbbNbi − λ = 0

Nbi − N̂bi − TÑ
′
bi = 0

TTλ = 0

(39)

where λ is the constraint force and the third equation rep-
resents the relation of constraint forces induced by the con-
straints. From the above equations, the final equation with
respect to the independent DOF could be obtained by

K
′
bbÑ

′
bi = −TT KbbN̂bi (40)

where K ′
bb = TT KbbT. Therefore, the independent variable

becomes

Ñ
′
bi = −

(
K

′
bb

)−1
TT KbbN̂bi (41)

Then, Ñbi and Nbi are derived by substituting the above equa-
tion into Eq. (37). For the additional NBFs in the x direction,

Ñ
′
bxi , one could obtain

∑

i

Ñ
′
bxi = −

(
K

′
bb

)−1
TT Kbb

∑

i

N̂bxi = 0 (42)

which could be deduced by summing Eq. (41) with respect to
index i and utilizing the equation Kbb

∑
i

N̂bxi = Kbb1x = 0.

Due to Eqs. (37) and (42), the additional terms satisfy

∑

i

Ñbxi = T
∑

i

Ñ
′
bxi = 0 (43)

For the additional terms, Ñbyi , the equation could be similarly
given by
∑

i

Ñbyi = T
∑

i

Ñ
′
byi = 0 (44)

Subsequently, one could deduce the equation about rotational
rigid displacement

∑

i

Ñ
′
bxi ŷi −

∑

i

Ñ
′
byi x̂i =

(
K

′
bb

)−1
TT Kbb

×
(
∑

i

N̂bxi ŷi −
∑

i

N̂byi x̂i

)
= 0 (45)

which employs Kbb

(∑
i

N̂bxi ŷi −∑
i

N̂byi x̂i

)
= 0, on the

basis of the fact that
∑
i

Nbxi ŷi −∑
i

Nbyi x̂i represents the

rotational rigid displacement mode on the UC’s boundary.
Thus, utilizing Eqs. (37) and (45) leads to the condition con-
cerning the additional terms

∑

i

Ñbxi ŷi −
∑

i

Ñbyi x̂i = T

(
∑

i

Ñ
′
bxi ŷi −

∑

i

Ñ
′
byi x̂i

)

= 0 (46)

As a result, the additional terms, deduced from the multi-
point constraints, satisfy Eqs. (43), (44) and (46), thus, the
RDPs of the new NBFs in Eq. (37) are guaranteed due to the
conclusions in Sect. 3.3.1.

It seems that the form of T have no influence on the
RDPs of the new NBFs, which means that the RDPs are not
restricted by some specified form of multipoint constraints;
it is reasonable that only the singularity of Kbb is eliminated.
Thus, all kinds of multipoint constraints could be developed
to construct suitable NBFs. The conclusions in this section
will be used to discuss the RDPs of the NBFs for periodic
boundary condition (NBFs-PBC).

4 Some construction modes of NBFs

4.1 Linear boundary condition

In this section, the construction of NBFs for linear bound-
ary condition (NBFs-LBC) will be discussed in the theo-
retical aspect on the basis of reference [28]. As the UC
depicted in Fig. 3, the edge is discretized by 
 = 
12 ∪

23 ∪ · · · ∪ 
n1, where 
i j denotes the directional edge
with the macroscopical nodes Âi and Â j . 
i j is counter-
clockwise as j = mod (i, n) + 1, and clockwise as j =
n− mod (n − i + 1, n), where n is the number of the macro-
scopical node and mod (·, ·) denotes the modulus operator
after division. Considering the BVPs corresponding to Âi ,
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Fig. 3 LBC for the UC with an arbitrary shape

the prescribed NBFs on the UC’s boundary are assumed to
be Nbi = [

Nbxi , Nbyi
]
, where Nbxi and Nbyi correspond

to the DOFs of Âi , i.e., ûxi and û yi , respectively. Nbxi is
set to be uxi j and uxik in the x direction and to be zero in
the y direction on 
i j and 
ik . Here, uxi j is distributed lin-
early along 
i j , which is equal to one at Âi and zero at Â j

and uxik conforms to the similar distribution. On the other
boundaries, both displacements in the x and y directions are
set to be zero. In the case of Â2, the NBFs on 
21 and 
23

are shown in Fig. 3, corresponding to ûx2 or û y2.
The BVP corresponding to ûxi could be defined by

⎧
⎪⎪⎨

⎪⎪⎩

LNxi = 0 in K

Nxi
∣∣

i j

= uxi j , Nxi
∣∣

ik

= uxik

Nxi
∣∣

b\(
i j ∪
ik)

= 0

(47)

The prescribed displacement on 
i j and 
 j i satisfies uxi j +
ux ji = 1xi j due to the above discussions on LBC, where 1xi j

denotes the rigid displacement of 
i j in the x direction. The
above BVP comes down to the equation as Eq. (24). There
are no coupling terms within the NBFs-LBC on the UC’s
boundary, thus, the corresponding RDPs could be verified as
follows
∑

i

Nbxi = 1bx (48)

∑

i

Nbyi = 1by (49)

yb =
∑

i

Nbyi ŷi , xb =
∑

i

Nbxi x̂i (50)

Here, xb and yb are composed by the coordinates of micro-
scopical nodes on the UC’s boundary. It can be inferred from
the conclusions in Sect. 3.2 that, the NBFs-LBC satisfy the
RDPs. Some conclusions could be drawn about the NBFs-
LBC.

1. The RDPs have nothing to do with the shape and material
distribution of the UC.

2. The macroscopical DOFs, ûxi and û yi , which correspond
to Nxi and N yi , are meaningful in physics, so the method
is of convenience for the assembly of the global stiff-
ness matrix on the coarse mesh and applying boundary
conditions.

3. Only one decomposition process of Kss is needed for
solving all BVPs, which is helpful for improving compu-
tational efficiency. In the previous work for the MsFEM
or EMsFEM, the times for solving the linear equations
about the UC are almost equal to amount of NBFs. For
example, in the work of Hou et al. [2], three BVPs need
to be solved in each rectangular UC to obtain three NBFs
for scalar-field problems (the fourth one is computed by
the RDPs). Thus, the simple technique would make a
significant improvement on computation efficiency.

4. High order boundary conditions could also be con-
structed by introducing middle points on the edge of
the UC, similar to the serendipity element, and this is
a promising way to improve the accuracy of NBFs.

4.2 Periodic boundary condition

The construction of NBFs-PBC is explained detailedly in
[28]. The displacements at the macroscopical nodes are spec-
ified, while the NBFs on the edges need to be solved by the
multipoint constraints. The RDPs with respect to the NBFs
obtained by the multipoint constraints are discussed in Sect.
3.3.3. Here, we just need to find a multipoint constraints
equation for PBC similar to Eq. (37). The boundary NBF is
partitioned into the block form

Nb =
{

NT
p , NT

q , NT
r

}T
(51)

The node location corresponding to each block could be
found in Fig. 4, in which N p is related to the macroscop-

Fig. 4 PBC for the rectangular UC and the boundary DOF blocks
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ical nodes and highlighted with the solid dots and the nodes
corresponding to Nq and Nr are represented by the shadow
and blank dots, respectively. N p is known in advance as a
macroscopical node is constrained as shown in Fig. 4, while
Nq and Nr satisfy the multipoint constraint equations.

Incorporating the features of PBC, the NBFs in Eq. (51)
could be decomposed as

⎧
⎨

⎩

N pi

Nqi

Nri

⎫
⎬

⎭ =

⎧
⎪⎨

⎪⎩

N̂ pi

N̂qi

N̂ri

⎫
⎪⎬

⎪⎭
+
⎧
⎨

⎩

Ñ pi

Ñqi

Ñri

⎫
⎬

⎭ (52)

which could be simplified as Nbi = N̂bi + Ñbi . The original
NBFs, N̂bi , with respect to the �x and �y in Fig. 4, distrib-
ute linearly along the two boundaries next to the node, Âi ,
thus, the RDPs of N̂bi are guaranteed. The additional terms,

Ñbi , corresponding to uB−
, uA−

etc. need to be calculated.
The multipoint constraints in Fig. 4 lead to Ñ pi = 0 and
Ñqi = Ñri . Then, the additional terms of the NBFs could be
expressed as

⎧
⎨

⎩

Ñ pi

Ñqi

Ñri

⎫
⎬

⎭ =
⎡

⎣
0
I
I

⎤

⎦ Ñqi = TÑqi (53)

Thus, Eq. (52) could be rewritten as Nbi = N̂bi + TÑqi ,
where Ñqi is the independent unknown. It could be found that
the construction of NBFs-PBC coincides with the framework
in Sect. 3.3.3. Consequently, from Eqs. (41) and (53), one
could obtain the solution of the independent variable

Ñbi = −T
(

K̂
′
bb

)−1

TT K̂bbN̂bi (54)

where K̂
′
bb = TT K̂bbT and from Eqs. (43), (44) and (46), it

follows that
∑

i

Ñbxi = 0,
∑

i

Ñbyi = 0,

∑

i

Ñbxi yi −
∑

i

Ñbyi xi = 0 (55)

The above equatio2ns ensure the RDPs of the boundary
NBFs, so the NBFs inside the UC also meet the RDPs. Thus,
PBC could be treated as a combination of LBC and periodic
additional terms.

The above analysis indicates that, only one decomposition
process of stiffness matrix is required for all BVPs, which is
beneficial for the efficiency and storage space of mechanical
analyses. In addition, PBC could be extended to the UCs with
even edges and arbitrary material distributions. We have to
point out that the node number on a pair of opposite edges
should be the same, so as to apply multipoint constraints.

4.3 Rotational angle boundary condition

The idea for constructing the NBFs of Rotational Angle
Boundary Condition (NBFs-RABC) could be traced down
to the membrane element with a drilling DOF. Introducing
the drilling DOF to a membrane element is beneficial not only
for improving the element’s accuracy, but also for construct-
ing the plane shell element by combining with a suitable plate
element. The first membrane element with the drilling DOF
is proposed by Allman [38]; soon afterwards, many famous
works on this topic appear, such as Hughes and Brezzi [39]
and Ibrahimbegovic et al. [40]. The study makes use of the
membrane with the drilling DOF by Hughes and Brezzi [39],
where the independent rotational field is defined as

ψ = 1

2

(
∇u − ∇uT

)
(56)

where u is the displacement field and ∇ = ∂
∂x i + ∂

∂y j repre-
sents the two-dimensional gradient operator. The above con-
straint equation is realized by introducing a penalty function
into the original energy functional. On the basis of this theory,
Ibrahimbegovic et al. [40] presents the quadrilateral element
with a drilling DOF. The rotational field of the element is
interpolated by a bilinear function; meanwhile, the displace-
ment along the element edge is linear and vertical to the edge
quadratic. In the light of this theory, this section presents a
boundary condition with a rotational angle DOF on the coarse
mesh.

Each macroscopical node, Âi , contains three DOFs for
RABC, i.e., ûi = {

ûxi , û yi , ϕ̂i
}T , in which ûxi , û yi are the

translational DOFs and ϕ̂i the rotational angle DOF. There are
3n groups of BVPs to be solved to obtain all the NBFs, where
n denotes the number of coarse-mesh nodes. As depicted in
Fig. 5, there are six groups of BVPs related to the prescrip-
tions of the nonzero displacement on 
i j , corresponding to
the six DOFs of Âi and Â j . The parallel and vertical direc-
tions of 
i j are assumed to be si j and ni j , then, the displace-
ments of the two directions are supposed to be

{
us = L1usi + L2us j

un = H1uni + H2unj + H3li jφi + H4li jφ j
(57)

or a more concise form

ul =
2∑

i=1

Nui ûli + Nφ ûφ (58)

where ûli = {usi , uni }T denotes the translational DOFs
referred to the local coordinate of the edge, i.e., si j and ni j ,

and ûφ = {φi , φ j
}T is the rotational DOF. Li and Hi belong

to the function collections of linear interpolation and Hermite
interpolation
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Fig. 5 RABC for the UC with an arbitrary shape and its boundary NBFs. a shows the sketch of RABC and the meaning of the drilling DOF on
Ân ; b and c are the linear and Hermitian NBFs prescribed on the UC’s edges, respectively

L = [1 − ξ, ξ ] (59)

H =
[
1−3ξ2+2ξ3, 3ξ2−2ξ3, ξ− 2ξ2+ ξ3, ξ3 − ξ2

]

(60)

the distributions of which on the UC’s edge are shown in
Fig. 5b, c. Here, ξ = l/ li j ∈ [0, 1] and l is the distance from
a point on 
i j to Âi , as shown in Fig. 5a. The normal and
length of 
i j could be represented by

ni j =
{

sin αi j

− cos αi j

}
=
{

s
−c

}
,

li j =
√(

xi − x j
)2 + (yi − y j

)2 (61)

It could be indicated that the boundary displacement is lin-
ear in si j , and Hermite cubic polynomial in ni j . The linear
displacement fields could be reconstructed in both directions
si j and ni j .

It could be verified that, conforming to the process in
Sect. 3.1, the displacement interpolations in Eq. (58) sat-
isfy the RDPs, i.e., Eqs. (10), (12) and (17). However, the
DOF of the same node would be different on two neighbor-
ing edges, since the interpolations in Eq. (57) are referred to
the local coordinate system. The displacement interpolations
could be transformed into the global coordinate system, xoy,
after applying the rotational transformation to Eq. (58):

ug =
2∑

i=1

RNui ûli + RNφuφ =
2∑

i=1

N
′
ui ugi + N

′
φuφ (62)

where ug = Rul denotes the displacement in global coordi-
nate system, and ûli = RT ugi suggests the relation of node

displacement vector between the local and global coordinate

systems. Substitution of R =
[

c −s
s c

]
into Eq. (62) yields

the new interpolation function matrices

N′
ui = RNui RT =

[Li c2 + Hi s2 Li sc − Hi sc
Li sc − Hi sc Li s2 + Hi c2

]
,

i = 1, 2 (63)

N′
φ = RNφ = li j

[−sH3 −sH4

cH3 cH4

]
(64)

The above equations are the NBFs on the UC’s boundary,
which infer that the coupling terms of the NBFs are not zero.
Table 1 shows the NBFs on 
i j corresponding to the DOF of
Âi and Â j .

It should be noted that there are no rotational angle DOFs
in the microscopical level which only exist in the macroscop-
ical scale. The rotational DOF represents the rigid rotation
of the corresponding node in physics. As shown in the mag-

Table 1 The NBFs on 
i j corresponding to six groups of BVPs con-
cerning to Âi and Â j

Node DOF ux on 
i j uy on 
i j

Âi ûxi L1c2 + H1s2 L1sc − H1sc

û yi L1sc − H1sc L1s2 + H1c2

ϕ̂i −sH3li j −sH4li j

Â j ûx j L2c2 + H2s2 L2sc − H2sc

û y j L2sc − H2sc L2s2 + H2c2

ϕ̂ j cH3li j cH4li j

123



Comput Mech (2014) 53:659–685 669

nification of Ân in Fig. 5a, the macroscopical node, Ân , is
assumed to be shared by four UCs, C1 −C4, and a rigid rota-
tion with an angle, ϕ0, takes place at Ân . Then, each edge
next to Ân rotates ϕ0. Consequently, the same rotation would
take place at the material point of Ân , due to the microscopi-
cal elements next to Ân . Since each microscopical element is
interpolated by the analytical base function, which satisfies
the rotational RDP automatically.

We can show that the boundary NBFs in Eq. (62) sat-
isfy the RDPs. For example, substituting the rotational rigid
displacement of node Âi and Â j , i.e., ϕ

[−ŷi , x̂i , 1,−ŷ j ,

x̂ j , 1
]T , into Eq. (62) and taking advantage of the geomet-

rical relation li j = c�xi j + s�yi j , the displacement of an
arbitrary point (x, y) on 
i j could be deduced as ϕ (−y, x).
Thus, the rotational RDP is satisfied. For the translational
RDPs, interested readers could verify that Eqs. (10) and (12)
similarly.

In the numerical aspect, all BVPs result in the solution
of Eq. (24). The boundary NBFs, listed in Table 1, are pre-
scribed in advance, and the interior NBFs could be solved
by Eq. (25). Only one decomposition process of stiffness
matrix is needed for RABC, similar to the solutions of the
NBFs-LBC. Therefore, the computation quantity is of almost
no difference from LBC. RABC has no constrictions on the
geometries and material distributions of the UCs, which is
superior to PBC. One could refer to Sect. 4.4 for more details.

4.4 Numerical examples

The indicators below are introduced to verify the RDPs of
NBFs:

ex =
∥∥∥∥∥
∑

i

Nxi − 1x

∥∥∥∥∥

/
‖1x‖

ey =
∥∥∥∥∥
∑

i

N yi − 1y

∥∥∥∥∥

/∥∥1y
∥∥

erot =
∥∥∥∥∥rw +

∑

i

Nxi ŷi −
∑

i

N yi x̂i

∥∥∥∥∥

/
‖rw‖ (65)

which denote the errors for the translational and rotational
RDPs, respectively. ‖·‖ represents the second type norm of a
matrix. Theoretically, three zero eigenvalues λi should exist
for K E as shown in Eq. (7), thus, the following indicators are
also considered:

λ̂i = |λi | /λm, i = 1, 2, 3 (66)

where λm is the smallest theoretical nonzero eigenvalue of
K E .

The NBFs-LBC for several types of UCs are depicted in
Fig. 6. The mesh and material information are referred to the
descriptions below the UC, in which NE and NN denote the
number of the element and node, E and ν represent elastic

modulus and Poisson’s ratio. The same variables in Figs. 7
and 8 will not be explained again. The NBFs with respect to
the macroscopical DOF, ûx1 and û y1, are shown in the figure,
in which the length and orientation of the red arrows represent
the size and direction of displacement vector, respectively.
For the NBFs of the rectangular UC, shown in the Fig. 6a,
the coupling terms of NBF on the boundary are zero, while
that inside the UC are not. The coupling terms inside the UC
reflect the influence of the macroscopical DOF, ûx1, on the
NBFs in the y direction and such effects are not included
for the traditional analytical base function. In addition, the
NBFs for the other UCs, such as the irregular quadrilateral
and irregular hexagon, show the similar characteristic with
the rectangular one.

The six error indicators in Eqs. (65) and (66) are listed on
the right side of each UC. As one might expect, all the values
are small, thus, the NBFs-LBC satisfy the RDPs. Moreover,
the RDPs have nothing to do with the geometries and material
distributions of the UCs. Thus, the application scope for LBC
has been extended a lot relative to the previous work [28].
The displacement on the UC’s edge varies linearly, which
maybe a little rigid in some cases.

As shown in Fig. 7, the NBFs-PBC for all kinds of UCs,
including the rectangular, regular hexagon, diamond and so
on, are depicted. The NBFs corresponding to the coarse-mesh
DOF ûx1 and û y1 are plotted. The coupling terms exist not
only inside the UC, but also on the edge, comparing with that
of LBC. Just as the NBFs of the rectangular UC shown in
Figs. 6a and 7a, the deformed edges for PBC become curved,
while that for LBC keep straight. The flexibility of boundary
may decide the higher accuracy of PBC in most cases [28].
The error indicators are all small, which suggest the RDPs of
NBFs-PBC. Total amount of UC’s edge for PBC should be
even and the node number on the two opposite edges should
be the same, thus, the periodic multipoint constraints could
be applied.

The NBFs-RABC are shown in Fig. 8, enumerating the
UCs such as the rectangular, irregular quadrilateral and irreg-
ular hexagon. The vector diagram of the NBFs with respect
to ûx1, ûx1 and ϕ̂1 are depicted. Taking the rectangular UC
shown in Fig. 8a as an example, the displacement along
the UC’s edge varies linearly and that perpendicular to the
edge Hermite cubic polynomial. As for the rotational angle,
ϕ̂1, the displacement vertical to the adjacent edges is stimu-
lated. It could be found that the NBFs-RABC are more flex-
ible than the NBFs-LBC concerning the deformation ver-
tical to the UC’s edge. Thus, the NBFs-RABC could be
more suitable to describe the bending deformation of the
UC.

The error indicators of Eqs. (65) and (66) are all small,
which suggest the RDPs of the NBFs-RABC. The displace-
ment on the UC’s edge is conforming, so no averaging oper-
ations are needed on the UC’s edge.
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Fig. 6 Distributions of the NBFs and the error indicators for LBC
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Fig. 7 Distributions of the NBFs and the error indicators for PBC
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Fig. 8 Distributions of the NBFs and the error indicators for RABC
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Some features of NBFs could be summarized based on the-
oretical analyses in Sect. 4.1–4.3 and above numerical exam-
ples: (1) the NBFs of vector fields contain coupling terms,
which take the mutual influence of different directions into
consideration and should be beneficial for the accuracy of the
results. (2) The NBFs are obtained by the solution of BVPs,
which represent the typical deformations of the UC. (3) The
NBFs are discretized inside the UC in nature, so that there
are no difficulties for NBFs to adapt to the UCs with intricate
geometries and material distributions. Even for the polygo-
nal UC, the construction of NBFs wouldn’t generate essential
difficulties. On the contrary, it may be hard for analytical base
functions to extend shape of element to arbitrary polygons.
(4) Each NBF corresponds to a macroscopical physical DOF
on coarse mesh, which is convenient for assembling stiffness
matrix and applying boundary condition.

5 Oversampling technique

Oversampling technique is first proposed by Hou et al. [2]
to overcome the difficulty due to scale resonance between
the grid scale and the scales of continuous problem. The
technique is further developed by Zhang et al. [28] for the
vector field analyses, with the aim to gain the oscillating
NBFs on the UC’s edge. In this section, the mechanism of
the RDPs for the NBFs of oversampling technique will be
investigated in theory, which provides some illuminations for
constructing new NBFs with oversampling technique. The
numerical examples on oversampling technique are not given
in this paper, and one could refer to [28,34].

5.1 Basic properties of oversampling technique

In this section, general properties about the oversampling
technique are discussed. To construct the oscillating NBFs
on the boundary of the Original UC (OrgUC), K , an over-
sampling unit cell (OsUC) overlapping the OrgUC, K ′, is
introduced, as shown in Fig. 9. For the most common rectan-
gular UC, as shown in Fig. 9, the NBF, φ′

xx1, corresponding
to the DOF, û

′
1, of Â

′
i , is prescribed on 
′. φ′

xx1 is equal to

one at Â
′
1 and varies linearly along the two boundaries con-

nected by Â
′
1. A displacement constraint in the y direction is

applied on Â
′
3 to avoid rigid displacements as shown in Fig.

9, which will be the same for different prescribed bound-
ary displacements, i.e., φ′

xxi , i = 1, . . . , 4, so that only one
decomposition of the OsUC’s stiffness matrix is involved for
solving four NBFs in the x direction. The coupling NBFs
on the boundary of the OsUC, φ′

yxi , i = 1, . . . , 4, should
be solved by Eq. (97). Such BVPs lead to the Eq. (97) with
the boundary condition similar to Eq. (100) and the NBFs in

Fig. 9 Oversampling technique for the rectangular UC

the x direction will not be affected due to the discussions in
Appendix 1.

The NBFs on
 are assumed to beφx = [φxx1, . . . ,φxx4
]
,

which are solved and extracted from the above BVPs. How-
ever, the Kronecker delta property of φxxi shown in Eq. (9) is
not satisfied on Â j . Thus, it is not convenient to apply φxxi
directly on the boundary of the OrgUC. Consequently, the
new boundary NBFs are introduced by a linear combination
of φx :

ψ xxi =
4∑

j=1

Cxi jφxx j or ψ x = φx Cx (67)

which is forced to satisfy the Kronecker delta property on Â j :

ψ xxi | Â j
= δi j (68)

Thus, the above NBFs could be exerted on 
 directly. The
coefficient matrix, Cx , in Eq. (67) can be solved by the fol-
lowing equation deduced from the Kronecker delta property

Tx Cx = I (69)

where Tx is a 4 × 4 matrix constructed by the value of φx
at Âi and I is a diagonal unit matrix. The NBFs, ψ y , could
also be constructed similarly. The new NBFs calculated by
Eq. (67) keep some properties of φx below.

Property 5.1 Suppose that φx satisfies the translational
RDPs, so will ψ x .

Proof Due to the translational RDPs of φx , one could obtain

4∑

i=1

φxxi = 1 or φx 1 = 1 (70)

where 1 denotes a vector whose element are all one and its
dimensionality is determined as appropriate. The dimension-
ality of left vector ′1′ is four and the right one is the same as
that of φ̂x . The provision will not be emphasized hereinafter.
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Since Tx is composed by the value of φx at Â j , one could
obtain the unit decomposition of Tx as follows

4∑

i=1

Txi = 1 or Tx 1 = 1 (71)

and then

Cx 1 = Cx Tx 1 = I1 = 1 (72)

Equation (72) indicates that the coefficient matrix, Cx , also
satisfies the unit decomposition. Thus, utilizing Eqs. (67),
(70) and (72), we obtain the the translational RDPs of ψ x

ψ x 1 = φx Cx 1 = φx 1 = 1 (73)

Property 5.2 Suppose that φx satisfies the rotational RDP,
so will ψ x .

Proof From Eq. (17), the rotational RDP of φx degenerates
into

ŷ = Tx ŷ
′
, y = φx ŷ

′
(74)

since the coupling terms of φx are zero. Here, ŷ = (
ŷi
)

4×1

and ŷ
′ =

(
ŷ

′
i

)

4×1
denote the y coordinate vector of Âi and

Â
′
i , respectively, y is composed by y coordinates of micro-

scopic nodes on 
. Due to Eqs. (67), (69) and (74), the equa-
tion, implying the rotational RDPs of ψ x , could be obtained

y = φx ŷ
′ = ψ x Tx ŷ

′ = ψ x ŷ (75)

The similar method could be employed to deduce ψ y , which
also satisfies the properties similar to Properties 5.1 and 5.2.

5.2 Rigid displacement properties

The NBFs on 
′ are assumed to be
{
φ′T

xxi , φ
′T
yxi

}T
, in which

φ′
xxi are the prescribed NBFs in the x direction and φ′

yxi are
solved from Eq. (97). Thus, one could obtain an equation
similar to Eq. (101)
[

K̂xx K̂xy

K̂ yx K̂ yy

]{
φ′

xxi

φ′
yxi

}
=
{

f̂ xi
0

}
(76)

where, K̂ =
[

K̂xx K̂xy

K̂ yx K̂ yy

]
denotes the stiffness matrix corre-

sponding to the DOF on 
′ and f̂ xi is the constraint reaction
in the x direction. It could be inferred from the last section

that
4∑

i=1
φ′

xxi = 1. Thus, summing Eq. (76) over index i leads

to
[

K̂xx K̂xy

K̂ yx K̂ yy

]⎧⎪⎨

⎪⎩

1
4∑

i=1
φ’

yxi

⎫
⎪⎬

⎪⎭
=

4∑

i=1

{
f̂ xi
0

}
(77)

Then, combining Properties A.1 and A.3, an equation about
the coupling terms could be obtained

4∑

i=1

φ′
yxi = α1 (78)

where α is determined by the constraint value ṽm in the y
direction (see Appendix 1), which we need not to care about.
In conclusion, the boundary NBFs obtained by the oversam-
pling technique satisfy the equation

4∑

i=1

{
φ′

xxi

φ′
yxi

}
=
{

1
α1

}
(79)

which denotes a translational rigid displacement. Subse-

quently, the NBFs on 
,
{
φT

xxi , φ
T
yxi

}T
, could be obtained

by Eq. (24), and φxxi should satisfy the unit decomposition
due to the discussions in Sect. 3.2:

4∑

i=1

φxxi = 1 (80)

Therefore, ψ xxi deduced from Eq. (67) satisfies the transla-
tional RDPs as a result of the Property 5.1. The same process
could be adopted to prove the translational RDPs of ψ y .

The rotational RDP for the oversampling technique in Eq.
(17) degenerates into

x =
4∑

i=1

ψ yyi x̂i , y =
4∑

i=1

ψ xxi ŷi (81)

where x and y are the coordinate of microscopical nodes on

′ and

(
x̂i , ŷi

)
is the coordinate of Âi . Due to the Property

5.2, the second equation in Eq. (81) is equivalent to Eq. (74).
Thus, to verify Eq. (74), one could firstly obtain the boundary
equation, by multiplying Eq. (76) by ŷ

′
i , and summing over

the index i :

[
K̂xx K̂xy

K̂ yx K̂ yy

]⎧⎪⎨

⎪⎩

y′
4∑

i=1
φ

′
yxi ŷ

′
i

⎫
⎪⎬

⎪⎭
=
⎧
⎨

⎩

4∑
i=1

f̂ xi ŷ
′
i

0

⎫
⎬

⎭ (82)

The relation
4∑

i=1
φxxi ŷ

′
i = y

′
, on account of φxxi = φyyi ,

is made use of to deduce the above equation. Due to the
Property A.2 and Eq. (98), the property about the coupling
terms is obtained by

4∑

i=1

φ
′
yxi ŷ

′
i = −x

′ + γ 1 (83)

where γ is determined by the constraint value ṽm(see Appen-
dix 1), which we do not need to care about. Thus, the terms
on the left side of Eq. (82) could be written as
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4∑

i=1

{
φ

′
xxi

φ
′
yxi

}
ŷ

′
i =

{
y

′

−x
′ + γ 1

}
(84)

The above equation represents the rigid displacement com-
posed by the rotational and translational components. Based

on the conclusions in Sect. 3.2,
{
φT

xxi , φ
T
yxi

}T
will also meet

the similar equation

4∑

i=1

{
φxxi

φyxi

}
ŷ

′
i =

{
y

−x + γ 1

}
(85)

Thus, Eq. (74) has been proved. A similar way could be
adopted to deduce the rotational RDPs of φyyi , i.e., x =

4∑
i=1

φyyi x̂ ’
i . Therefore, ψ x and ψ y in Eq. (67) also meet the

requirement of the rotational RDP.
In conclusion, the NBFs on 
 fulfills the translational and

rotational RDPs, so will the NBFs on K . The NBFs of the
oversampling technique generally oscillate on the OrgUC’s
edge for heterogeneous materials, which suggest the hetero-
geneity of material. Four stiffness matrix decompositions are
needed to calculate the NBFs for oversampling technique for
the quadrilateral UC, which leads to a little larger compu-
tation quantity comparing with the boundary conditions in
Sect. 4.1–4.3. One could refer to [28,34] for the discussions
on numerical performance of the oversampling technique.

6 Size effects

For the homogenization method, different sizes of UCs have
considerable influence on the computational accuracy, which
is related to the material properties and analysis type. For
example, the constitutive equations of periodic composite
materials show some dependence on the size of representative
volume element [41], and the recent work on this problem can
refer to [9,42]. The UC’s size for EMsFEM also has effects
on both computational accuracy and efficiency, which have
been discussed in the paper of Hou et al. [30] and Zhang et al.
[29]. On the basis of their work, more exhaustive discussions
will be presented in this section.

6.1 Size effects on algorithm complexity

6.1.1 A special case of O
(
K 3
)

Firstly, the flops for the solution of a linear algebraic equation
are assumed to be proportional to K 3, denoted as O

(
K 3
)
,

without thinking of the bandwidth and sparse storage, see the
Appendix 2. Here, K is the total node number of a structure
and O (·) represents a linear time operator in some software
and hardware environments. The total computation quantity
is assumed to be about O (K ) in the work by Hou et al. [30]

and Zhang et al. [29], which may have some distinctions
comparing with the actual computations.

Suppose that K is large enough and the structure is com-
posed by Q coarse meshes, then, we have K ≈ Q · M ,
where M is the number of microscopical nodes in each coarse
mesh on average. The macroscopical nodes with respect
to the coarse mesh become P ≈ Q, due to the conclu-
sions in Appendix 2. The computation quantity for the con-
struction of NBFs for each coarse mesh, as shown in Sect.
4.1–4.3, is about O

(
M3
)
; thus, the computation quantity

(just for solving the linear algebraic equation, which will
not be emphasized again) for all coarse meshes becomes
N · O

(
M3
) ≈ K · O

(
M2
) ≈ O

(
K 3/Q2

)
. About O

(
Q3
)

flops are needed on the macroscopical level, and the total
computation quantity could be obtained by

S = O
(

K 3/Q2
)

+ O
(

Q3
)

= O
(

K 3/Q2 + N 3
)

(86)

Afterwards, two extreme situations about the above equation
are investigated. (1) The amount of the macroscopical node
is almost equal to that of the fine mesh, i.e., Q ≈ K , as the
amount of coarse mesh becomes small enough. Thus, Eq.
(86) degenerates into O

(
K + K 3

) ≈ O
(
K 3
)
. (2) On the

contrary, as the size of coarse mesh becomes large enough, its
number in the whole structure approximates to one, then Eq.
(86) also tends to be O

(
K 3
)
. The analyses state clearly that

too many or too few coarse meshes are both disadvantageous
on the computational efficiency. In other words, there exists a
suitable coarse-mesh number, which makes the computation
quantity minimum. Let the derivation of Eq. (86) be zeros,
the optimal coarse-mesh number could be obtained by

N =
(

2

3
K 3
)0.2

= 0.922K 0.6 (87)

and the corresponding minimum computation quantity
becomes

Ŝ = O
(

1.960K 1.8
)

(88)

which indicates that the computation quantity for EMsFEM is
proportional to K 1.8 in ideal cases. The computation quantity
relative to the direct solution is as follows

S = S
/

O
(

K 3
)

= 1
/

Q2 + (Q/K
)3 (89)

the logarithmic curves of which versus the coarse-mesh num-
ber are shown in Fig. 10, corresponding to different number
of microscopical nodes, i.e., 1×105, 1×106, 1×107, 1×108.
The minimum relative computation quantity

Smin = O
(

1.960K 1.8
)/

O
(

K 3
)

= 1.960K −1.2

= 1.666Q−2 (90)

is depicted by the dotted line in the same figure.
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Fig. 10 The relative computation quantity versus the coarse-mesh
number corresponding to different K

Some messages could be inferred from the figure. (1) The
values of S are almost less than one, which indicate that
less computation quantities are consumed for EMsFEM com-
paring with the direct solutions. (2) Indeed, for each curve
there exists a minimum relative computation quantity, which
diminishes with Q or K , as shown in the magnification of
the figure; at a fixed value of Q, S decreases with K , which
means that the more the DOF of a FE model is, the more com-
putational resource will be saved for EMsFEM; (3) S tends
to be stable at the vicinity of Smin with respect to very large
K , such as the curve in case of K = 1×108. In this situation,
more coarse meshes are probable to be helpful for the accu-
racy promotion without increasing too much computational
time.

6.1.2 General cases for O (K p)

In this section, more general assumptions on the solu-
tion of the linear equation, i.e., O (K p), are adopted.
The case p = 3 represents the standard LDLT decom-
position in the last section. The exponent p should be
approximately between one and three, considering the band-
width or sparsity of the stiffness matrix, see Appendix 2.
The analysis flow in the last section is also useful for
O (K p), thus, the computation quantity and its relative value
become

S = O
(

K p Q1−p + Q p
)

, S = Q1−p + (Q/K
)p

(91)

The optimal number of coarse mesh and the corresponding
minimum computation quantity are expressed as, by means
of the limit analysis of above equations:

Q =
(

p − 1

p

) 1
2p−1

K
p

2p−1 ,

Smin =
⎛

⎝
(

p − 1

p

) 1−p
2p−1 +

(
p − 1

p

) p
2p−1

⎞

⎠ K
p(1−p)
2p−1 (92)

It can be verified that the above equations degenerate into
Eqs. (89) and (90) as p = 3. The logarithmic curves of S
versus N are depicted in Fig. 11, with respect to different
values of p, i.e., 1, 1.5, 2, 2.5 and 3. Figure 13a, b are related
to K = 108 and K = 109, respectively.

Several conclusions could be drawn from the figure. (1)
The trend of S versus to Q is the same as that shown in
Fig. 10, so the conclusions deduced from Fig. 10 are also
applicative to that of Fig. 11. (2) S diminishes with p for a
fixed Q; for example, S is around 10−2 as p is equal to 1.5 as
shown in Fig. 11a, while decreases down to about 10−8 as p
is equal to three, which indicates that advantages on the com-
putation efficiency of EMsFEM will be more apparent as the
direct LDLT decomposition is employed to solve the equa-
tion. Thus, the conclusions for p = 3 in the last subsection
are the most optimistic for the computation quantity saving.
(3) One could find that S is equal to one as p approximates
to one. In this case, the computation quantity of EMsFEM is
proportional with the scale of the problem.

The minimums of Smin are marked by full circles as shown
in Fig. 11, from which, it could be found that Q p , correspond-
ing to Smin, increases with p. In general, for a fixed amount
of microscopical nodes, the more the coarse-mesh number
is, the higher accuracy will be obtained for EMsFEM.

The above analysis is based on the series computing. In
fact, it is of considerable convenience for the parallel comput-
ing, as the UC is independent with each other. Readers could
refer to Sect. 7.2 for the details. Meanwhile, the NBFs are
just calculated once for some material nonlinear problems,
such as strain localization and elasto-plastic problems [29],
and the equilibrium iteration is implemented on the coarse
mesh; in such cases, more computational resources could be
saved.

6.2 Numerical example

In this section, the homogeneous beam with sizes of 6 × 18
is considered as shown in Fig. 12. The elastic modulus and
Poisson’s ratio of the materials are 2.0×1011 and 0.3, respec-
tively. The left side of the beam is fixed and a 1,000 concen-
trated force is applied at the bottom right corner. The size of
fine mesh is set to be 0.02 × 0.02, which leads to 270,000
fine elements and 271,210 nodes. The configuration of mesh
size for this example aims to be convenient for comparing
the computation quantity of each model. Such fine mesh is
surely not necessary in practice.

123



Comput Mech (2014) 53:659–685 677

Fig. 11 The relative computation quantity versus the coarse-mesh number for different p, the total microscopical nodes in a and b are 108 and
109, respectively

Fig. 12 The testing model for the comparison of algorithm complexity

The following ten groups of the coarse-mesh size are cho-
sen

ac ∈ {3 2 1.2 1 0.6 0.5 0.4 0.3 0.2 0.1
}

(93)

which leads to 108/a2
c coarse meshes. The coarse meshes

corresponding to ac ∈ {3, 2, 1.2, 1} are depicted at the left
bottom of the beam with different rectangulars as shown in
Fig. 12.

The computational program is implemented by MATLAB
with version R2010b and carried out on a 64 bits Windows
Server 2007 system with a 2.66 GHz CPU and 36 GBytes of
memory. The preprocessing is implemented by the commer-
cial software ANSYS.

The variables TEx1 and TEx2, which represents the time
for the LDLT decomposition and that from reading the pre-
processing files to obtaining the displacement results, are
collected. The nondimensionalized time indicators are intro-
duced, as a matter of convenience for comparisons

T Ex1 = TEx1
/

TF1 , T Ex2 = TEx2
/

TF2 (94)

where TF1 and TF2 denote the time corresponding to the
direct solutions. The relative time versus the coarse-mesh
number are depicted in Fig. 13a, b, respectively. The relative
time of LBC, PBC and RABC are given, from which, one
can find that the time decreases at first and then increases
with the coarse-mesh number; the trend is the same as that
shown in Figs. 10 and 11.

The minimum of T Ex1 takes place at about Q1 = 1, 200,
while the theoretical optimal value is about Q0 = 1, 670
as Eq. (87). However, there are almost no affections on
the computation quantity, as N distributes in the interval of
(500, 3000), so the theoretical optimal value still show some
reasonability. It also could be found that the minimum of
T Ex1 is less than 0.1, which means the efficiency of EMsFEM
for the matrix decompositions is ten times higher than that of
the direct solutions. The similar trend of T Ex2 versus to Q
could be detected from Fig. 13b; about Q2 = 500 minimizes
T Ex2 within the interval between 0.1 and 0.2, which indi-
cates that efficiency of EMsFEM is about an order higher than
that of the direct simulations. T Ex1 and T Ex2 for different
boundary conditions are almost the same for all coarse-mesh
number.

The errors of the displacements and Von Mises Stress are
shown in Fig. 13c, d, respectively. It could be revealed that the
errors decrease rapidly at the low number of coarse mesh, and
then tend to be stable with the higher coarse-mesh number,
which indicates the convergence of EMsFEM. The errors of
maximum displacements become stable at about 300 coarse
meshes, while that of stress at about 1,200 coarse meshes;
thus, the necessary amount of coarse meshes should be great
than 1,000 and more coarse meshes are helpful for improving
the accuracy.
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Fig. 13 Relative computational time and accuracy versus the number of coarse mesh for the cantilever beam. a and b represent T Ex1 and T Ex2,
respectively. c and d are the errors of displacement and Von Mises stress, respectively

To know more influence of the coarse-mesh number on the
computation efficiency, the fine-mesh size of the structure in
Fig. 12 is altered to the denser one, i.e., 0.01 × 0.01, which
results in 1.0824×106 nodes. Twelve groups of coarse mesh
are chosen with sizes

ac ∈ {3 2 1.2 1 0.6 0.5 0.4 0.3 0.2 0.1 0.06 0.05
}

(95)

The relative time T Ex1 and T Ex2 for the new model are
depicted in Fig. 14a, b, the trends of which are absolutely
the same as that in Fig. 13a, b. As the coarse-mesh num-
ber becomes Q1 = 2, 700, T Ex1 descends to the minimum
value, while the theoretical optimal coarse-mesh number in
Eq. (87) is Q0 = 3, 850. However, the computation quantity
differs a little at the range Q ∈ [2700, 10800], so the theo-
retical optimal coarse-mesh number also show some reason-
ability. Comparing with the relative time in Figs. 13 and 14,
the minimum of relative time of the former is larger than the
later one. In simple words, as the node number increases, the

advantages on efficiency for EMsFEM become more obvious
than the direct simulations, which exhibit a good perspective
on the large scale scientific computing. It could be found eas-
ily that the inequality Q0 > Q1 > Q2 is the same as that of
the last model. Thus, considering the efficiency and accuracy
simultaneously, theoretical coarse-mesh number in Eq. (87)
is an acceptable choice.

7 Numerical examples: applications for heterogeneous
materials

Many kinds of engineering materials appear heterogeneous
in the microscopical level, such as composites [16], on
the section of which, there are many elliptical impurities
approximately, and concrete [7], containing many disorderly-
arranged aggregates with different sizes embedded in the
matrix. Modeling and simulating the mechanical behavior
of such kinds of materials are of significance.
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Fig. 14 Relative computational time versus coarse-mesh number, a and b represent T Ex1 and T Ex2, respectively

Fig. 15 The geometry of ellipse impurities or holes

Two main concepts to generate heterogeneous materials
can be distinguished, i.e., processing the sequential section-
ing image of natural materials and the artificial generation
[7]. The second type material generator has been investi-
gated by many researches, such as generator by Clément et
al. [16], based on the statistical theory and Galli et al. [43],
on the basis of Delaunay tetrahedron. In the paper, only the
two-dimensional cases are considered and the impurities or
holes included in the heterogeneous materials are supposed
to be ellipse, shown in Fig. 15, which follows the parametric
equation

{
x = xc + a cos θ cos ϕ − b sin θ sin ϕ

y = yc + a cos θ sin ϕ + b sin θ cos ϕ
(96)

Here, θ is the variable parameter, ranging from 0 to 2π ;
(xc, yc) denotes the central coordinate and a or b are the

Fig. 16 Unit cells with impurities or holes corresponding to different
parameters. For a, a, b and ϕ are fixed and the center coordinate (xc, yc)

is randomly distributed. In b, a is set to be equal to b and ϕ is out-of-
operation, meanwhile, a and (xc, yc) are generated randomly. For c, ϕ

and (xc, yc) are controlled periodically. In d, ϕ conforms to the random
distribution and the other parameters are fixed

length of the long or short axis. The angle ϕ could be used
for controlling the orientation of the ellipse.

As shown in Fig. 16, all kinds of UCs with elliptical impu-
rities generated by Eq. (96) are plotted. Thus, it can be seen
that various micro-structures could be designed by control-
ling the parameters in Eq. (96). One could refer to [7] for
more exhaustive descriptions for the three-dimensional gen-
erators of heterogeneous materials.
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7.1 Cantilever beam with random holes

The cantilever beam with four large circular holes, as shown
in Fig. 17, is composed by the materials with random ellip-
tical holes in the microscopical view. The size of the beam
is 10 × 40 and the radius of the hole is 2. The left side of
the beam is fixed, while each coarse-mesh node on the right
side are applied a force of 100. At the microscopical level, the
location, size and orientation of the elliptical hole conform to
random distributions, as shown in the magnified zone in Fig.
17. The elastic modulus and Poisson’s ratio of the materials
are 2.0 × 1011 and 0.3, respectively. In the macroscopical
level, there are 453 nodes, and 374 irregular-shape quadrilat-
eral UCs with feature size of one. There are 65,592 quadrilat-
eral elements with feature size of 0.1 and 71,941 nodes at the
fine scale. Each UC contains 175 fine elements on average.
It should be noted that, the drilling DOF for RABC on the
fixed boundary is set to be zero during simulations, which
will not be mentioned repeatedly in the next example.

Comparisons of transversal displacement at y = 0 are
depicted in Fig. 18, which includes the reference solution
of the fine mesh, EMsFEM for LBC, PBC and RABC. As a
whole, the error of EMsFEM models relative to the fine-mesh
solution is tiny, even the maximum error does not exceed 1%.
It could be found that, from the magnification of the tip, the
result of LBC seems to be a little stiffer than the other solu-
tions, which means that PBC and RABC are more recom-
mended for the mechanical analysis of such kind of materi-
als. The Von Mises stress for different models are depicted in
Fig. 19, from which, one could found that the results of EMs-
FEM are almost the same as the reference solution, and stress
concentration is also captured at the bottom and top of the
fixed side. The results indicate that the UC’s shape for EMs-
FEM could extend to arbitrary quadrilateral, which expands
application scope of EMsFEM to geometrically complicated
domain. In addition, PBC is originally deduced based on the

Fig. 17 The coarse-mesh model of the cantilever beam with random
holes

Fig. 18 Transversal displacements for different models

assumption of periodical distribution of the reinforcing phase
[44], while the UC shown in Fig. 17 is not periodic. There-
fore, it is reasonable to extend PBC to non-periodic structure
in the framework of EMsFEM. This example is not large
enough for comparing the efficiency, readers could refer to
the next example.

7.2 Heterogeneous structure with random impurities

The structure shown in Fig. 20 is a curve beam composed by
the materials with random elliptical impurities. The bottom
of the beam is fixed and each coarse-mesh node on the right
side of the top is applied a downward force of 100. The het-
erogeneous materials have two phases, i.e., matrix and impu-
rities, with the elastic modulus 2.0 × 1010 and 2.0 × 1011.
The Poisson’s ratio of both phase are 0.3. There are 1500
rectangular coarse meshes with feature size 0.1, correspond-
ing to 1661 nodes in the macroscopical level. Some ellipti-
cal impurities with the feature size 0.01 are included in the
each coarse mesh, as shown in the magnified zone A and
B in Fig. 20. The heterogeneity at the microscopical level
leads to 1,112,493 fine elements with the feature size 0.001
and 1,112,042 nodes, which is amount to about 2.2 million
DOFs.

The comparison of displacement for different models is
depicted in Fig. 21, which is located at the line P1 P2 P3 as
shown in Fig. 20. The displacement results of EMsFEM for
LBC, PBC and RABC are almost the same as that of the fine
mesh. The Von Mises stress, shown in Fig. 22, draws the
similar conclusions. Especially, the stress concentration at
the corner is also captured well, which may be beneficial for
the nonlinear analyses. In conclusion, although EMsFEM
solve the final problem at the macroscopical level, almost
identical accuracy as the direct solution could be obtained,
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Fig. 19 Results of Von Mises stress for different models. a denotes the reference solution, b–d are the EMsFEM solutions for LBC, PBC, RABC

Fig. 20 The coarse mesh of the curved beam with random impurities

which is mainly because the fine properties of NBFs. The
example also indicates the feasibility of PBC for the non-
periodic materials.

Parallel computing is implemented for this example to
compare the computational efficiency with the direct method.
We utilize the parallel computational tool box in Matlab.
The time from assembling the stiffness matrix to achieving
the displacements is collected for both direct solutions and
EMsFEM, which are assumed to be t0 and tn , respectively.
Here, tn is the time corresponding to n processors. We have
known that, in Sect. 6.2, the time of EMsFEM for differ-
ent boundary conditions are almost the same. Thus, we just

Fig. 21 Displacements of different models

consider the time for linear boundary condition. The relative
time tn/t0 is depicted in Fig. 23a. It could be found that the
relative time decreases with the number of processors. As
n = 1, then tn/t0 ≈ 0.2, and tn/t0 approximate to 0.02, as
n = 10, which indicates that the efficiency of EMsFEM is 50
times higher than the direct method. The scale-up, denoted
by t1/tn , is shown in Fig. 23b. It could be inferred that the
scale-up is linear with the number of processors approxi-
mately, which means that a problem may be solved in half
time when doubling the number of processors. The discrep-
ancy between the EMsFEM and the optimum may be induced
by communications between processors [45].
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Fig. 22 Results of Von Mises
stress for different models. a
denotes the reference solution,
b–d are the EMsFEM solutions
for LBC, PBC, RABC

Fig. 23 Time analysis for parallel computing of EMsFEM-LBC a The relative time of EMsFEM to the direct solution. b Scale-up for parallel
computing

8 Conclusions

The key of EMsFEM is the construction of NBFs. In
the paper, the necessary conditions of NBFs for the two-
dimensional vector field, that is the RDPs, are investigated
comprehensively in theory. Therein, the rotational RDP is

proposed in analytical form for the first time, which could
be considered as an extension of the traditional isoparamet-
ric interpolation and differs from that for the the scalar field.
We prove theoretically that if the NBFs on the boundary of
a UC satisfy the RDPs, then so will the NBFs inside the
UC. The proposed conclusion has nothing to do with the
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geometries and material distributions of the UCs and could
be considered as a basic principle to construct NBFs. The
principle transforms the construction of NBFs on the two-
dimensional domain into a line and alleviates the difficulties
for constructing NBFs a lot. In addition, we find that only
one decomposition of the stiffness matrix is necessary for all
NBFs of each UC, which improves the efficiency a lot relative
to the former works. The RDPs of LBC and PBC are demon-
strated on the basis of the proposed theory. We find that the
NBFs for PBC could be considered as a combination of LBC
and periodic additional terms. A new rotational angle bound-
ary condition is proposed, based on the membrane element
with a drilling DOF. The new boundary condition is conduc-
tive to improve the computation accuracy relative to LBC and
alleviate the modeling complexity comparing with PBC. The
oscillating NBFs constructed by oversampling technique are
also discussed in the theoretical aspect, which is helpful for
us to understand the mechanism for describing oscillating
displacement of heterogeneous materials.

The algorithm complexity of EMsFEM is analyzed from
both theoretical and numerical aspects. The results indicate
an interesting conclusion that there exists a suitable UC size,
which makes the total computation quantity minimum. Thus,
we have a criterion to decide which size of UC approxi-
mates to the best efficiency. Meanwhile, as the problem’s
scale increases, more computation resources could be saved
relative to the direct solutions and the advantages of EMs-
FEM will be more remarkable. In the paper, applications of
EMsFEM to the heterogeneous materials with random holes
or impurities are implemented and the parallel computing is
also realized. The results state the accuracy and efficiency of
the method for large scale problems.

The present EMsFEM has also been applied to inelastic
problems, such as elasto-plastic analysis of heterogeneous
materials [29,35] and strain localization of lattice truss mate-
rials [36]. Numerical examples for elasto-plastic problems
show excellent precision of the stress in the microscopical
scale, even for the path-dependent cases with loading and
unloading. The constructions and the properties of NBFs for
inelastic problems are almost the same as presented in the
paper and the final problems are also solved in the macro-
scopical scale. Detailed implementations of the method for
inelastic problems are discussed in the above mentioned ref-
erences. The computation practices in the present and pre-
vious publications demonstrate that EMsFEM could handle
the large scale problems efficiently and provide a new tool
for large-scale scientific computation.
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Appendix 1: Properties of BVPs for oversampling tech-
nique

Before the displacement boundary conditions are applied, the
two-dimensional BVPs are assumed to be
[

Kxx Kxy

K yx K yy

]{
u
v

}
=
{

f x
f y

}
(97)

where u and v are the displacement vectors in the x and y
directions, respectively. Several properties about K are not
so hard to be deduced.

Property A.1 Given the rigid displacement
{

1T 0T
}T

or
{

0T 1T
}T

in Eq. (97), then

Kxx 1 = Kxy1 = Kyx 1 = Kyy1 = 0 (98)

Property A.2 Given the rotational rigid displacement{−yT xT
}T

in Eq. (97), then

− Kxx y + Kxyx = −Kyx y + Kyyx = 0 (99)

Property A.3 zero eigenvalue multiplicity of Kxx and Kyy

is one, and the corresponding eigenvector is αI, α, α is an
arbitrary non-zero real number.

The Properties A.1 and A.2 could be obtained directly by
substituting the corresponding rigid displacement into Eq.
(97). For the Property A.3, assuming that multiplicity of zero
eigenvalue of Kxx and K yy is equal or great than two, then
the multiplicity of zero eigenvalue for K in Eq. (97) should be
equal or great than four, which is contradict with three zero
eigenvalues. Thus, zero eigenvalue for Kxx and K yy should
be less than two. In addition, from the Property A.1, there is
at least one zero eigenvalue of Kxx and K yy . Therefore, the
Property A.3 follows immediately.

Supposing that multiple displacement constraints are
applied in the x direction and only one in the y direction,
the final BVP comes down to Eq. (97), with the boundary
condition

ui = ũi , on 
x and vk = ṽk, on 
y (100)

where
x and
y denote the node set applied the constraints in
the x and y directions. Then, substituting the unique solution

of above BVP,
{

uT vT
}T

, into Eq. (97), we have
[

Kxx Kxy

K yx K yy

]{
u
v

}
=
{

f x
0

}
(101)

where f x represents the constraint reaction in the x direction.
It should be noted that constraint reaction corresponding to v
is 0, since only one displacement constraint is applied in the
y direction. Considering theProperty A.1, the new displace-

ment superposed by
{

uT vT
}T

and the rigid displacement
in the y direction, i.e.,
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{U
V
}

=
{

u
v

}
+ γ

{
0
1

}
(102)

is also the solution of Eq. (101), which indicates the following
properties.

1. If the constraint on Ak in the boundary condition (100) is
replaced by that on Al with prescribed displacement value

ṽl , the new solution becomes

{U l

V l

}
=
{

u
v

}
+ γl

{
0
1

}
,

which could be obtained by V l = vl + γl = ṽl , namely,
γl = ṽl − vl . Thus, the solutions for the different con-
straints in the y direction could be deduced by adjusting
γ .

2. The solutions for different constraints in the yy direction
are assumed to be

{U1

V1

}
=
{

u
v

}
+γ1

{
0
1

}
,

{U2

V2

}
=
{

u
v

}
+γ2

{
0
1

}

(103)

the relative value of the two solutions is expressed by

{
�U12

�V12

}
=
{U2

V2

}
−
{U1

V1

}
=
{

0
(γ2 − γ1) 1

}
(104)

The above equation indicates that there is no influence
on the displacement in the x direction, U , even if the
constraint in the y direction is applied on different nodes.

3. The relative displacement for the arbitrary different nodes
Am and An is

�V1,mn = V1,m − V1,n = vm − vn = �V2,mn (105)

which suggests that the relative displacement value of two
arbitrary nodes is the same for different constraints in the
y direction. Furthermore, the invariance of the relative
displacement field also indicates that the strain and stress
are invariable for different constraints.

The similar conclusions could be drawn by applying the mul-
tiple constraints in the y direction and only one constraint in
the x direction. Such features of BVPs are shared with that
of oversampling technique.

Appendix 2: Some conclusions on algorithm complexity
and FE model

The most time-consuming segment of structure analysis lies
in solving the following linear equation

Ku = f (106)

Some conclusions on the computation quantity are review-
ed for the direct solution methods of the above equation.
Assuming K is a symmetric dense matrix with a size of n×n,
(1) the flops are about 1

3 n3+2n2 if the standard LDLT decom-
position is employed. In case n is large enough, 2n2 could
be ignored, which lead the approximate total flops, 1

3 n3. (2)
Considering the bandwidth m of K and m << n, about 4m2n
flops are needed. (3) The case for a sparse matrix K becomes
much more complicated, in which non-zero elements of K,
the sparse storage mode and some related special algorithms
are all related to the computational time. In general, the flops
are proportional to n in ideal case. The above conclusions
are referred to the monograph by Boyd and Lieven [46] and
Golub and Charles [47].

For the imporous plane FE model composed by quadrilat-
eral elements, the following equation could be deduced as

Ed = Nn + Nb

2
− 1 = Nd − Nb

2
− 1 (107)

where Ed , Nn and Nb are the number of elements, total
nodes and boundary nodes, respectively. In case all the ele-
ments are uniform in sizes, the approximate relations could
be obtained by

Ed ≈ a2
c

a2
e
, Nb ≈ ac

ae
(108)

where ac and ae denotes the characteristic size of structure
and element. If ac >> ae or ac/ae >> 1, then we have the
inequality Ed >> Nb from the above relations. Therefore,
one can conclude that if the element size is small enough
related to the characteristic size of the structure discretized
by the quadrilateral elements, the total amount of elements
and nodes are approximately equal, due to Eq. (108), i.e.,
Ed ≈ Nd .
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