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Abstract The meshless Shepard and least squares (MSLS)
method and the meshless Shepard method are partition of
unity based meshless interpolations which eliminate the
problems by other meshless methods such as the difficulty in
direct imposition of the essential boundary conditions. How-
ever, singular weight functions have to be used in both meth-
ods to enforce the approximation interpolatory, which leads
to the loss of smoothness in approximation and locally oscil-
latory results. In this paper, an improved MSLS interpolation
is developed by using dually defined nodal supports such that
no singular weight function is required. The proposed inter-
polation satisfies the delta property at boundary nodes and
the compatibility condition throughout the domain, and is
capable of exactly reproducing the basis function. The com-
putational cost of the present interpolation is much lower than
the moving least-squares approximation which is probably
the most widely used meshless interpolation at present.
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1 Introduction

In the past decade, meshless methods have benefited from
much theoretical development and engineering application,
since they offer the possibility of a discretised approach
without meshing, a major overhead in the finite element
method (FEM). A wide variety of meshless methods have
been proposed as outlined in recent surveys [1–3]. Remark-
able successes have been reported in applying these meth-
ods for analyzing challenging engineering problems, namely,
fracture modelling [4–12], plate problems [13], finite defor-
mation problem [14,15], fluid struction interaction [16]
consolidation problem [17], dynamic simulation [18–20],
three-dimensional problems [21,22], topology-optimization
of structures and thermodynamic analysis, where laborious
preprocessing involved in the FEM is avoided.

As concluded in [3] the difference between the various
meshless methods is in the type of approximations used
in obtaining the shape functions. Some widely used mesh-
less approximations are the moving least-squares (MLS)
approximation, Shepard shape functions, partition of unity
(PU), radial basis functions (RBF), reproducing kernel parti-
cle approximation (RKPA) [23,24], point interpolation (PI)
and Kriging interpolation (KI) and a generalized meshless
approximation [25]. The MLS approximation [26] is proba-
bly the most widely used meshless approximation at present
due to its advantages of field continuity in a global sense,
completeness of approximation and robustness of calcula-
tion results. However, the MLS approximation suffers from
a number of problems that practically limit its application,
namely the high computational cost in obtaining the shape
functions and also their derivatives, the retention of accu-
racy with respect to nodal arrangement and the difficulty
with which essential boundary conditions can be imposed
due to the lack of the Kronecker delta property. Efforts have
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been made to address these problems by various means in the
past. In [27], explicit expressions are proposed for computing
shape functions and diffuse derivatives of shape functions by
assuming some terms constant and complete derivatives of
shape functions. However, these formulations are restricted
to certain nodal arrangements and have to be derived sep-
arately when the number of nodes in support changes, and
the formulation grows unwieldy when there are a large num-
ber of nodes in support. In [28], the use of the orthogonal
basis function in the element-free Galerkin (EFG) method
is investigated in terms of the solution accuracy and nodal
arrangement. To remove the difficulty in imposing the bound-
ary conditions, singular weight functions are introduced in
[29] to produce an interpolatory MLS approximation. In [30],
a method for direct imposition of essential boundary con-
ditions is proposed to reform the global stiffness matrix by
using a transformation matrix to enforce boundary nodes tak-
ing nodal values. All these above describe efforts that help to
alleviate the problems, however none are capable of dealing
with the problems satisfactorily without the loss of generality
in the formulation.

On the other hand, researchers have also started to explore
the possibility of new meshless interpolations using Shepard
shape functions, the lowest order form of the MLS shape
functions. Unfortunately, the results are of low accuracy if
Shepard shape functions are directly used because they have
only zeroth order continuity. There have been some efforts
devoted to the construction of high order consistent interpo-
lation using Shepard shape functions. For example, a con-
sistent pseudo-derivative is proposed in [31] which can pre-
serve the linear consistency of interpolation approximation
by linearly combining the derivatives of Shepard functions
together. In [32], an octree partition of unity method was
developed by using the data structures of octrees and Shep-
ard shape functions as a PU. Griebel and Schweitzer [33–35]
proposed a particle-PU method by employing a localized ver-
sion of Shepard’s method. These methods are generally more
efficient than some existing meshless methods, and show a
high rate of convergence and accuracy. However, none pro-
vides a direct solution for dealing with the essential bound-
ary conditions. In contrast, the recently developed meshless
Shepard least squares (MSLS) method [36] and the meshless
Shepard (MS) method [37] satisfactorily maintain the con-
sistency of the approximations up to the order of the basis
functions and also satisfy the Kronecker delta property. How-
ever, singular weight functions have to be used to enforce the
shape function to be interpolatory, which results in the loss of
smoothness of the interpolation and results become locally
oscillatory around the node where singular weight functions
are employed.

In this paper, an improved PU-based MSLS interpolation
possessing the delta property without using singular weight
functions is developed. The support domains at the nodes are
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Fig. 1 Dual support domains of nodes (an interior node I with identical
local and global PU support domains, and node J with differing local
and global PU support domains)

dually defined for local approximation and for the global PU.
The present interpolation is capable of exactly reproducing
any function which appears in the basis.

The content of the paper is outlined as follows. In Sect. 2,
the formulation of the interpolation is described in detail
including the local approximation and nodal support domain
with dual definitions. The Kronecker delta property, com-
pleteness property, compatibility property, and computa-
tional efficiency of the interpolation are analyzed and dis-
cussed in Sect. 3. The discretised formulation of the present
interpolation is derived using the Galerkin weak form in
Sect. 4 followed by numerical tests demonstrating the con-
vergence characteristics and accuracy in Sect. 5.

2 Formulation of the improved MSLS interpolation

In this section, the improved meshless Shepard least squares
(IMSLS) interpolation is described in detail. We start with the
description of the formulation using a 2D problem domain
of arbitrary geometry as shown in Fig. 1. The formulation
is described for the interpolation in elastostatics, with the
fundamental field variable where uI and vI are the nodal
displacements in the x and y directions respectively. The
interpolation for the x-displacement at an arbitrary point x =
{x, y} inside the domain is expressed as

u(x) =
n∑

I=1

φI (x) ul
I (x), (1)

where {φI (x) , I = 1, . . . , n} is a set of shape functions that
forms a partition of unity, i.e.

∑n
I=1 φI (x) ≡ 1; I is the node

index and n is the number of the nodes for which the supports
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Fig. 2 Curve fittings for f (x) = sin [(x − 0.2) π] using different
approximations

rcI include point x as shown in Fig. 2; ul
I(x) here is not the

nodal displacement in the FEM or the ‘fictitious’ nodal values
in the MLS-based EFG method [1] but the local approxima-
tion at node I where the superscript l indicates local. Shepard
shape functions are used as the PU given by

φI (x) = wI(x)
n∑

J=1
wJ(x)

, (2)

where wI (x) is the weight function of node I as in the origi-
nal paper on the MSLS interpolation [36]. The construction
of the IMSLS interpolation proceeds as follows: firstly, the
construction of a local approximation at each node; and sec-
ondly the application of a PU approximation over the local
approximation to interpolate at a point x inside the domain.
The definition of nodal support and the construction of local
approximations at a node will be described in detail in the
following.

2.1 The local approximation at a node

The local approximation ul
I (x) at an arbitrary node I is given

by

ul
I (x) =

M∑

J=1

ψ̄ I
J (x) u J , (3)

where u J is the nodal displacement for the J th node in sup-
port of I , M is the total number of nodes falling inside the
local cover node I which is the grey circle marked with lI in
Fig. 1. ψ̄ I

J (x) is given as

{
ψ̄ I

J (x) = ψ I
J (x)− ψ I

J (xI ) , for J �= I ,

ψ̄ I
J (x) = ψ I

J (x)− ψ I
J (xI )+ 1, for J = I ,

(4)

in which ψ I
J (x) is the modified least square shape function

of node J at node I and is calculated by the following

ψI (x) = [
ψ I

1 (x) ψ
I
2 (x) . . . ψ

I
M (x)

] = pT (x)A−1B. (5)

Here, p (x) = [p1 (x) , p2 (x) , . . . , pm (x)]T is a polyno-
mial basis, and m is the number of monomials in the basis.
In the following development of the IMSLS interpolation,
we will use a bilinear basis throughout in 2D, i.e. pT (x) =
[1, x, y, xy]. Matrices A and B in Eq. (5) are expressed as

B = PT =

⎡

⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xM

y1 y2 · · · yM

x1 y1 x2 y2 · · · xM yM

⎤

⎥⎥⎦ , (6)

and

A = PT · P, (7)

respectively. It can be seen from Eq. (4) that ψ̄ I
I (xI ) = 1,

ψ̄ I
J (xI ) = 0 (J �= I ) and

M∑
J=1

ψ̄ I
J (x) = 1. Thus

ul
I (xI ) = uI . (8)

It has been shown in [37] that if a singular weight function
is used for wI (x) in the PU function of Eq. (2), the approx-
imation in Eq. (1) will become interpolatory i.e. satisfying
the delta property. A similar approach has been previously
used by Kaljevic and Saigal [29] to make the MLS approx-
imation interpolatory. However, the use of singular weight
functions brings some problems such as the loss of smooth-
ness in the approximation in a global sense as will be shown
in the following sections.

2.2 Dual support domain of a node

The support domain of a node is the area where a node exerts
influence on the field variable. In this paper it is defined as a
circle centered at the node as shown in Fig. 1 although it may
take any other shape such as a rectangle. Here dual support
domains are defined at each node such that one is used in the
construction of the local approximation and the other used
in the PU approximation. In Fig. 1, for example, two support
domains are associated with node I , namely a local support
domain used in the local approximation, denoted as�l

I with
radius rl I , and a PU support domain for global approxima-
tion, denoted as �I with radius rcI . For the construction of
the local approximation, if a node falls inside the local sup-
port �l

I as shown in Fig. 1 (for node K), then node K will
be involved in constructing the local approximation at node
I . For the PU approximation, if a point say x in Fig. 1, is
contained in �I , then the local approximation of the node,
i.e., ul

I (x) will be used to approximate the field value at x.
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For an arbitrary node, such as node I in Fig. 1, the size of
�l

I is defined by

rcI = a · b · dI , (9)

where a is a scale factor that ranges between 1.0 and 2.0, b is
a coefficient such that b = 2 for a node lying on the boundary
and b = 1 for all other nodes, and dI is the distance between
I and the fifth nearest neighbour node to I . Equation (9) is
repeated for every node in the analysis. The choice of the
fifth closest node is due to both the requirement of minimum
nodes in support for the construction of shape functions and
avoiding ill-conditioning in calculating the shape functions.
When a linear basis is used, three nodes are required at least
according to Eqs. (5) and (6). From our experiences, five
nodes are normally sufficient for a regular nodal distribution
using the linear basis.

For a node having its local support domain completely
inside the domain, for example the subdomain �l

I of node I
in Fig. 1, the size of �I is the same as �l

I so that

rcI = rl I . (10)

For a node having is local support domain close to or inter-
secting the boundary, for example node J shown in Fig. 1, the
definition of subdomain follows these steps. Firstly, find the
nearest boundary node to J among the neighbor nodes which
belongs to �l

I , and secondly calculate the distance between
the nearest boundary node and J , denoted as dJ and then set
the size of �J as

rcJ = 0.99dJ . (11)

If we want the approximation to take nodal values at the
nodes, the size of the dJ can be taken as the distance between
the J and its nearest node for every node J . In all the test
examples in the paper, the following quartic spline function
is used as the weight function over the support domain in
Eq. (2)

wI (x) =

⎧
⎪⎨

⎪⎩

1 − 6
(

rI
rcI

)2 + 8
(

rI
rcI

)3 − 3
(

rI
rcI

)4
, rI ≤ rcI ,

0 rI > rcI ,

,

(12)

where rI = ‖x − xI ‖ is the distance between the point x and
node I , and xI is the coordinate of node I . For comparisons,
the following singular weight function is also tested

w
sg
I (x) =

(
rI

rcI

)2

cos2
(
π

rI

rcI

)
, (13)

and where it is used in the following it is specifically pointed
out. The aim of separately defining local domains and sup-
port domains is to produce IMSLS interpolations having the
delta property without using a singular weight, so that the dif-
ficulties associated with the use of singular weight functions

can be removed. This aim is achieved here if the domain for
local approximation and domain for PU are defined by the
method described above as will be proved in the following
section.

3 Properties

3.1 Delta property at a node

Suppose essential boundary conditions are to be applied at a
boundary node K and the support domains of the nodes are
set according to Eqs. (10) and (11), then node K will be the
only node contained in �K . Thus the IMSLS interpolation
in Eq. (1) at xK becomes

uh(xK ) =
n∑

I=1

φI (xK ) ul
I (xK ) = φK (xK ) ul

K (xK ) . (14)

As there is only one node in the PU, then Eq. (2) becomes

φK (xK ) = wK (xK )
n∑

J=1
wJ (xK )

= wK (xK )

wK (xK )
= 1. (15)

It is known by Eq. (8) that the local approximation ul
K (xK )

at node K satisfies

ul
K(xK ) = uK . (16)

Substituting Eqs. (14) and (15) into (13) gives

uh(xK ) = ul
K (xK ) = uK . (17)

Hence, the present IMSLS interpolation takes nodal values at
boundary nodes, and essential boundary conditions or point
load conditions can be directly imposed as in the FEM.

3.2 Completeness property

The Shepard function φI (x) in Eq. (2) is the lowest order
MLS shape functions and has only zeroth-order consistency,
i.e. only a constant strain field can be exactly reproduced by
the Shepard function. In contrast, the IMSLS interpolation
in Eq. (1) is capable of exactly reproducing any function
which appears in the basis of p(x) in Eq. (5). The present
interpolation also preserves the order of completeness up to
the order of basis function as is proved in the following.
Suppose that the field over the cover of a node conforms to a
given function, take the following bilinear polynomial as an
example

ũ (x, y) = b1 + b2x + b3 y + b4xy. (18)

Substituting Eq. (17) into (1) and then (2) gives
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ul
I (x) =

m∑

J=1

ψ̄ I
J (x) ũ(xJ )

=
m∑

J=1

ψ I
J (x) ũ(xJ )−

m∑

J=1
ψ I

J (xI ) ũ(xJ )+ ũ(xI ).

(19)

It has been proven in [38] that the basis function can be
exactly reproduced through the least square approximation
so that the first term on the r.h.s. of Eq. (18) becomes

m∑

J=1

ψ I
J(x) ũ (xJ ) ≡ ũ (x) , (20)

and the second term becomes
m∑

J=1

ψ I
J (xI ) ũ (xJ ) ≡ ũ (xI ) . (21)

Substituting Eqs. (19) and (20) into (18) leads to

ul
I (x) = ũ (x)− ũ (xI )+ ũ (xI ) = ũ (x) . (22)

Substituting Eq. (21) into (1) gives

uh(x) =
n∑

i=1

φI (x) ul
I (x) = ũ (x) ·

n∑

i=1

φI (x) = ũ (x) .

(23)

Thus, the present IMSLS interpolation preserves complete-
ness up to the order of the basis function.

3.3 Compatibility

In the present IMSLS interpolation, although the local cover
lI is fixed for an arbitrary node, the field function is approx-
imated based on moving domains. Thus compatibility in the
whole domain is ensured in the present IMSLS interpola-
tion, which is the same as the MLS approximation. As an
example consider, the function f (x) = sin [(x − 0.2) π ]. A
1D domain (x ∈ [0, 2.5]) is discretised using 25 distributed
nodes as shown in Fig. 2, which also shows the fitting results
using the LS, MLS and IMSLS approximations. It is clearly
seen that the LS approximation is oscillatory and unsmooth at
the region from Node 10 (x = 1.0) to 15 (x = 1.5). The MLS
approximation is continuous in the whole domain, but cannot
interpolate through all nodal values (the readers are referred
to the literature [39] for detailed discussions on compatibility
for other meshless approximations). In contrast as shown by
Fig. 2 the proposed IMSLS approximation is continuous and
passes through nodal values.

As a further illustration of IMSLS-based shape functions,
plots of shape function values over a 2D domain are shown
in Figs. 3 and 4. Twenty-five nodes are arranged in a array of
five rows and columns over a 2 × 2 unit domain and the shape
function for the central node [located at (1,1)] is plotted over

the domain. We compare the shape functions of the IMSLS
with MSLS where it is noted that in the MSLS approximation
the shape function does not take nodal values when a cubic
spline weight function is used as shown in Fig. 3a, b, and takes
nodal values only when a singular weight function is used as
shown in Fig. 3c, d. However, oscillations can be observed
around the node in Fig. 3d using a linear basis. In the proposed
IMSLS approximation, the shape function takes nodal val-
ues regardless of the type of the weight function, as shown in
Fig. 4. It can be seen that the shape function of the central
node takes the value of unity at the node itself and dimin-
ishes at all the other nodes. For a linear basis, the oscillatory
nature seen with the singular weight function is largely absent
as shown in Fig. 4b. Similar situation can be found for the
derivatives of shape functions as compared between the two
methods in Figs. 5 and 6 (derivatives plotted only in one
direction and are the same for the other due to symmetry).
The oscillation in Fig. 3d is further amplified in Fig. 5b for
first order derivative and is largely improved in Fig. 6b.

3.4 The derivatives of the IMSLS shape functions
and computational cost

In this section, we will firstly show the formulation and prop-
erties of the derivatives compare the IMSLS interpolation,
and the compare it with the MLS approximation in terms
of the computational cost. The IMSLS interpolation at any
point x is given by substituting Eq. (3) into (1)

uh(x) =
n∑

I=1

φI (x)

(
M∑

J=1

ψ̄ I
J (x) u J

)
, (24)

where the definition of ψ̄ I
J is given in Eq. (4) and shape

functions are calculated by

ψ I
J (x) = pT(x)A−1BJ . (25)

The derivatives of the approximation in Eq. (24) can be
obtained by the chain rule

uh(x),k =
n∑

I=1

φI (x)

(
M∑

J=1

ψ̄ I
J,k (x) u J

)

+
n∑

I=1

φI,k (x)

(
M∑

J=1

ψ̄ I
J (x) u J

)
,

(26)

where k indicates the derivatives with respect to the kth coor-
dinate. The derivatives of φI (x) is calculated by

φI,k (x) =
wI,k(x)

n∑
J=1

wJ (x)− wI (x)
n∑

J=1
wJ,k(x)

(
n∑

J=1
wJ (x)

)2 . (27)
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(a) spline weight function and zeroth order basis (b) spline weight function and linear basis  

(c) singular weight function and zeroth order basis (d) singular weight function and linear basis

Fig. 3 2D plot of MSLS shape functions over a square domain.

It can be easily seen that the summation of the PU function
derivatives is

n∑

I=1

φI,k(x) =

n∑
I=1

wI,k(x)
n∑

J=1
wJ (x)−

n∑
I=1

wI (x)
n∑

J=1
wJ,k(x)

(
n∑

J=1
wJ (x)

)2 ≡ 0.

(28)

And the derivatives of the shape functions by

ψ I
J,k (x) = pT

,k (x)A−1BJ . (29)

Denote the final form of the shape functions for the nodes
both global and local associated with x as NI (x) (see Sect.
4 for the matrix notation of shape functions as a result of
global PU multiplying over local approximation). Then Eq.
(24) can be rewritten as

uh(x) =
R∑

I=1

NI (x) uI , (30)

where R is total number of nodes associated with a given
point x. Since it has been proved the completeness of the
IMSLS shape functions in Sect. 3.2, it can be directly
obtained that

R∑

I=1

NI (x) xI = x . (31)

Therefore, the property of the shape function derivatives is

R∑

I=1

NI (x),k x j
I = δk j , (32)

where k denotes the derivatives of the shape function with
respect to k-th coordinate of x, and j indicates the j-th com-
ponent of the coordinates of node I . For example,
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(a) spline weight function and zeroth order basis (b) spline weight function and linear basis 

Fig. 4 2D plot of IMSLS shape functions over a square domain

(a) singular weight function and zeroth order basis (b) singular weight function and linear basis

Fig. 5 2D plot of MSLS shape functions derivatives over a square domain

R∑

I=1

NI (x),1x1
I =

R∑

I=1

(
∂NI

∂x
xI

)
= 1, (33)

and

R∑

I=1

NI (x),2x1
I =

R∑

I=1

(
∂NI

∂y
xI

)
= 0. (34)

To make comparisons of the computational cost, the for-
mulation of the MLS approximation [26] is briefly stated in
the following. Terms in the MLS approximation similar to the
present IMSLS interpolation will be marked with a tilde, i.e.
Ã and A etc. In the MLS approximation, field variables, such

as displacement in solid mechanics, are also approximated
with shape functions over nodal values as

u (x) =
n∑

I=1

�I (x) uI , (35)

where �I are the MLS shape functions, computed by

�I (x) =
∑

k

p j (x)
(

Ã−1(x) B̃(x)
)

j I

= pT(x) Ã−1(x) B̃I (x) , (36)
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(a) spline weight function and zeroth order basis (b) spline weight function and linear basis

Fig. 6 2D plot of IMSLS shape functions derivatives over a square domain

and the matrix Ã(x) is given by

Ã(x) =
n∑

I=1

wI (x) p(xI )pT(xI ), (37)

and the matrix B̃ (x) by

B̃(x) = [
w1(x) p (x1) w2 (x) p(x2) · · · wn (x) p (xn)

]
.

(38)

The derivatives of the shape functions can be found by apply-
ing the chain rule to Eq. (36)

�I, k = pT
,kÃ−1B̃I − pTÃ−1Ã, kÃ−1B̃I + pTÃ−1B̃I, k,

(39)

where the definition of k is same as in Eq. (26). Equations
(37) and (38) show the dependence of Ã(x) and B̃(x) on
x respectively, which then needs to be differentiated with
respect to x as shown in Eq. (39). For the IMSLS interpola-
tion, A and B in Eq. (25) only depend on the coordinates of
nodes in support, and thus neither needs to be differentiated in
Eq. (29). By comparing Eq. (39) with (29), it can be seen that
the IMSLS interpolation has a more compact formulation
and involves many fewer matrix operations, which can only
mean a reduced computational cost. Therefore, the IMSLS
works more efficiently than the MLS at each interpolation
point. However, this is not yet sufficient evidence to assert
that the total computing time of the IMSLS is less than the
MLS for any given problem since the total computing time
depends on both the computing time in each interpolation and
the total number of interpolations required. And it is there-
fore necessary to compare the number of interpolations that
need to be performed for a certain problem. In the IMSLS
interpolation, the matrix inversion appears only in the local

approximation at each node, which means the inversion of A
is required only once for each node, thus the total number of
matrix inversions should be the same as the number of nodes.
With the MLS approximation, matrix inversion is performed
at each integration point. Generally for a certain problem the
number of integration points needed is much greater than the
number of nodes in the MLS in order to obtain the weak
form integration with satisfactory accuracy. Therefore, it can
be seen that the IMSLS surpasses the MLS approximation
in terms of number of interpolations required. Therefore, the
total computational cost is greatly reduced in the IMSLS. The
computational depends on several factors such as the solver
either direct or iterative, preconditioning for better conver-
gence regarding the type of the problems, the date storage
structure and etc [40]. To show the substantial difference of
computational cost, the running time are compared between
the two approximations in Sect. 5.1.

4 Discretisation of the weak form

Let R be the total number of nodes associated with a given
point x, then Eq. (24) can be rewritten as

uh (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ0
1

ϕ0
2

...

ϕ0
n

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ψ̄1
1 · · · ψ̄1

n

ψ̄2
1 · · · ψ̄2

n

... · · · ...
ψ̄n

1 · · · ψ̄n
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ̄1
n+1 · · · ψ̄1

R

ψ̄2
n+1 · · · ψ̄2

R

... · · · ...
ψ̄n

n+1 · · · ψ̄n
R

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

...

u R

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= �0
1×n

ψ̄
n×R

u
R×1

= ∑R
k=1 N̄k (x) uk,

(40)
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where �0 is the vector of Shepard shape functions, ψ̄ is
a matrix comprising the point interpolation in Eq. (4) and
N̄k(x) is the IMSLS shape function. In the implementation,
all the nodes in local support is normally more than the nodes
than in PU support meaning R ≥ n. For boundary nodes, it
is clear than R = n.

With the interpolation defined, then the problem domain
can be discretised using a weak form, e.g. a Galerkin pro-
cedure as used here, and the rest of the implementation is
mostly identical to the conventional FEM. We state the dis-
cretisation of the weak form for plane stress linear elasticity
with small displacements on the domain � bounded by 
,
the standard principle of minimum potential energy leads to
the following expression:

� =
∫

�

1

2
εT Dεtdxdy −

∫

sσ
uT Ttds −

∫

�

uT btdxdy,

(41)

where ε is the infinitesimal strain vector; D is the elasticity
matrix; T is the surface force vector; b is the body force
vector and t is the thickness of the two-dimensional body. If
we substitute Eq. (40) into (41) and invoke δ � = 0, we will
get the following discrete equation

K · U = F, (42)

where the stiffness matrix is

KI J =
∫

�

B̄T
I · D · B̄J d�, (43)

in which B̄I is the strain-displacement matrix

B̄I =
⎡

⎣
N̄I,x 0
0 N̄I,y

N̄I,y N̄I,x ,

⎤

⎦ , (44)

and Fi is the right hand side vector

Fi =
∫

Sσ

N̄i · Ttds +
∫

�

N̄i · b dΩ. (45)

Equation (41) can be integrated by Gaussian integration
scheme using background integration cells. A Delaunay tri-
angulation can be generated for this purpose from the nodes
of the meshless model with four integration points in each
triangle.

5 Numerical examples

The proposed improved IMSLS interpolation has been coded
into an existing C++ program. In this section, we show the
performance of the interpolation on a range of test problems.
Results obtained are compared with the exact solutions, those
given by the EFG method and also the FEM. The weight

function used in the EFG method for testing purposes is the
exponential weight function given by

wc
I (x) =

⎧
⎪⎨

⎪⎩

e−(rI /cI )
2 −e−(rl I /cI )

2

1−e−(rl I /cI )
2 , if ri ≤ rli ,

0, if ri > rli ,

(46)

where rl I is defined by Eq. (9) and cI = 0.3rl I is used for all
test examples. Unless otherwise indicated, the scale factor a
in Eq. (9) is set as 1.5 in the EFG method and as 1.1 in the
IMSLS. The same integration schemes are kept in both the
proposed method and the EFG method. To study the con-
vergence behaviour we define the following error norms in
displacement and energy respectively

‖u‖ =
⎛

⎝
∫

�

uT · u d�

⎞

⎠

1
2

, (47)

where u is a vector collecting nodal displacement results
u = {u1, v1, u2, v2 . . . un, vn}T and

‖ε‖ =
⎛

⎝
∫

�

εT · σd�

⎞

⎠

1
2

, (48)

where ε is the infinitesimal strain vector and σ is the Cauchy
stress vector. The relative displacement error and energy error
are given by

ru =
∥∥unum − uexact

∥∥
∥∥uexact

∥∥ , (49)

and

re =
∥∥∥εnum − εexact

∥∥∥
∥∥εexact

∥∥ , (50)

where the superscripts num and exact refer to numerical solu-
tions and exact (or reference) solutions respectively.

5.1 A cantilever beam

A cantilever beam problem with dimensions of l = 8 m
and d = 1 m, as shown in Fig. 7 is tested first. The beam
is subjected to a unit concentrated load p at the right-hand
end and is constrained at the left-hand end as shown in the
figure. The elastic material properties used are E = 1 ×
105 Pa and ν = 0.25 and the problem is solved under a
plane strain assumption. We refer to the analytical solution
of the problem given in [41]. The convergence of the present
method is studied using four nodal arrangements with 50,
138, 486 and 965 nodes, respectively.

The convergence rate is compared between FEM using
three-noded triangles, the EFG method and the IMSLS in
Figs. 8 and 9. It can be seen that the IMSLS shows good
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Fig. 7 Cantilever beam and nodal arrangement
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Fig. 8 Convergence of relative displacement error of the cantilever
beam
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Fig. 9 Convergence of relative energy error of the cantilever beam

accuracy and convergence rate. Figures 10 and 11 collect the
vertical displacement v and σxx along y = d/2 on the beam
by FEM, EFG method and IMSLS using a nodal arrangement
of 138 nodes, and also indicates the good accuracy of results
using the proposed formulation. Note that in this example, the
reason of using the triangular element in the FEM as compar-
ison is that the three-noded triangular elements is constructed
from a linear basis in 2D {1, x , y} which is corresponding
to the linear basis in the IMSLS. While for higher order ele-
ment, e.g. the quadrilateral element, the shape function cor-
responds to a bilinear basis {1, x , y, xy} which is of higher
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Fig. 10 Vertical displacement results v along y = 0 of the cantilever
beam
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Fig. 11 σxx results along y = 0 of the cantilever beam

Table 1 Comparison of computing time in obtaining the strain matrix
(unit: second)

Number of nodes 50 138 486 965

MLS 0.16 0.59 2.31 4.35

IMSLS 0.14 0.46 1.41 2.50

order than the linear basis in the IMSLS. The choice of ele-
ment is therefore based on the same order of basis function
employed for expediency though the triangular element is
known poor performance in cantilever beam.

Figures 8 and 9 also demonstrate that the present inter-
polation is slightly improved with an increase of the size of
support domain for local approximation. The issue of opti-
mum nodal support size with respect to error control has
been found with the EFG method [41] and the similar issue
here can be discussed in further study. It should be noted
that in the present exapmle, the EFG method outperformed
all the other methods using linear basis, only the quadratic
basis of the present IMSLS performs better. As has been
highlighted in Sect. 3, the computational cost in obtaining
the shape functions and its derivatives is much lower by the
present LS interpolation than by the MLS approximation.
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Fig. 12 An infinite plate with a
circular hole

(a) A small portion taken for analysis  (b) Boundary conditions applied 
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y xx xy
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And this point is here clearly proved by the computational
time in obtaining the strain matrix listed in Table 1. It can be
observed from the table that the difference in computational
efficiency between the two interpolations increases when the
number of nodes increases.

5.2 An infinite plate with a circular hole

The second example is an infinite plate with a circular hole
of radius a = 1 m. The plate is subjected to far field traction
σ = 1 Pa in the x direction. A finite portion of the plate
is considered for analysis and, due to the symmetry of the
problem, only a quarter of the portion requires modeling,
as shown in Fig. 12. The elastic material properties used are
E = 3.0×107 Pa and ν = 0.3 and plane stress conditions are
assumed. The stresses and displacements for this are given
in an analytical solution in [42] as

σxx = 1 − a2

r2

(
3

2
cos (2θ)+ cos (4θ)

)
+ 3a4

2r4 cos (4θ) ,

σxy = −a2

r2

(
1

2
sin (2θ)+ sin (4θ)

)
+ 3a4

2r4 sin (4θ) ,

σyy = −a2

r2

(
1

2
cos (2θ)− cos (4θ)

)
− 3a4

2r4 cos (4θ) ,

(51)

and

u = a

8G

(
r

a
(κ + 1) cos (θ)+ 2a

r
[(1 + κ) cos (θ)+ cos 3 (θ)]

−2a3

r3 cos 3 (θ)

)
,

v = a

8G

(
r

a
(κ − 3) sin (θ)+ 2a

r
[(1 − κ) sin (θ)+ sin 3 (θ)]

−2a3

r3 sin 3 (θ)

)
, (52)

where G is the shear modulus and κ is the Kolosov constant
where κ = (3 − ν) / (1 − ν) for the plane strain assumption.

Traction-prescribed boundary conditions consistent with
the exact solution in Eq. (42) are applied at the top and right
edges. Four distributions of 53, 188, 564 and 1,012 nodes,
which are shown in Fig. 13, are employed for the conver-
gence studies. Figures 14 and 15 show that the IMSLS has
a good convergence performance in the displacement and
energy norm. For the relative error in displacement, the error
of IMSLS is between the EFG and FEM given the same node
density. In this example the EFG method outperformed the
IMSLS linear methods. The displacement ux obtained using
the IMSLS and the EFG method are shown in Fig. 16.

5.3 A square plate with an edge crack

The last test example is a rectangular plate with a single edge
crack. The dimensions of the plate used in the test are L = 10
m and W = 5 m as shown in Fig. 17. The plate is subjected
to uniform traction of σ = 1 in the y direction. Boundary
conditions are applied as shown in Fig. 17a. The elastic mate-
rial parameters used are E = 3.0 × 107 and υ = 0.3 and
the problem is solved under plane strain assumption. A lin-
ear basis in 2D is used in this example. A structured nodal
arrangement of 1,344 nodes is used as shown in Fig. 17b. We
test this example by varying the length of crack and study
the accuracy via the stress intensity factor (SIF) as the fun-
damental fracture parameter. SIFs are used both to indicate
stability, i.e. likelihood of propagation, and to determine the
direction of crack growth with respect to the current geome-
try. The SIF is here computed using the J -integral [43] using
the stress and strain results obtained. For linear elastostatics,
without body forces and assuming traction free states along
crack surfaces, the J integral defines the energy release rate
along a path as

Jk =
∫

�

W nk − t j u j,kd� j, k = 1, 2, (53)
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Fig. 13 Nodal arrangements
used for the infinite plate
problem
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Fig. 14 Convergence of relative displacement error for the infinite
plate problem

where W is the strain energy calculated by W = 1
2σi jεi j , t j

is the traction along � calculated by t j = σ j i ni , and u j,k is
the derivatives of the j-th component of displacement with
respect to the kth axis. Here j and k indicate the local coor-
diantes defined around the crack tip. In linear elastic fracture
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Fig. 15 Convergence of relative energy error for the infinite plate
problem

mechanics, J1 is normally used since it does not contain sin-
gular terms and J1 can be decomposed into symmetric and
anti-symmetric parts as described in [44].

In Table 2, we compare the values of normalized SIF
(FI = K I /σ

√
πa) obtained by the present method, the orig-
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Fig. 17 A single edge crack in a square plate

inal MSLS method using a singular weight function and the
EFG method with the reference values in [45]. The results
show an improvement of accuracy with the present IMSLS
method compared to the original MSLS method. The results
also indicate the EFG method using the visibility criterion
leads to significant errors which is due to the spurious crack
extension problem in the MLS approximation as has been
reported in [46]. It also shows that with the same number
of nodes used, the IMSLS performs much better than the
widely used MLS approximation, and the total computa-

tional cost is much lower by the former as is explained in
Sect. 3.4.

6 Conclusions

In this paper we propose an improved meshless Shepard and
least square interpolation which removes the drawbacks asso-
ciated with the use of singular weight function in the original
MSLS method. The support domain for constructing local
approximation and the support domain for PU approximation
are dually defined at each node, which delivers the ideal delta
property along essential boundaries without using singular
weight functions. The present interpolation benefits from a
simple formulation of shape functions and their derivatives,
which makes it easier to implement than the MLS approxi-
mation. In addition the computational cost in obtaining shape
functions is much lower than using the MLS approximation.
The features of the proposed IMSLS interpolation can be
summarised as follows

(1) The present interpolation satisfies the delta property
on essential boundaries without using singular weight
functions so that essential boundary conditions can be
imposed as directly as in the FEM;

(2) The computational cost in obtaining the shape functions
and their derivatives is much lower than the widely used
MLS approximation;

(3) The proposed interpolation preserves the consistency up
to the order of the basis function, which is a necessary
requirement of accuracy;

(4) The proposed interpolation starts to converge towards the
real solution even with a small size of support domain and
such convergence characteristic is not sensitive when the
size of support domain increases.

Based on the above described advantages, which are the nec-
essary elements to make a meshless method useful for appli-
cation and which are absent from many other meshless meth-
ods, we conclude that the proposed IMSLS interpolation is
a promising meshless method worthy of consideration in a
variety of applications. The formulation here is derived for
2D analysis but is readily extendable to 3D and the essen-
tial ideas are the same. Further development of the proposed

Table 2 Normalized SIF results
for the single edge crack
problem

a/W 0.2 0.4 0.6

FI Error (%) FI Error (%) FI Error (%)

Reference value 1.370 – 2.110 – 4.030 –

IMSLS 1.343 −1.97 2.078 −1.50 3.981 −1.201

MSLS 1.320 −3.64 2.009 −4.78 3.757 −6.77

EFG 1.476 7.74 2.233 5.83 4.313 7.03
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interpolation is ongoing with its application to problems of
changing geometry, such as those including finite deforma-
tion, elastoplasticity and three-dimensional cracking prob-
lems.
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