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Abstract In patient-specific arterial fluid–structure inter-
action (FSI) computations the image-based arterial geometry
comes from a configuration that is not stress-free. We present
a method for estimation of element-based zero-stress (ZS)
state. The method has three main components. (1) An itera-
tive method, which starts with an initial guess for the ZS state,
is used for computing the element-based ZS state such that
when a given pressure load is applied, the image-based target
shape is matched. (2) A method for straight-tube geometries
with single and multiple layers is used for computing the
element-based ZS state so that we match the given diame-
ter and longitudinal stretch in the target configuration and the
“opening angle.” (3) An element-based mapping between the
arterial and straight-tube configurations is used for mapping
from the arterial configuration to the straight-tube configu-
ration, and for mapping the estimated ZS state of the straight
tube back to the arterial configuration, to be used as the initial
guess for the iterative method that matches the image-based
target shape. We present a set of test computations to show
how the method works.
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1 Introduction

Computational mechanics has been experiencing a rapid
expansion in computational cardiovascular fluid mechanics
(see, for example, [1–40]),with much emphasis on fluid–
structure interaction (FSI) between the blood flow and car-
diovascular wall. The expansion has partly been due to the
advances in core FSI methods (see, for example, [36,37,41]
and references therein) and the development of special meth-
ods targeting cardiovascular FSI (see, for example, [29,33,
36] and references therein).

The special methods include those designed to take into
account the fact that in patient-specific arterial FSI computa-
tions the image-based arterial geometry comes from a con-
figuration that is not stress-free. Until recently, no attempt
was made to find a zero-stress (ZS) configuration for the
artery. The concept of estimated zero-pressure (EZP) arterial
geometry was introduced in [9]. It was pointed out in [9] that
quite often, the image-based geometries were used as arter-
ial geometries corresponding to zero blood pressure, and that
it would be more realistic to use the image-based geometry
as the arterial geometry corresponding to the time-averaged
value of the blood pressure. Given that arterial geometry at
the time-averaged pressure value, an estimated arterial geom-
etry corresponding to zero blood pressure needed to be con-
structed.

The original version of the technique for calculating
an EZP geometry was introduced in a 2007 conference
paper [42] and the 2008 journal paper [9] as “a rudimen-
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tary technique” for addressing the issue. Newer techniques
were introduced after that. They include the newer EZP ver-
sions introduced in [17,26,29], which were also presented
in [33,36]. They also include the prestress technique intro-
duced in [24] and further refined in [30], which also was
presented in [33,36]. In the approach given in [24,30], a pre-
stress state is found, which puts the artery in equilibrium
with the time-averaged blood pressure (and viscous forces).
The prestress is then directly employed for the arterial wall
modeling in the FSI computations.

Arterial wall is a sophisticated multilayered composite
with nonlinear stress–strain relationship. Moreover, because
the arterial wall is a living tissue, its mechanical character-
istics vary in time, and tissue growth over long time results
in residual stress. A typical way to investigate the residual
stress is to cut the arterial wall open and measure its “open-
ing angle” [43–47]. Opening-angle measurements for various
species were reported in [48]. The opening angle can then be
used in the computations (see, for example, [49]) as part of
the given data.

In this paper, we present a method for estimation of
element-based ZS state. The method has three main com-
ponents. The first component is an iterative method, which
starts with an initial guess for the ZS state. It is used for com-
puting the element-based ZS state such that when a given
pressure load is applied, the image-based target shape is
matched. The second component is a method for straight-
tube geometries with single and multiple layers. It is used
for computing the element-based ZS state so that we match
the given diameter and longitudinal stretch in the target con-
figuration and the opening angle. The third component is
an element-based mapping between the arterial and straight-
tube configurations. It is used for mapping from the arter-
ial configuration to the straight-tube configuration, and for
mapping the estimated ZS state of the straight tube back
to the arterial configuration, to be used as the initial guess
for the iterative method that matches the image-based target
shape.

The first component is presented in Sect. 2. The second
and third components are presented in Sect. 3. In Sect. 4, we
present a set of test computations to show how the method
works. The concluding remarks are given in Sect. 5.

2 Element-based zero-stress state

Let Ω0 ∈ R
3 be the material domain of a structure in the

ZS configuration, and let Γ0 be its boundary. Let Ωt ∈
R

3, t ∈ (0, T ), be the material domain of the structure in
the deformed configuration, and let Γt be its boundary. The
structural mechanics equations based on the total Lagrangian
formulation can be written as

∫
Ω0

w · ρ0
d2y
dt2 dΩ +

∫
Ω0

δE : S dΩ −
∫

Ω0

w · ρ0f dΩ

=
∫

(Γt )h

w · h dΓ. (1)

Here, y is the structural displacement, w is the virtual dis-
placement, δE is the variation of the Green–Lagrange strain
tensor, S is the second Piola–Kirchhoff stress tensor, ρ0 is
the mass density in the ZS configuration, f is the body force
per unit mass, and h is the external traction vector applied on
the subset (Γt )h of the total boundary Γt .

2.1 Representation of the element-based ZS state

Typically the prestress is taken into account with the sec-
ond Piola–Kirchhoff stress tensor as S + S0. Applications
in arterial FSI with prestress and a technique for finding the
prestress can be found in [24,30]. Here, instead of finding a
prestress, we look for a ZS shape, but for each element.

In the method we propose here, we define the ZS state
with a set of positions Xe

0 for each element e. Positions of
nodes from different elements mapping to the same node in
the mesh do not have to be the same. In the reference config-
uration, XREF, all elements are connected by nodes, and we
measure the displacement y from that connected configura-
tion.

The implementation of this method is quite simple.The
deformation gradient tensor F can be evaluated for each ele-
ment:

Fe ≡ ∂x
∂Xe

0
, (2)

= ∂ (XREF + y)

∂Xe
0

. (3)

The deformation gradient tensors for different elements are
on different configurations, but the terms in Eq. (1), including
the second term, do not depend on the orientation. There-
fore the rest of the process is the same as it is in the total
Lagrangian formulation. We call this method the “element-
based total Lagrangian (EBTL)” formulation.

2.2 An iterative method for finding the ZS state for a given
load

One of the objectives of having prestress in arterial FSI com-
putations is that we would like to have a configuration that
matches the target shape under a given load. Here XREF rep-
resents the target shape. Suppose the element-based ZS state
from the i th iteration is (Xe

0)
i . We solve the steady-state struc-

tural mechanics equations with the EBTL formulation and
obtain the displacement yi . If yi is zero, then (Xe

0)
i is the

converged solution. If not, then we follow the process below.
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To explain the process, we first expand the definition of
the deformation gradient tensor F to any two states x and X,
used as function arguments:

F (x, X) = ∂x
∂X

. (4)

We decompose this into rotation R and the right and left
stretch tensors U and V:

F (x, X) = R (x, X) U (x, X) , (5)

F (x, X) = V (x, X) R (x, X) . (6)

The decompositions can be obtained by using the following
equations:

U2 = FT F, (7)

V2 = FFT . (8)

The relationship between the unit vectors a0 and a in the ZS
and target configurations can be expressed as

λaa = Fa0, (9)

where λa is the stretch. Suppose we have the following rela-
tionship at i th iteration:

λi
aai = Fi ai

0, (10)

where ai
0 is an arbitrary unit vector in (Xe

0)
i , and

Fi ≡ F
(
xi , (Xe

0)
i
)
. (11)

We also write a similar relationship between the next-
iteration and target states (Xe

0)
i+1 and XREF:

λaa = Fi+1ai+1
0 , (12)

where ai+1
0 is an arbitrary unit vector in (Xe

0)
i+1, and

Fi+1 ≡ F
(
XREF, (Xe

0)
i+1

)
. (13)

Figure 1 shows the configurations we are working with.
Here we assume

λa = λi
a . (14)

Fig. 1 Configurations we are working with

We write the relationship between the directions in (Xe
0)

i+1

and (Xe
0)

i as follows:

ai
0 = R

(
(Xe

0)
i , (Xe

0)
i+1

)
ai+1

0 . (15)

Now, we also assume that the direction we get from

a = R
(

XREF, xi
)

ai (16)

is the same as the direction given by Eq. (12). Substitut-
ing Eq. (15) into Eq. (10), premultiplying both sides by
R

(
XREF, xi

)
, and using Eqs. (14) and (16), we get

λaa = R
(

XREF, xi
)

Fi R
(
(Xe

0)
i , (Xe

0)
i+1

)
ai+1

0 . (17)

Because ai+1
0 is an arbitrary vector, we obtain the following

relationship from Eqs. (12) and (17):

Fi+1 = R
(

XREF, xi
)

Fi R
(
(Xe

0)
i , (Xe

0)
i+1

)
. (18)

Now, we assume that the following approximation is a rea-
sonable one:

R
(
(Xe

0)
i , (Xe

0)
i+1

)
= I. (19)

Thus,

Fi+1 = R
(

XREF, xi
)

Fi , (20)

and(
Fi+1

)−1 =
(

Fi
)−1

R(xi , XREF), (21)

=
(

Ui
)−1

R((Xe
0)

i , XREF). (22)

With this tensor, we calculate (Xe
0)

i+1 from the target state
XREF.

Remark 1 Inspecting Fi+1, as obtained from Eq. (22):

Fi+1 = R(XREF, (Xe
0)

i )U(xi , (Xe
0)

i ), (23)

we observe that the rotation is based on (Xe
0)

i and XREF, but
the stretch is based on xi and (Xe

0)
i .

In this paper we use hexahedral elements, and we evaluate the
tensors at the element center. With that, we compute explic-
itly as follows:

(Xe
0)

i+1
a − (Xe

0)
i+1

=
(

Uei
)−1

Re((Xe
0)

i , XREF)︸ ︷︷ ︸
Ki

(
(Xe

REF)a − Xe
REF

)
, (24)

with an overbar indicating the element-center value. What
we see in Eq. (24) is that the ZS state is obtained using a
transformation matrix Ki , which gives us only six degrees of
choice, from the target state, which is already set. To increase
the degrees of choice, we propose an alternative method:
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(Xe
0)

i+1
a − (Xe

0)
i+1

= Ki Fe(XREF, (Xe
0)

i )︸ ︷︷ ︸
K̂i

(
(Xe

0)
i − (Xe

0)
i
)

, (25)

= K̂i K̂i−1 · · · K̂1K̂0
(
(Xe

0)
0
a − (Xe

0)
0
)

. (26)

Again the ZS state is obtained using a transformation matrix,
but from the initial guess for the ZS state, which gives us
additional degrees of choice. We note that Eq. (26) is only
for better understanding of the method, and we implement
Eq. (25). We will call the iterations given by Eq. (24), with
direct update from the target state, “direct-update (DU)”
process, and the iterations given by Eq. (25), with recursive
update from the previous iteration, “recursive-update (RU)”
process. The RU process is our preferred method, and unless
specified otherwise, that is what we use in the computations
reported in this paper.

Remark 2 If we do not approximate Eq. (22) by using the
element-center values, the two processes are identical.

3 Modeling of the ZS state for an artery

3.1 Tube shape

We describe a tube-shaped model in the target state with three
lengths: �, h and L . They are the circumferential length at
the arterial-wall center, wall thickness, and the length in the
longitudinal direction. The volume of the tube is

V = �hL . (27)

There are significant properties for an artery beyond having a
target shape under a certain load. One of them is the opening
angle, φ, seen after a longitudinal cut, which we call the “LC
state.”

Remark 3 We note that it is not necessary for the LC state to
be a ZS state.

To describe the LC representation, we define φ as shown
in Fig. 2. With that φ definition, the curvature can be written
as follows:

κ = 2π − φ

�0
, (28)

where the subscript 0 indicates a value at the LC state.

3.1.1 Single-layer model

In this model we assume that the LC state is a ZS state. The
subscripts “I” and “E” indicate values corresponding to the
internal (lumen) and external surfaces. The radii of curvature
are given as follows:

Fig. 2 Straight-tube (le f t) and opening-angle (right) definitions

(rI)0 = (�I)0

|2π − φ| , (29)

(rE)0 = (�E)0

|2π − φ| , (30)

and the thickness is

h0 = |(rE)0 − (rI)0| . (31)

Remark 4 We note that the expressions provided by Eqs. (29)
and (30) give infinite radii for φ = 2π .

The volume of the LC state is

V0 = 2π − φ

2

(
(rE)2

0 − (rI)
2
0

)
L0, (32)

= 2π − φ

2
((rE)0 − (rI)0) ((rE)0 + (rI)0) L0, (33)

= �0h0L0, (34)

where

�0 = (�E)0 + (�I)0

2
. (35)

Remark 5 We note that the expression given by Eq. (34) is
applicable also for φ = 2π .

In the process of creating Xe
0, φ is specified based on data,

and the longitudinal stress, λz = L
L0

, is specified based on

values from the literature. We iterate on the value of �0 to
match � by solving the structural mechanics equations, and h0

is a dependent parameter from the material incompressibility,
which is enforced through Eqs. (27) and (34).

We introduce the parametric coordinate −1 ≤ η ≤ 1, and
have the following linear relationship in the ZS state:

�0(η) = (�I)0
1 − η

2
+ (�E)0

1 + η

2
, (36)

= �0 + Δ�0

2
η, (37)

where

Δ�0 = (�E)0 − (�I)0 , (38)

= (2π − φ) h0. (39)

123



Comput Mech (2014) 54:895–910 899

From the material incompressibility we write

2πrdr L = �0dη
h0

2
L0. (40)

Integrating both sides, we obtain

π
(

r2−r2
I

)
L = h0

2 L0

(
�0(η+1)+ Δ�0

4

(
η2 − 1

))
. (41)

We solve this for η:

η = 2

√(
�0 − Δ�0

2

)2 + Δ�0
2π

(
r2−r2

I

)
L

h0 L0
− �0

Δ�0
, (42)

= 2
−�0 + Δ�0

4 + 2π
(
r2−r2

I

)
L

h0 L0√(
�0 − Δ�0

2

)2 + Δ�0
2π

(
r2−r2

I

)
L

h0 L0
+ �0

, (43)

= 2
2

r2−r2
I

r2
E−r2

I
+ Δ�0

4�0
− 1

√(
1 − Δ�0

2�0

)2 + 2Δ�0
�0

r2−r2
I

r2
E−r2

I
+ 1

. (44)

Equation (44) is applicable also for φ = 2π . We introduce
−π ≤ θ ≤ π in the circumferential direction. Because of
the circular symmetry in the deformed state, including the
strain, the angle in the LC state can be written as

θ0 = 2π − φ

2π
θ. (45)

We cannot use this expression for elements crossed by θ =
±π , and therefore we rearrange the mapping as

θe
0 = 2π − φ

2π

(
θ − θe

)
, (46)

and that avoids θ = ±π crossing the element. Here θe is the
angle for the element center.

With the parameter set (η, θ, z), we have the mapping

Xe
0 = h0

2
ηer (0) + �0

2

θ

π
eθ (0) + z

λz
ez (47)

for φ = 2π , and otherwise

Xe
0 =

(
�0

2π − φ
+ h0

2
η

)
er

(
θe

0

)

−
(

�0

2π − φ

)
er (0) + z

λz
ez, (48)

= �0

2π − φ

(
er

(
θe

0

) − er (0)
)

+h0

2
ηer

(
θe

0

) + z

λz
ez . (49)

Because Eq. (49) is not valid for φ → 2π , we rearrange the
first term as

�0

2π − φ

(
er

(
θe

0

) − er (0)
) = �0

2π − φ

[
cos

(
θe

0

) − 1
sin

(
θe

0

)
]

,

(50)

and approximate it by a Taylor series expansion:

�0

2π − φ

(
er

(
θe

0

) − er (0)
)

≈ �0

2π − φ

⎡
⎣

(
θe

0

)2
(
− 1

2 + 1
24

(
θe

0

)2
)

θe
0

(
1 − 1

6

(
θe

0

)2
)

⎤
⎦

= �0

2π

(
θ − θe

)
⎡
⎣θe

0

(
− 1

2 + 1
24

(
θe

0

)2
)

(
1 − 1

6

(
θe

0

)2
)

⎤
⎦ . (51)

This form is valid for φ = 2π , and if |φ − 2π | < 2×10−4,
the error in the approximation is within 10−16. Thus, Eq. (49)
and its approximation by Eq. (51) can be used for creating
Xe

0.

3.1.2 Three-layer model

We extend the single-layer model to a three-layer model. We
assume that the three layers are in a ZS state after they are
separated. Then each layer has its own opening angle φi , and
we can simply use the single-layer model to create Xe

0. We
also assume that the model has an opening angle φ in the LC
state, prior to the separation of the three layers. However, this
angle cannot be specified directly. It can be matched itera-
tively by introducing an angle φ, which is related, by Eq. (39),
to Δ�0 indicated in Fig. 3. With that, we can calculate

(
�i

)
0

as follows:

-1 0 1

Fig. 3 Three-layer model. Circumferential length as function of η
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(
�i

)
0 = �0 + Δ�0

2
ηi , (52)

where ηi is the parametric coordinate of the center of the i th
layer:

ηi = 2

h0

(
i−1∑
k=1

(hk)0 + 1

2
(hi )0

)
− 1. (53)

In the process of creating Xe
0, (λz)i is specified as before,

and φi and (hi )0
h0

are also specified. We iterate on the values of

�0 and φ to match � and φ by solving the structural mechanics
equations, and h0 is again a dependent parameter. While this
is now a two-dimensional search, we know that φ depends
mostly on φ, and less on �0.

3.2 Arbitrary shape

We define centerlines for the artery. We can obtain the center-
lines by using Vascular Modeling Toolkit [50]. A centerline
consists of straight-line segments.

We first calculate the positions of the centerline nodes
along the artery from the inlet, and this is the z-coordinate.
We also introduce the basis vector er (0) orthogonal to the
centerline, noting that the argument “0” is for θ = 0.

We define the basis vectors from the inlet to the outlet
sequentially. First we pick a basis vector at the inlet, and
rotate it as we move along the centerline to make it perpen-
dicular to the centerline segments.

With what we have from above, we define the following
parameters for each element node: z, θ, r, rmin, and rmax. If
there are branches, for each element we choose the closest
one among the centerlines. We define rmin and rmax for each
node as the coordinates of the closest internal and external
surface positions, respectively. These are used for defining
the mapped radius r̂ as follows:

r̂ = rI + r − rmin

rmax − rmin
(rE − rI) , (54)

where rI and rE are tube internal and external surface radii.
These do not need to match rmin and rmax. They are calcu-
lated from the centerline nodal values by interpolation at the
projection point of the artery node. The centerline nodal val-
ues are calculated from the cross-sectional areas over planes
orthogonal to the centerline at the centerline nodes. The
orthogonality direction for a node is defined by averaging
the orthogonality directions for the adjacent segments. With
r̂ , we obtain the tube position xT as follows:

xT = r̂er (θ) + zez . (55)

To construct the ZS state, we use either the single-layer
or three-layer model. For example, in the case of the single-
layer model, we first choose φ and λz and find the proper �0

and h0 from the straight-tube solution (described in Sect. 4),

Fig. 4 Artery (top le f t), straight tube (top right), ZS state of the
straight tube (bottom right), and ZS state of the artery (bottom le f t)

Fig. 5 Mesh for the single-layer model

then we map r̂ to η by Eq. (44), and then we use Eq. (49) to
obtain (Xe

0)T. After that, we pull (Xe
0)T back onto the actual

configuration with mappings similar to those in Sect. 2.2.
Figure 4 shows the configurations of the process.

To pull (Xe
0)T back, we again start with the following

assumption:

F
(
x, (Xe

0)
)=R (x, xT) F

(
xT, (Xe

0)T
)

R
(
(Xe

0)T, Xe
0

)
. (56)

Then we obtain
(
F

(
x, (Xe

0)
))−1

= R
(
Xe

0, (X
e
0)T

) (
F

(
xT, (Xe

0)T
))−1 R (xT, x) , (57)
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Table 1 Single-layer model. First two values of α and the number of
binary-search iterations, nb

φ α1 α2 nb

(a) λz = 1.0

13π/6 0.8 0.85 6

7π/3 0.8 0.85 7

5π/2 0.8 0.85 7

8π/3 0.8 0.85 7

(b) λz = 1.1

13π/6 0.9 0.95 6

7π/3 0.9 0.95 6

5π/2 0.9 0.95 7

8π/3 0.9 0.95 6

(c) λz = 1.2

13π/6 1.0 1.05 5

7π/3 1.0 1.05 5

5π/2 1.0 1.05 5

8π/3 1.0 1.05 5

(d) λz = 1.3

13π/6 1.1 1.15 4

7π/3 1.1 1.15 5

5π/2 1.1 1.15 5

8π/3 1.1 1.15 5

(e) λz = 1.4

13π/6 1.2 1.25 5

7π/3 1.2 1.25 5

5π/2 1.2 1.25 5

8π/3 1.2 1.25 6

(f) λz = 1.5

13π/6 1.3 1.35 6

7π/3 1.3 1.35 6

5π/2 1.3 1.35 6

8π/3 1.3 1.35 6

again assume R
(
Xe

0, (X
e
0)T

) = I, and obtain

(
F

(
x, (Xe

0)
))−1 = (

F
(
xT, (Xe

0)T
))−1 R (xT, x) . (58)

We obtain(Xe
0)a from xe

a as follows:

(Xe
0)a − Xe

0 = (
Fe

(
xT, (Xe

0)T
))−1

Re (xT, x)
(
xe

a − xe
)
.

(59)

An alternative way of obtaining Xe
0 is using the following

relationship:
(
F

(
x, (Xe

0)
))−1 F

(
x, (Xe

0)T
)

= (
F

(
xT, (Xe

0)T
))−1 R (xT, x) F

(
x, (Xe

0)T
)
, (60)

F
(
(Xe

0), (X
e
0)T

)
= F

(
(Xe

0)T, xT
)

R (xT, x) F
(
x, (Xe

0)T
)
, (61)

= V
(
(Xe

0)T, xT
)

U
(
x, (Xe

0)T
)
, (62)

and calculating as follows:

(Xe
0)a − (Xe

0)

= Ve
(
(Xe

0)T, xT
)

Ue
(
x, (Xe

0)T
) (

((Xe
0)T)a − ((Xe

0)T)
)

.

(63)

We use Xe
0 as the initial guess for the iterations described in

Sect. 2.2. Our preferred mapping is the one given by Eq. (63),
and that is what we use in the computations reported in this
paper.

4 Test computations

The arterial wall is modeled with the continuum element
made of hyperelastic (Fung) material. The Fung material
constants D1 and D2 (from [51]) are 2.6447×103 N/m2 and
8.365, and the penalty Poisson’s ratio is 0.45. We set constant
pressure p0 = 92 mm Hg.

We use the steady-state formulation. The boundary condi-
tion at the tube ends is free displacement in the radial direc-
tion from the centroid of those ends.

4.1 Straight tube

The target artery shape has 10 % thickness ratio, πh/�I, and
longitudinal-length ratio π L/�I = 3. We note that the solu-
tion depends on D1/p0 and the thickness ratio, but not on the
diameter or the longitudinal-length ratio. For the test com-
putations, we define a parameter α:

�0 = α�I. (64)

In the following test computations, we consider φ and λz as
given. We assume the α that gives 10 % thickness ratio after
the structural mechanics computation is the proper α. Based
on this assumption, we iterate on α using a binary-search-like
method. First we compute with two given α: α1 and α2, and
update α with the formula

αi+1 = αc + α+ − α−

�+
I − �−

I

(
�I − �c

I

)
, (65)

where − and + indicate the solutions closest to �I approached
from below and above among the set of all solutions, and c
is the closest one among the two. When

∣∣αc − αi
∣∣ ≤ 10−5,

we consider the iterations converged.
Since we use a penalty form of the incompressibility con-

straint, we do not have the exact volume conservation. There-
fore we adjust h0 such that we have the correct volume at the
target state. Within the iterations above, we adjust the thick-
ness as follows:
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Fig. 6 Single-layer model. Converged values of α

Fig. 7 Single-layer model. Circumferential prestretch introduced by
the element-based ZS state for λz = 1.0. Markers are the integration-
point values and the curves are after least-squares projection on to the
nodes

h j+1
0 = V

V j
h j

0, (66)

where V and V j are the volumes of the target and the j th
solution, respectively. The initial value of h0 is set based on
the volume conservation (V0 = V ) with Eq. (34), and we do
this adjustment three times for each αi .

In this paper, we present test computations for given values
of φ = 13π/6, 7π/3, 5π/2, and 8π/3. For each opening
angle, we consider λz = {1.0, 1.1, . . . , 1.5}. So, we have a
total of 24 test cases.

Fig. 8 Single-layer model. Actual cut angle, φsol

Fig. 9 Single-layer model. For the case λz = 1.0, circumferential
stretch for the LC state

4.1.1 Single-layer model

The number of elements in the thickness, circumferential and
longitudinal directions are 4, 180 and 6, respectively. The
mesh is shown in Fig. 5. In solving the steady-state structural
mechanics equations, the number of nonlinear iterations is
75, and the number of GMRES [52] iterations per nonlinear
iteration is 200. The values of α1 and α2, and the number of
binary-search iterations, nb, are shown in Table 1.

Figure 6 shows the converged values of α. From Fig. 6,
we can see that α has a rather weak dependence on φ, and it
is determined almost entirely by λz . We represent the rela-
tionship between φ, λz and α with the following expression
obtained by least-squares fit:
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Table 2 Thickness ratios and opening angles. Figure 3 was generated
from this data

i φi (hi )0/h0

1 2π/9 0.2252

2 3π 0.4572

3 2π 0.3176

Fig. 10 Mesh for the three-layer model

α=(0.011φ+1.887)
(

0.807λ2
z −1.496λz +1.171

)
. (67)

Figure 7 shows the circumferential prestretch, λθ , intro-
duced by the element-based ZS state. Figure 8 shows the
actual cut angle, φsol, obtained from the computation based
on the ZS state. It is clear that φsol is the same as the specified
φ, and therefore the following relationship holds:

φsol = φ. (68)

Figure 9 shows, for the case λz = 1.0, the circumferential
stretch for the LC state, and the constant value of 1.0 is also
consistent with what we expect to see in the LC state. With
Eqs. (67) and (68), we can model the ZS state for an arbitrary
shape with single layer.

In solving the steady-state structural mechanics equations
for the LC state, the number of nonlinear iterations is 200,
and the number of GMRES iterations per nonlinear iterations
is 1,000.

Table 3 Three-layer model. First two values of α and the number of
binary-search iterations, nb

φ α1 α2 nb

(a) λz = 1.0

13π/6 0.9 1.0 5

7π/3 0.9 1.0 6

5π/2 0.9 1.0 7

8π/3 0.9 1.0 6

(b) λz = 1.1

13π/6 1.0 1.1 5

7π/3 1.0 1.1 5

5π/2 1.0 1.1 5

8π/3 1.0 1.1 4

(c) λz = 1.2

13π/6 1.05 1.15 5

7π/3 1.05 1.15 5

5π/2 1.05 1.15 5

8π/3 1.05 1.15 5

(d) λz = 1.3

13π/6 1.1 1.2 5

7π/3 1.1 1.2 5

5π/2 1.1 1.2 6

8π/3 1.1 1.2 5

(e) λz = 1.4

13π/6 1.2 1.3 5

7π/3 1.2 1.3 5

5π/2 1.2 1.3 5

8π/3 1.2 1.3 5

(f) λz = 1.5

13π/6 1.3 1.4 6

7π/3 1.3 1.4 7

5π/2 1.3 1.4 6

8π/3 1.3 1.4 6

4.1.2 Three-layer model

To construct the three-layer model, we also need the thickness
ratio and opening angle for each layer at the ZS state. We use
experimental data [47] for that, which is shown in Table 2.
The number of elements in the thickness, circumferential
and longitudinal directions are 9, 180 and 6, respectively.
The mesh is shown in Fig. 10.

Just like in the single-layer model, we iterate on α. In
solving the steady-state structural mechanics equations, the
number of nonlinear iterations is 100, and the number of
GMRES iterations per nonlinear iteration is 200. The values
of α1, α2 and nb are shown in Table 3.

Figure 11 shows the converged values of α, and the pre-
stretch is shown in Fig. 12. From Fig. 11, we can see that α

is almost independent of φ, like in the single-layer model.
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Fig. 11 Three-layer model. Converged values of α

Fig. 12 Three-layer model. Circumferential prestretch introduced by
the element-based ZS state for λz = 1.0. Markers are the integration-
point values and the curves are after least-squares projection on to the
nodes

We represent the relationship between φ, λz and α with the
following least-squares fit:

α=(
0.008φ+1.897

) (
0.811λ2

z −1.503λz +1.176
)

. (69)

As we can see, Eqs. (67) and (69) are very close. Figure 13
shows the actual cut angle obtained from the computation
based on the ZS state. As expected, φsol is not equal to φ.
We represent the relationship between φ, λz and φsol with
the following least-squares fit:

φsol = (
φ − 7.968

)
(0.049λz + 0.759) + 7.943. (70)

Fig. 13 Three-layer model. Actual cut angle, φsol

Fig. 14 Three-layer model. For the case λz = 1.0, circumferential
stretch in the LC state

Figure 14 shows, for the case λz = 1.0, the circumferential
stretch for the LC state. With Eqs. (69) and (70), we can
model the ZS state for an arbitrary shape with three layers.

In solving the steady-state structural mechanics equations
for the LC states with three layers, the number of nonlinear
iterations is 300, and the number of GMRES iterations per
nonlinear iterations is 1,000.

4.2 Arbitrary shape: a curved tube

We use a curved-tube shape as the target shape, shown in
Fig. 15. The tube is based on 1/12 of a torus with radius of
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Fig. 15 A curved tube. Cross-sectional views at the tube center (left)
and perpendicular to er (0) (right)

Table 4 A curved tube. Number of iterations to obtain Xe
0

λz = 1.0 λz = 1.2

φ = π/2 16 13

φ = 5π/2 19 13

curvature 5.8 rI. The resulting length along the centerline is
L = 3.037 rI. The thickness ratio is 10 %.

To obtain the ZS shape, we use the single-layer model
and the results obtained in Sect. 4.1.1. For given φ and λz ,
we use Eq. (67) to obtain α, and then obtain �0 by Eq. (64).

Fig. 16 A curved tube. For the case φ = π/2 and λz = 1.0, the
longitudinal prestretch introduced by (Xe

0)
0

Fig. 17 A curved tube. For the case φ = π/2 and λz = 1.2, the
longitudinal prestretch introduced by (Xe

0)
0

Fig. 18 A curved tube. For the case φ = 5π/2 and λz = 1.0, the
longitudinal prestretch introduced by (Xe

0)
0

Fig. 19 A curved tube. For the case φ = 5π/2 and λz = 1.2, the
longitudinal prestretch introduced by (Xe

0)
0
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Fig. 20 A curved tube. For the case φ = π/2 and λz = 1.0, the
longitudinal prestretch introduced by Xe

0

Fig. 21 A curved tube. For the case φ = π/2 and λz = 1.2, the
longitudinal prestretch introduced by Xe

0

Fig. 22 A curved tube.For the case φ = 5π/2 and λz = 1.0, the
longitudinal prestretch introduced by Xe

0

Fig. 23 A curved tube. For the case φ = 5π/2 and λz = 1.2, the
longitudinal prestretch introduced by Xe

0

Fig. 24 A curved tube. Cutting locations θc = −π/2, 0, π/2

Fig. 25 A curved tube. LC state for the case φ = π/2 and λz = 1.0.
The lumen is colored red, and the cut edge, θc = 0, orange. (Color
figure online)

We choose the basis vector er (0) as shown in Fig. 15, and it
is constant along z in the tube coordinates system.

We have a total of 4 test cases; φ = {π/2, 5π/2} and λz =
{1.0, 1.2}. The mesh consists of 14,400 hexahedral elements
with 18,900 nodes. The number of elements in the thickness,
circumferential and longitudinal directions are 4, 180 and
20, respectively.

4.2.1 ZS state

With the initial ZS state (Xe
0)

0, we iterate using the method
described in Sect. 2.2, until the L2 norm‖y/rI‖ is less than
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Fig. 26 A curved tube. LC
state for the case φ = 5π/2 and
λz = 1.0. The lumen is colored
red, and the cut edge, θc = 0,
orange. (Color figure online)

Fig. 27 A curved tube. Opening-angle comparison for the cutting loca-
tion φc = π/2, for the case φ = π/2 and λz = 1.0

10−5. In solving the steady-state structural mechanics equa-
tions for each iteration, the number of nonlinear iterations is
8, and the number of GMRES iterations per nonlinear itera-
tion is 300. The number of iterations to obtain the converged
solution for each case is given in Table 4.

We inspect the longitudinal prestretch, λz , as a function
of η. As can be seen in Figs. 16, 17, 18 and 19, the prestretch
introduced by (Xe

0)
0 matches the specified prestretch very

well. That is because the mapping that gives us (Xe
0)

0, which
is represented by Eq. (63), was designed with the objective
to match the specified longitudinal prestretch. On the other
hand, the prestretch introduced by Xe

0, shown in Figs. 20, 21,
22 and 23, is close to the specified prestretch but does not

Fig. 28 A curved tube. Opening-angle comparison for the cutting loca-
tion φc = π/2, for the case φ = π/2 and λz = 1.2

Fig. 29 A curved tube. Opening-angle comparison for the cutting loca-
tion φc = π/2, for the case φ = 5π/2 and λz = 1.0

match it. That is because the objective in the iterations that
give us Xe

0 is to match the target shape.

4.2.2 LC state

The LC state for the arbitrary shape depends on the cutting
location. We test three locations: θc = −π/2, 0, π/2, which
are shown in Fig. 24. We compute the LC state with the
initial guess coming from the slit target shape, with zero
pressure. We solve the structural mechanics problem based
on the steady-state equations, using 288 nonlinear iterations.
The number of GMRES iterations per nonlinear iteration is
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Fig. 30 A curved tube. Opening-angle comparison for the cutting loca-
tion φc = π/2, for the case φ = 5π/2 and λz = 1.2

Fig. 31 A curved tube. Opening-angle comparison for all three cutting
locations, for the case φ = π/2 and λz = 1.0

100 for the first 80 nonlinear iterations, 500 for the next 80,
and 1,500 for the last 128.

Figures 25 and 26 show examples of the LC state. We
compare the DU and RU processes by checking the open-
ing angle as a function of z. For that, we define an open-
ing angle for each layer of elements in the z direction. For
each layer, the opening angle is calculated by summing the
angles between the two faces of each column of elements in
the thickness direction, and subtracting that from 2π . The
unit vector associated with each face is calculated by area-
weighted averaging of the unit vectors associated with the
contributing element faces. Figures 27, 28, 29 and 30 show
the opening angle for the cutting location θc = π/2, obtained

Fig. 32 A curved tube. Opening-angle comparison for all three cutting
locations, for the case φ = π/2 and λz = 1.2

Fig. 33 A curved tube. Opening-angle comparison for all three cutting
locations, for the case φ = 5π/2 and λz = 1.0

from the ZS state given by (Xe
0)

0 and by Xe
0 computed with

the DU and RU processes.
In evaluating the performance of the methods, the opening

angle we are targeting is the one obtained from the ZS state
given by (Xe

0)
0. We note that, because of the mapping from

(Xe
0)T to (Xe

0)
0, that opening angle cannot be expected to

match the specified opening angle. As can be seen from Fig-
ures 27, 28, 29 and 30, the opening angle obtained from Xe

0
computed with the RU process is closer to the target opening
angle. Figures 31, 32, 33 and 34 show the opening angle for
all three cutting locations.
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Fig. 34 A curved tube. Opening-angle comparison for all three cutting
locations, for the case φ = 5π/2 and λz = 1.2

5 Concluding remarks

We have presented a method for estimation of element-based
ZS state in arterial FSI computations. Using the ZS state in
the computations takes into account the fact that in patient-
specific arterial FSI modeling the image-based arterial geom-
etry comes from a configuration that is not stress-free. The
method has three components. The first component is an iter-
ative method, which iterates on the ZS state to match the
image-based target shape for a given pressure load. The ini-
tial guess needed for the iterations is generated by the second
component, which is a method for straight-tube geometries
with single and multiple layers. The element-based ZS state
for the straight tube is computed to match the given diam-
eter and longitudinal stretch in the target configuration and
the opening angle. The opening angle, which is related to the
circumferential residual stress and treated as part of the given
data, is measured by cutting the arterial wall open. The third
component is an element-based mapping between the arterial
and straight-tube configurations. It is for mapping from the
arterial configuration to the straight-tube configuration, and
for mapping the estimated ZS state of the straight tube back
to the arterial configuration, so that it can be used as the initial
guess for the iterative method that matches the image-based
target shape. We carried out a number of test computations
with the method to show how it works. The test computa-
tions were based on straight-tube configurations with single
and three layers, and a curved-tube configuration with single
layer. The test computations support our belief that we have
a good method for estimation of element-based ZS state.
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