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Abstract This work presents an extension of the
Deforming-Spatial-Domain/Stabilized Space–Time (DSD/
SST) method to non-Newtonian fluid flow and heat transfer
with moving boundaries. In this method, the variational for-
mulation is written over the space–time domain. Three sets of
stabilization parameters are used for the continuity, momen-
tum and thermal energy equations. The more efficient solu-
tion for highly non-linear problems is achieved by using the
Newton–Raphson iterative method for non-linear terms and
the generalized minimal residual method for algebraic equa-
tions. This work makes the computations feasible with third-
order accuracy in time, which is higher then most versions
of the FEM. To validate this method, it is used to solve the
well-known benchmark problems such as channel-confined
flow, lid-driven cavity, flow around a cylinder, and flow in
channel with wavy wall, where the non-Newtonian fluid rhe-
ological behaviour is incorporated. In particular, the results
in terms of the Nusselt number, wall shear stress (WSS), vor-
ticity fields and streamlines are discussed. It shows that the
flow and heat transfer characteristics are quite different if the
moving boundaries are taken into account. In summary, this
work provides an effective extension of the DSD/SST method
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1 Introduction

Many substances encountered in industrial processes (poly-
mer and melt solutions, pulp and paper, minerals, food,
pastes and cosmetics processing, etc.) normally display
non-Newtonian (i.e., shear-thinning, shear-thickening, yield-
stress, visco-elastic and visco-plastic, etc.) fluid behaviours
[1]. The rheological characteristics of such fluids can not be
described by the Newton’s law of viscosity. The high viscos-
ity levels in conjunction with the complexity in behaviour of
the stress terms of momentum equations for non-Newtonian
fluids generally pose the limitation of fluids processing under
the laminar flow conditions. Due to the pragmatic signif-
icance of complex non-Newtonian fluids in the process
industries, over the years, remarkable research efforts have
been concentrated on the development of various computa-
tional tools and/or algorithms (see Refs. [2–8]) to explore
the insights of the complex fluid flow and heat transfer
phenomena.

Evidently, most of the notable research have presented the
numerical methods based on the stationary boundaries. The
difficulties associated with the numerical solution of complex
fluid flow for the fixed (or stationary) boundary situations
are very well appreciated in the literature (see Refs. [1,9–
12]). It is also observed that many practically important flow
processes involve the moving and/or deforming boundaries
such as flexible interfaces, wavy channels, etc. The tractable
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level of complexities further enhances, even for the simple
fluids, in obtaining the solution of flow problems influenced
by the moving or deforming surfaces or interfaces. The avail-
able literature comprises several numerical simulation or
computational fluid dynamics techniques such as finite dif-
ference [13–15], finite volume [16,17], finite element [8,18],
Lattice Boltzmann [19–22], etc. This research work, how-
ever, mainly focuses on the finite element method (FEM).
A recent study [7] has briefly reviewed the status of stabi-
lized FEM for non-Newtonian fluid flow. The available liter-
ature (see Refs. [3,5–7,23–26]) suggests that seldom efforts
have been put into the development of numerical approaches
for the simulation of the non-Newtonian fluid flow in con-
junction with moving boundaries. The Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) method [24,25,
27–31], which was introduced in the context of incompress-
ible flows, was also applied to coupled momentum and energy
equations in the context of compressible flows [32–34] and
to problems governed by the Navier–Stokes equations plus a
scalar equation coupled to the Navier–Stokes equations (see
the MITICT [35–37]) (and this is basically how the energy
equation is coupled to the Navier–Stokes equations). Further-
more, in a paper on the space–time fluid–structure interaction
method [29], a formulation for thermal coupling was added
in the context of an ALE method, and extending that to the
space–time method which consists of converting all the spa-
tial integrations to space–time integrations and adding the
jump term. Still, as far as known to us, the existing com-
putational simulation approaches based on the FEMs do not
account for the stabilized space–time FEM in conjunction
with moving boundaries for the computations of the com-
plex fluid flow and heat transfer. Thus, it constitutes the main
motivation of this work. The present work, therefore, aims
to present an extension of the DSD/SST method to computa-
tion of non-Newtonian fluid flow and heat transfer with the
moving boundaries.

In this work, the stabilized space–time FEM considers the
time as one of the dimensions. Thus, the proposed approach
suitably handles the moving boundaries by the moving-mesh
strategy. The finite element interpolation functions are con-
tinuous in the space. The interpolation is discontinuous in
time and, in turn, the fully discrete equations are solved
one space–time slab at a time. It makes the computations
feasible with third-order accuracy in time, which is higher
then most versions of the FEM. The more efficient solution
for highly non-linear problems such as non-Newtonian flu-
ids flow is achieved by using the Newton–Raphson iterative
method for non-linear terms and the generalized minimal
residual method (GMRES) for algebraic equations. Further,
the designed stabilization strategy has been applied to the
thermal energy equation, which is highly efficient for the
coupled solution of the Navier–Stokes equations with ther-
mal energy equation.

The organization of the present paper is as follows.
The governing equations of the fluid and heat transfer are
briefly described in Sect. 2. Section 3 presents the numerical
approach. Several canonical examples are provided in Sect. 4
to validate the accuracy of the present method. The laminar
flow in a channel with wavy wall is performed in Sect. 5 to
demonstrate the rich phenomena beneath the non-Newtonian
flow with moving boundaries. Final conclusions are given in
Sect. 6.

2 Mathematical formulation

In this paper, we consider the two-dimensional, incompress-
ible, non-Newtonian fluid flow and heat transfer involving
the moving boundaries. The governing equations, namely,
continuity, momentum and thermal energy equations [38–
40], in the dimensional form (variables with ∗ superscript)
for the fluid flow in the spatial region Ω∗

t and the temporal
region (0, T ∗

0 ) are given as follow,

∇∗ · u∗ = 0 on Ω∗
t × (0, T ∗

0 ), (1)

ρ

(
∂u∗

∂t∗
+u∗ · ∇∗u∗

)
=ρf∗ + ∇∗ · σ ∗ on Ω∗

t ×(0, T ∗
0 ),

(2)

ρcp

(
∂T ∗

∂t∗
+ u∗ · ∇∗T ∗

)
=κ∇∗2T ∗ on Ω∗

t ×(0, T ∗
0 ),

(3)

where ρ is the fluid density, u∗ = (u∗, v∗) is the velocity, T ∗
is the temperature, σ ∗ is the stress, cp and κ are the specific
heat and thermal conductivity of the fluid, respectively. For
the viscous fluids, σ ∗ is calculated by,

σ ∗ = −p∗I + 2η∗ε∗ (4)

where p∗ is the pressure of the fluid, η∗ is the viscosity,
I denotes the identity tensor, and ε∗ is the rate of the strain
tensor. Without loss of generality, the power-law fluid is taken
as a representation of non-Newtonian fluids in the present
paper. The rheological equation of state for power-law fluids
[1] is defined by

η∗ = m

(
I ∗
2

2

)(n−1)/2

, (5)

where m is the power-law consistency index, n is the power-
law fluid behaviour index, and I ∗

2 is the second invariant of
rate of the strain tensor.

Both the Dirichlet and Neumann type boundary conditions
are taken into account as shown below,

u∗ = u∗
g on Γ ∗

g , (6)

n · σ ∗ = h∗ on Γ ∗
h , (7)
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T ∗ = T ∗
s on Γ ∗

T g, (8)

∇T ∗ = Q∗ on Γ ∗
T h, (9)

where Γ ∗
g (or Γ ∗

T g) and Γ ∗
h (or Γ ∗

T h) are complementary sub-
sets of the boundary Γt . The initial condition consists of a
divergence-free velocity field, a uniform pressure field and
a uniform temperature field specified over the entire initial
domain, as shown below,

u∗(x∗, 0) = u∗
0, on Ω∗

0 , (10)

p∗(x∗, 0) = p∗
0, on Ω∗

0 , (11)

T ∗(x∗, 0) = T ∗
0 on Ω∗

0 . (12)

The governing equations (Eqs. 1–3), initial and boundary
conditions are made dimensionless using the characteristic
scaling variables L , L/U∞, U∞, ρU 2∞, ρU 2∞, m(U∞/L)n ,
U∞/L , m(U∞/L)n−1, and (Ts − T∞) for length (x∗), time
(t∗), velocity (u∗), pressure (p∗), stress (σ ∗), strain (ε∗), vis-
cosity (η∗), and temperature (T ∗ − T∞), respectively. There-
fore, the dimensionless form of the governing equations are
rewritten as,

∇ · u = 0 on Ωt × (0, T0), (13)
∂u
∂t

+ u · ∇u = f + 2

Re
∇ · (ηε) on Ωt × (0, T0), (14)

∂T

∂t
+ u · ∇T = 1

Pe
∇2T on Ωt × (0, T0), (15)

together with the non-dimensional version for initial and
boundary conditions (Eqs. 6–12), where the superscript ‘∗’
is dropped. The Reynolds (Re), Prandtl (Pr ) and Peclet (Pe)
numbers appearing in the above equations are defined as fol-
lows,

Re = ρLnU 2−n∞
m

, Pr = cpm(U∞/L)n−1

κ
,

Pe = Pr × Re = ρcpU∞L

κ
.

3 DSD/SST method

The DSD/SST method [24,25,27–31,36,41–48], a version of
stabilized space–time FEM, is extended here in the present
work to the computational simulation of the dimensionless
form of the non-Newtonian fluid flow and thermal energy
equations in conjunction with appropriate boundary condi-
tions (Eqs. 13–15). Tezduyar et al. [24,25,27] first showed
that the DSD/SST method, which allows the spatial domains
at various time levels to vary, can be effectively applied
to fluid dynamics computations involving moving bound-
aries and interfaces. The DSD/SST formulation for New-
tonian fluid flow has been extensively used to simulate the
problems involving moving boundaries and fluid–structure
interaction. Some examples of these applications are ani-

tn+1

xy Γn

Ωn

Ωn+1

Qn

Γn+1

Pn

t

tn

Fig. 1 The space–time slab Qn for the DSD/SST [24,27] formulation.
The space–time domain (i.e. Ωt × (0, T0)) is dived into time slab series
Qn enclosed by Ωn , Ωn+1 and Pn , where Pn is the lateral surface of Qn
described by the boundary Γ as t traverses In = (tn, tn+1). The figure
is from Refs. [24,35]

mal swimming and flight [46,49–54], flag flapping [42],
spacecraft parachutes [55–62], cardiovascular fluid mechan-
ics [63–66], and wind-turbine aerodynamics [67–69]. In this
section, an extension of DSD/SST formulation for the non-
Newtonian power-law fluid flow and heat transfer involving
moving boundaries/interfaces is presented in detail.

The space–time domain (i.e. Ωt × (0, T0)) is divided
into time slab series Qn (as shown in Fig. 1), which is
enclosed by Ωn , Ωn+1 and Pn , where Pn is the lateral sur-
face of Qn described by the boundary Γ as t traverses
In = (tn, tn+1) (0 = t0 < t1 < · · · < tN = T0). As is
the case with Γt , Pn can be decomposed into (Pn)g (and
(Pn)T g), and (Pn)h (and (Pn)T h), with respect to the Dirich-
let and Neumann boundary conditions being applied for the
momentum (and heat transfer) equations. For each space–
time slab, the finite element interpolation function spaces for
the velocity, pressure and temperature are defined as follow,

(Sh
u )n = {uh |uh ∈ (H1h)nsd (Qn), uh = gh on (Pn)g},

(16)

(V h
u )n = {wh |wh ∈ (H1h)nsd (Qn), wh = 0 on (Pn)g},

(17)

(Sh
p)n = (V h

p )n = {qh |qh ∈ H1h(Qn)}, (18)

(Sh
T )n = (V h

T )n = {rh |rh ∈ H1h(Qn)}, (19)

where H1h(Qn) represents the finite dimensional function
space over the space–time slab Qn . Over the parent (element)
domain, this space is formed by using first-order polynomials
in both space and time. Globally, the interpolation functions
are continuous in space while discontinuous in time [24,25].
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The DSD/SST formulation for Eqs. (13)–(15) can be writ-
ten as follows: Given (uh)−n and (T h)−n , find uh ∈ (

Sh
u

)
n ,

ph ∈
(

Sh
p

)
n

and T h ∈ (
Sh

T

)
n such that ∀wh ∈ (

V h
u

)
n ,∀qh ∈(

V h
p

)
n

and ∀rh ∈ (
V h

T

)
n , the following variational formula-

tion is satisfied
∫

Qn

rh
(

∂T h

∂t
+ uh · ∇T h

)
d Q +

∫
Qn

1

Pe
∇rh · ∇T hd Q

−
∫

(Pn)T h

1

Pe
rhn · Qd P+

∫
Ωn

(rh)+n
(
(T h)+n −(T h)−n

)
dΩ

+
nel∑
e=1

∫
Qe

n

τT

(
∂T h

∂t
+ uh · ∇T h − 1

Pe
∇2T h

)

×
(

∂rh

∂t
+ uh · ∇rh − 1

Pe
∇2rh

)
d Q

+
∫

Qn

wh ·
(

∂uh

∂t
+ uh · ∇uh − f

)
d Q

+
∫

Qn

ε(wh) : σ hd Q

−
∫

(Pn)h

wh · hd P +
∫

Qn

qh∇ · uhd Q

+
nel∑
e=1

∫
Qe

n

τ

(
∂uh

∂t
+ uh · ∇uh − f − 2

Re
∇ · (ηεh)

)

×
(

∂wh

∂t
+ uh · ∇wh − 2

Re
∇ ·

(
ηε(wh)

))
d Q

+
nel∑
e=1

∫
Qe

n

δ(∇ · wh)(∇ · uh)d Q

+
∫
Ωn

(wn)+n ·
(
(uh)+n − (uh)−n

)
dΩ = 0, (20)

where the following notations are used,

(uh)±n = lim
ε→0

u(tn ± ε), (21)
∫

Qn

(· · · )d Q =
∫
In

∫

Ωh
t

(· · · )dΩdt, (22)

∫
Pn

(· · · )d P =
∫
In

∫

Γ h
t

(· · · )dΓ dt. (23)

In Eq. (20), τT , τ and δ are the stabilization parameters which
determine the weight of the least-squares terms added to the
Galerkin variational formulation to assure the numerical sta-
bility of the computations. In the present work, these stabi-

lization parameters are defined by

τT = h

2
√

T 2
ζ(Ph

e ), (24)

τ = h

2
√

u2 + v2
ζ(Rh

e ), (25)

δ = h
√

u2 + v2

2
ζ(Rh

e ), (26)

where ζ(z), Ph
e and Rh

e are defined by

ζ(z) =
{

z, z ≤ 1,

1, z > 1,
(27)

Ph
e =

(
h
√

T 2

12

)
Pe, (28)

Rh
e =

(
h
√

u2 + v2

12

)
Re. (29)

In Eqs. (28) and (29), Ph
e and Rh

e are the element Peclet and
Reynolds numbers. This type of stabilization is referred to as
the Galerkin/least-squares procedure and is a generalization
of the hybrid of streamlineupwind/Petrov–Galerkin [70] and
pressure-stabilization/Petrov–Galerkin [71].

The process described in Eq. (20) is applied sequentially
to all the space–time slabs Q0, Q1, . . . , QN−1. The compu-
tations start with (uh)0 = u0 and (T h)0 = T0.

In the cases where the temporal accuracy is not important,
Eq. (20) can be divided into two sub-steps given below,

∫
Qn

rh
(

∂T h

∂t
+ (uh)−n · ∇T h

)
d Q +

∫
Qn

1

Pe
∇rh · ∇T hd Q

−
∫

(Pn)T h

1

Pe
rhn · Qd P+

∫
Ωn

(rh)+n
(
(T h)+n −(T h)−n

)
dΩ

+
nel∑
e=1

∫
Qe

n

τT

(
∂T h

∂t
+ (uh)−n · ∇T h − 1

Pe
∇2T h

)

×
(

∂rh

∂t
+ (uh)−n · ∇rh − 1

Pe
∇2rh

)
d Q = 0,

(30)∫
Qn

wh ·
(

∂uh

∂t
+ uh · ∇uh − f[(T h)−n ]

)
d Q

+
∫

Qn

ε(wh) : σ hd Q−
∫

(Pn)h

wh · hd P +
∫

Qn

qh∇ · uhd Q

+
nel∑
e=1

∫
Qe

n

τ

(
∂uh

∂t
+uh · ∇uh −f[(T h)−n ]− 2

Re
∇ · (ηεh)

)

×
(

∂wh

∂t
+ uh · ∇wh − 2

Re
∇ ·

(
ηε(wh)

))
d Q
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+
nel∑
e=1

∫
Qe

n

δ(∇ · wh)(∇ · uh)d Q

+
∫
Ωn

(wn)+n ·
(
(uh)+n − (uh)−n

)
dΩ = 0. (31)

In this work, the moving mesh is handled by a simple
method [72–74], namely the quasi-elastic method which
takes advantages of minimizing the frequency of mesh
regeneration to reduce the projection errors and minimiz-
ing the cost associated with mesh generation and paralleliza-
tion setup [50,73,75–78]. In this method, the computational
domain is modelled by a linear elastic body. The motion
of the moving mesh is described by the elastic equilibrium
equation which is solved with the boundary conditions, and
consequently the mesh movement is obtained.

The present approach uses the equal-in-order basis func-
tions for the velocity and pressure as in the original DSD/SST
method, which are bilinear in space and linear in time [71].
The Gaussian quadrature is employed for numerical inte-
gration [79]. The non-linear equations resulting from the
space–time finite-element discretization of the flow and heat
transfer governing equations are solved by the Newton–
Raphson method [80,81] and the linear system of alge-
braic equations is solved by generalized minimal residual
(GMRES) method with the preconditioning based on incom-
plete LU factorization technique, i.e., ILU(0) precondition-
ing [82,83] to accelerate an iterative solution process. The
ILU(0) preconditioning is based on a well-known factor-
ization of the original matrix into a product of two trian-
gular matrices: lower and upper triangular matrices. Usu-
ally, such decomposition leads to some fill-in in the result-
ing matrix structure in comparison with the original matrix.
The distinctive feature of the ILU(0) preconditioning is
that it preserves the structure of the original matrix in the
result.

The computational algorithm is summarized as follow.
Known U n , set initial state as k = 0 and Uk = U n . The
advance values of U n+1 for the nonlinear system F(U n+1) =
0 are determined as,

(1) Calculate gk = −F(Uk) and Jk = ∂ F(Uk )
∂Uk

, so that estab-
lish the linear system Jk�Uk = gk ;

(2) Apply ILU(0), so that transfer the linear system to the
form of Ax = f , where A = (LU )−1 Jk , x = �Uk and
f = (LU )−1gk ;

(3) Choose x0, compute r0 = f − Ax0 and v1 = r0/‖r0‖;
(4) For j = 1, 2, . . . , m do:

hi, j = (Av j , vi ), for i = 1, 2, . . . , j ,

v̂ j+1 = Av j − ∑ j
i=1 hi, jvi ,

hi+1, j = ‖v̂ j+1‖,
v j+1 = v̂ j+1/hi+1, j ;

(5) Form the approximate solution:xm = x0 + Vm ym where
ym minimizes ‖βe1 − H̄m y‖, y ∈ Rm ;

(6) Compute rm = f − Axm and check for the convergence.
(a) If the specified convergence criteria is not satisfied,
then compute x0 = xm , v1 = rm/‖rm‖ and go to step
3; (b) If the specified convergence is achieved the go to
step 7;

(7) Compute Uk+1 = Uk +�Uk , check for the convergence
status. (a) If the convergence is not achieved then k =
k + 1 and go to step 1; (b) If the convergence criteria
is satisfied then compute U n+1 = Uk+1 and stop the
computations.

In the present work, the above mentioned computational sim-
ulation algorithm is implemented in Fortran 90 program-
ming language. The reliability and accuracy of the proposed
numerical approach is ascertained in next section by compar-
ing the present results with those of the standard benchmark
problems in the computational fluid dynamics.

4 Validation of the numerical method

The numerical simulation approach discussed in the previ-
ous section has been validated thoroughly to establish the
reliability and accuracy by comparing the present results
with the following standard benchmark problems of non-
Newtonian fluid flow and heat transfer: (1) channel confined
flow at low Reynolds number, (2) lid-driven cavity flow,
and (3) flow across a stationary cylinder. These benchmark
problems cover large domain of computational fluid dynam-
ics, i.e., steady flow, unsteady flow, heat transfer, station-
ary and moving boundaries, etc. The successful validation
will provide support for our later study of non-Newtonian
power-law fluid flow in a rectangular channel with wavy
wall. Further applications of the space–time FEM for the
Newtonian fluids can be found in our previous publica-
tions [45,46,74].

4.1 Developing flow of non-Newtonian power-law fluid in a
channel

The developing flow through a confined channel is consid-
ered to be one of the benchmark problems to validate an
in-house CFD solver. Consider the two-dimensional steady
laminar developing flow of power-law fluid with a uniform
incoming flow (dimensional uniform velocity, U∞ = 1)
through a rectangular channel of height h and length L , as
shown in Fig. 2. The physically realistic initial and boundary
conditions are given as,
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Fig. 2 Sketch of the power-law
fluid flow in a channel

x

y

h=1

Channel wall ∂Ω1

Inflow boundary ℑ

U∞=1

Channel wall ∂Ω1

Ω1

Outflow boundary ℜ

u(x, y)=0, v(x, y)=0, p(x, y)=0 t =0, (x, y)∈Ω1,

u(x, y)=1, v(x, y)=0 t >0, (x, y)∈�,

u(x, y)=0, v(x, y)=0 t >0, (x, y)∈∂Ω1,

p(x, y)=0 t >0, (x, y)∈�.

The computations are performed with the dimensionless
domain size (L × h) of 15 × 1 and computational mesh
consisting of 6191 nodes and 6000 elements. The time step
is chosen as �t = 10−2. The numerical results in terms
of the fully developed velocity profiles are obtained for the
Reynolds number of 10 and for the power-index in the range
of 0.2 ≤ n ≤ 2.0. The simulations are performed for suf-
ficiently long time so that the flow in the channel attains a
steady state. The fully developed velocity profiles predicted
by the numerical simulations are compared in Fig. 3 with the
corresponding analytical solution for fully developed veloc-
ity profile [1,11,84] for power-law fluid flow in a channel
which is given as

u f (y, n) = 2n + 1

n + 1

(
1 −

∣∣∣∣1 − 2y

h

∣∣∣∣
(n+1)/n

)
. (32)

Figure 3 shows an good agreement between the present
numerical results and the analytical values for various values
of power-law index. It is noted from Fig. 3 that the shear layer
is thinned for n < 1 and thickened for n > 1 compared to
the Newtonian fluid case (n = 1). Thus, the power-law fluids
of n < 1 and n > 1 are shear-thinning and shear-thickening
type fluids, respectively [85,86].

Further, the maximum velocities of the fully developed
flow in channel calculated by the numerical simulation are
also compared in Table 1 with those predicted by analytical
expression. It also shows an great correspondence (<±0.1 %)
between the numerical and analytical results. The excellent
correspondence between the present and analytical results
gives us a confidence in the reliability and accuracy of the
present numerical solution procedure. Further attempts are
also made to verify the efficacy of the present solver in the
subsequent sections.

u

y

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Analytical

Re=10

n=0.2
n=0.4
n=0.6
n=0.8
n=1.0
n=1.2
n=1.4
n=1.6
n=1.8
n=2.0

Fig. 3 Comparison of the present numerical results of the fully devel-
oped velocity profiles in a channel with the corresponding analytical
profiles (Eq. 32) for Reynolds number of Re = 10 and power-law
index as 0.2 < n < 2

4.2 Lid-driven square cavity flow of non-Newtonian
power-law fluid

The lid-driven cavity flow is another standard test problem
in computational fluid dynamics. Here we consider the two-
dimensional incompressible flow of power-law fluids in a
lid-driven square cavity. An schematics of square cavity with
appropriate boundary conditions is shown in Fig. 4. The
driving force for the flow in the cavity is the shear stress
created by the top lid moving with uniform velocity (u = 1
and v = 0). The stationary conditions are prescribed on the
other three boundaries while the hydrostatic pressure shift is
eliminated by fixing the pressure value at a single grid node,
as on the mid node at the bottom boundary. The computa-
tional mesh consists of 2601 nodes and 2500 elements. The
time step is considered as �t = 10−2. The computations
are carried out for the Reynolds number of Re = 100 and
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Table 1 The comparison of the
maximum velocity in the fully
developed flow of power-law
fluids in a channel

n 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Present results 1.167 1.286 1.375 1.445 1.500 1.546 1.584 1.615 1.643 1.666

Analytical results 1.167 1.285 1.375 1.444 1.500 1.545 1.583 1.615 1.643 1.667

(0,1)

u=0

v=0

x
(0,0) (1,0)

(1,1)

y

u=0

v=0

Sliding lid

u=0 v=0

u=1 v=0

Fig. 4 Schematic representation of a lid-driven square cavity flow with
appropriate boundary conditions

for the power-law index in the range of 0.25 ≤ n ≤ 1.5
thereby covering both the shear-thinning (n < 1) as well as
shear-thickening (n > 1) fluid behaviours.

Figure 5 shows the variations of centerline velocity pro-
files, i.e., u(y, x = 0.5) and v(y = 0.5, x), for different
values of power-law index (n). The velocity profiles are seen
to be consistent (qualitatively as well quantitatively) with
those reported in Ref. [3]. The profiles show that the shear
layer is thinned for n < 1 and thickened for n > 1 compared
to the Newtonian fluid case (n = 1).

Further, Table 2 compares the present results (i.e., maxi-
mum and minimum centerline velocities and their locations)
with the available literature [3,11]. The present results (as
shown in Table 2) are seen to be in good agreement with the
literature. The minor deviations observed in umin at n = 0.25
and in x of vmin at n = 1.5 are acceptable in numerical
studies and arise due to the differences in the grid spacing,
discretization schemes, numerical methods, etc.

A moving cavity flow is designed to validate the accuracy
of the moving-mesh strategy. This case was conducted also
in Ref. [24] for Newtonian fluid flow. In the simulation, the
cavity is moving with a velocity of u = −0.2, and the velocity
of the sliding lid is u = 0.8. A typical case (Re = 100 and
n = 0.75) is used for the validation of the results. Figure 6

compares the centerline velocity profiles (u at the vertical
centerline and v at the horizontal centerline) of the moving-
mesh case with those of the stationary mesh case. The result
shows that the profiles predicted by the moving-mesh strategy
are in great agreement with those of the stationary mesh case.
The excellent correspondence seen herein for the stationary
boundary and moving boundary problems encourages the
efficacy of the present numerical simulation method for non-
Newtonian fluid flow with moving boundaries. Consequent
attempts are made to validate the present simulation strategy
with the classical problem in fluid mechanics, i.e., flow over
a cylinder.

4.3 Non-Newtonian power-law fluid flow and heat transfer
from a stationary cylinder

Flow across a circular cylinder is considered to be one of the
canonical examples in fluid mechanics for testing the accu-
racy of a numerical method. The two-dimensional uniform
flow (with uniform free-stream velocity, U0) of power-law
fluid across a cylinder (of diameter D) is considered in this
section. The computational domain is 33D×12D. The mesh
employed consists of 4558 nodes and 4424 elements, which
are non-uniformly distributed. Special meshes of this design
were extensively used in the literature [24–26,41]. The ele-
ment size around the cylinder is approximately 0.005D. Fig-
ure 7 represents the computational domain, computational
mesh and the boundary conditions. Simulations are per-
formed for Pr = 1 and a wide range of Reynolds numbers
(Re = 10, 20, 40, and 100) covering both the 2-D steady
to unsteady flow regimes and for the different values of the
power-law index (n) thereby covering both shear-thinning
and shear-thickening fluid behaviours. The dimensionless
parameters (Re and Pr ) herein is based on the free-stream
velocity (U0) and the diameter of the cylinder (D). In the
simulations, the initial flow is prescribed as the potential flow
around cylinder with a small perturbation. The computations
are performed for sufficiently long time such that a steady (for
the cases of Re = 10, 20 and 40) or periodic (for Re = 100)
flow is fully established.

The validation of results for the cylinder flow prob-
lem has been carried out in steps, i.e., steady flow over a
cylinder, unsteady flow over a cylinder and heat transfer
from a cylinder. Table 3 compares the present values (for
both stationary and moving meshes) of individual and total
drag coefficients (CD P , CDF and CD) for steady flow of
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Fig. 5 Centerline velocity profiles for the power-law fluid flow in a square cavity

Table 2 Comparison of the
maximum and minimum
centerline velocities and their
location for the power-law fluid
flow in a lid-driven square cavity

umin Minimum velocity at the
vertical centerline (x = 0.5)
vmin Minimum velocity at the
horizontal centerline (y = 0.5)
vmax Maximum velocity at the
horizontal centerline (y = 0.5)
a Based on finite volume solver
using the grid size of 100 × 100
b Based on p-version least
squares finite element
formulation using the grid size
of 100 × 100

n Source umin y vmin x vmax x

0.25 Present −0.064 0.60 −0.033 0.82 0.022 0.32

Bharti [11]a −0.050 0.60 −0.026 0.82 0.018 0.30

Bell and Surana [3]b −0.050 0.61 −0.027 0.80 0.017 0.35

0.50 Present −0.126 0.50 −0.140 0.84 0.082 0.28

Bharti [11]a −0.121 0.49 −0.146 0.83 0.082 0.29

Bell and Surana [3]b −0.116 0.51 −0.146 0.83 0.079 0.32

0.75 Present −0.180 0.46 −0.217 0.82 0.139 0.26

Bharti [11]a −0.181 0.46 −0.225 0.82 0.141 0.26

Bell and Surana [3]b −0.175 0.46 −0.224 0.84 0.140 0.27

1.00 Present −0.214 0.46 −0.252 0.80 0.179 0.24

Bharti [11]a −0.214 0.46 −0.223 0.81 0.179 0.24

Bell and Surana [3]b −0.207 0.47 −0.253 0.80 0.177 0.26

1.50 Present −0.245 0.46 −0.277 0.80 0.229 0.21

Bharti [11]a −0.239 0.47 −0.268 0.79 0.227 0.23

Bell and Surana [3]b −0.234 0.47 −0.270 0.80 0.228 0.23

(a) (b)
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y
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Fig. 6 Validation of moving-mesh strategy
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Fig. 7 Schematic
representation of computational
domain, boundary conditions
and computational mesh for
non-Newtonian power-law flow
over a stationary cylinder

u=0 v=0 T=1

u=1 v=0 ∂T/∂n=0

u=1 v=0 T=0

σi,j=0
∂T/∂n=0

u=1 v=0 ∂T/∂n=0

Table 3 Comparison of the
individual and total drag
coefficients for the steady flow
over a cylinder

n Source CD P CDF CD CD P CDF CD

Re = 20 Re = 40

0.6 Present 1.3438 0.7244 2.0681 1.0365 0.4035 1.4400

Present (moving mesh) 1.3438 0.7244 2.0681 – – –

Bharti et al. [12] 1.2494 0.7061 1.9555 0.9090 0.3667 1.2758

Soares et al. [87] 1.3700 0.6100 1.9800 1.0500 0.3400 1.3900

1.0 Present 1.2346 0.8994 2.1340 1.0212 0.5744 1.5956

Present (moving mesh) 1.2346 0.8994 2.1340 – – –

Tian et al. [20] – – 2.1600 – – 1.6200

Gao et al. [88] – – 2.0900 – – 1.5800

Xu and Wang [89] – – 2.2300 – – 1.6600

Bharti et al. [12] 1.2244 0.8211 2.0455 0.9976 0.5316 1.5292

Soares et al. [87] 1.1900 0.8000 1.9900 0.9600 0.5200 1.4800

1.4 Present 1.1676 1.0172 2.1848 1.0022 0.7073 1.7094

Present (moving mesh) 1.1676 1.0172 2.1848 – – –

Bharti et al. [12] 1.1560 1.0274 2.1834 0.9864 0.7356 1.6438

Soares et al. [87] 1.1800 0.9200 2.0900 0.9700 0.6500 1.6200

non-Newtonian fluid flow around the cylinder with the avail-
able literature [12,20,87–89] for two values of the Reynolds
number (Re = 20 and 40) and for three values of the power-
law index (n = 0.6, 1 and 1.4). It can clearly be seen that the
present results are well consistent with the available liter-
ature values. It should be pointed out that drag coefficient
(CD) value is larger than those reported in the literature
[12,87], and in several cases, such as Re = 40 and n = 0.6,
CD P is much larger than the literature values. On the other
hand, comparison of the present drag values for Newtonian
fluid with the literature [20,88,89] are seen to be in the good
agreement. It may noted that the computational domains in
the present work is smaller than that used in Refs. [12,87],
which seems to be a justified explanation of deviations noted
above. To further validate the efficiency and robustness of
the moving-mesh strategy in the present code, the simula-
tions are carried out for a cylinder moving with a velocity of

u = −1. The velocity boundary conditions are shifted by a
term of (−1, 0) and the stress boundary is the same as the pre-
vious series of simulations. The results of moving mesh for
Re = 20 and n = 0.6, 1.0 and 1.4, are also shown in Table 3.
It is observed that the results obtained in the moving-mesh
method are the same as those in stationary mesh, which fur-
ther demonstrates the efficiency of the moving-mesh strategy
in the present work.

Further, the transient nature of the solver is thoroughly
verified by increasing the Reynolds number as 100 at which
the flow patterns show von-Kármán periodic vortex shed-
ding behind the cylinder. The transient simulations for non-
Newtonian power-law fluid flow over a cylinder are per-
formed at a fixed value of the Reynolds number (Re = 100)
for a range of power-law index (n = 0.4, 0.6, 1.0, 1.4 and
1.8). The present results for time-averaged drag coefficients
(CD), maximum lift coefficient (CL ,max ) and Strouhal num-
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Table 4 Unsteady flow of non-Newtonian power-law fluid over a cylin-
der at Reynolds number of Re = 100

n Source CD CL ,max St

0.4 Present 1.0853 0.3813 0.2012

Patnana et al. [90] 1.1345 – 0.2067

0.6 Present 1.1802 0.3665 0.1880

Patnana et al. [90] 1.1794 – 0.1801

1.0 Present 1.3643 0.3596 0.1714

Tian et al. [20] 1.4300 – 0.1660

Shu et al. [91] 1.3833 0.3500 0.1619

Gao et al. [88] 1.3900 – 0.1690

Xu and Wang [89] 1.4230 – 0.1710

Patnana et al. [90] 1.3409 0.3252 0.1657

1.4 Present 1.5231 0.3563 0.1613

Patnana et al. [90] 1.4971 – 0.1497

1.8 Present 1.6570 0.3551 0.1546

Patnana et al. [90] 1.6294 – 0.1392

Table 5 Comparison of the averaged Nusselt number (Nu) for forced
convection heat transfer from a cylinder to power-law fluids at Prandtl
number, Pr = 1

Re Source n = 0.8 n = 1.0 n = 1.2 n = 1.4

10 Present 2.2083 2.1503 2.1076 2.0748

Bharti et al. [92] 2.1234 2.0597 2.0110 1.9727

Bharti and Chhabra [86] 2.2274 2.0874 2.0020 1.9475

Soares et al. [87] 2.1164 2.0577 2.0111 1.9730

40 Present 3.9234 3.7687 3.6488 3.5541

Bharti et al. [92] 3.8296 3.6533 3.4132 3.4003

Bharti and Chhabra [86] 3.9915 3.7030 3.5020 3.3522

Soares et al. [87] 3.7359 3.5695 3.4350 3.3249

ber (St) are compared in Table 4 with the literature [20,88–
91]. It is observed that the drag coefficients in the present
work are in good agreement with those reported in the lit-
erature. At lower values of power-law index, as n ≤ 1, the
present St is in a good agreement with references, while there
is an obvious discrepancy at higher power-law index. Sev-
eral additional results of Newtonian fluid are also listed in
Table 4. One can see that even for the Newtonian fluid, the
value of St varies 5–6 % using different methods. Thus, the
discrepancy of St at high power-law index (n) is acceptable.

Further attempts are made to validate both fluid flow
and thermal solvers. It is done by considering the steady
forced convection heat transfer from a heated cylinder to non-
Newtonian power-law fluid. The simulations are performed
for the following parameters: Prandtl number, Pr = 1.0,
Reynolds numbers, Re = 10 and 20, power-law index,
n = 0.8, 1.0, 1.2 and 1.4. The results of the averaged Nus-
selt number (Nu) are compared with the available literature

data in Table 5. It shows that the present results are in close
agreement (±5–6 %) with the literature values. It needs to
be emphasized here that the deviations of this order as that
seen in Table 5 are common in such numerical studies, as
discussed in the Refs. [86,90,92,93].

5 Laminar flow of non-Newtonian power-law fluid flow
in a rectangular channel with wavy wall

The turbulence flow over a wavy surface has been studied
extensively owing to the importance in fundamentals and
applications [94–98]. On the other hand, laminar flow over
wavy surfaces has received much less attention. As an appli-
cation of the present numerical solution method, the non-
Newtonian power-law fluid flow and heat transfer in a two-
dimensional rectangular channel with wavy wall is consid-
ered, as shown in Fig. 8. In this work, the height h of the
channel is taken as the characteristic length. The length of
the channel ranges from 0 to 16h. The initial and the bound-
ary conditions are set as,

u(x, y) = U∞ = 1, v(x, y) = p(x, y) = t (x, y) = 0,

(x, y) ∈ Ω1, t = 0,

u(x, y) = U∞ = 1, v(x, y) = 0, T (x, y) = 0,

x, y) ∈ �, t > 0,

u(x, y) = v(x, y) = T (x, y) = 0, (x, y) ∈ ∂Ω1, t > 0,

v(x, y) = 2πωA sin(2πkx) cos(2πωt), u(x, y) = 0,

T (x, y) = 1, (x, y) ∈ ∂Ω2, t > 0,

p(x, y) = 0, (x, y) ∈ �, t > 0.

All the simulations are performed at Reynolds number of
Re = 10, Prandtl number Pr = 0.5, A = 0.1, ω = 1.0,
and k = 0.5 by varying the power-law index (n) from 0.2 to
1.8. To discuss the present results, the WSS is first defined
herein [8],

WSS = η|ω|/Re. (33)

The variations of surface Nusselt number (Nu) are shown
in Fig. 9a, b for two instants in a period, i.e. T/4 and 2T/4.
Figure 9c presents the shape and the moving direction of the
boundary at the corresponding two instants. It is found that
Nu is strongly dependent on the power-law index (n). On
the other hand, Nu of the fully developed channel flow for
A = 0 (stationary regular channel) is 1.0 and independent on
power-law index. In addition, Nu for larger power-law index
is lower along the half wave moving upward and is reverse
along the half wave moving downward. Finally, at t = T/4,
Nu near the peaks is larger than that near the troughs and
Nu at the higher power-law index is smaller near the peaks,
and is reverse near the troughs.
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Fig. 8 Schematics of
non-Newtonian power-law flow
in a channel with wavy wall

∂Ω2

∂Ω1

ℜℑ

Ω

y

x

y=Asin(2πkx)sin(2πωt)
h=1

λ

(a) (b)

x

N
u

10 11 12 13 14

0.8

1

1.2

1.4

n = 1.8

n = 0.2
n = 1.0

x
N

u
10 11 12 13 14

0.9

0.95

1

1.05

1.1

x2

n = 0.2
n = 1.0
n = 1.8

x1

(c)

x

y

10 11 12 13 14
-0.5

0

0.5

1

2/4 T
1/4 T

2/4 T

Fig. 9 The variation of Nusselt number (Nu) along the wavy surface
for Re = 10, Pr = 0.5 and k = 0.5. a T/4; b 2T/4; c sketch of the
wavy wall. In (a), the gray region denotes the half wave moving upward

and the white region represents the other half wave moving downward.
In (c), the vectors are the moving direction of the wall

Another important quantity is the WSS (Eq. 33), which
has been linked to the pathogenesis of atherosclerosis. Vessel
segments with low WSS appear to be at the highest risk for
development of atherosclerosis [8,99]. Similar theories could
be applied to other engineering fluid transportation, such as
oil and liquid chemical material transportation. Figure 10
shows the variations of the WSS along the wavy wall for four
instants in a period. Further, the instantaneous variations of
the vorticity contours and streamlines are shown in Fig. 11.

From Fig. 10, one can see that for the zero velocity instants
(i.e., T/4), the WSS for shear-thinning fluids (n < 1) is
less than one. This trend is similar to that of fully developed
channel flow for A = 0. Specifically, the WSS values of
fully developed channel flow are 0.224, 0.600 and 1.429 for
n = 0.2, 1.0 and 1.8, respectively. At 2/4T , the trend is a little
complex. For the cases that do not have positive vorticity near
these points, the WSS is less than one. This trend is reverse
for cases with positive vorticity near the junction points of
half waves. To further demonstrate this point, the vorticity
contours and streamlines (Fig. 11) show that the positive

vorticity occurs near the junction points of half waves where
the WSS is anomalous. In addition, the eddies are observed
near the junction points of half waves at 2T/4 for fluids of
shear-thinning fluids (n < 1), which is regarded to be related
to the positive vorticity and further the anomalous WSS.

All in all, the results show that Nu, the WSS, vorticity
field and flow structures are quite different when the moving
boundaries are considered. Thus, it is suggested that many
possibilities of new flow phenomena may be observed and
new physical mechanisms could be uncovered by consid-
ering the moving boundaries. The research shall be further
extended to explore the new dimensions of the physical phe-
nomena in practical problems with the help of moving bound-
aries solver presented herein this work.

6 Conclusion

An extension of DSD/SST method is presented to simulate
the non-Newtonian fluid flow and heat transfer in conjunc-
tion with moving boundaries. More specifically, three stabi-
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lization parameters are used in the finite element formula-
tion for the thermal, momentum, and continuity equations.
This work makes the computations feasible with third-order
accuracy in time, which is higher then most versions of the
FEM. The proposed methodology and developed solver has
been validated with the well-documented standard bench-
mark problems in the computational fluid dynamics involv-
ing the non-Newtonian fluids flow, i.e., channel confined
flow at low Reynolds number, lid-driven cavity flow, and
cross flow and heat transfer from a stationary cylinder. The
non-Newtonian fluid rheological behavior has been incorpo-
rated by using the shear-dependent power-law fluid viscos-
ity model in these benchmark problems. As an application
of the present method, the non-Newtonian power-law fluid
flow and heat transfer in a channel with wavy wall is stud-
ied. Particularly, the Nusselt number, WSS, vorticity fields
and streamlines are discussed in detail. It has been observed
from the results that the flow and heat transfer characteristics
are quite different if the moving boundaries are taken into
account.

In summary, the overall analysis of the results suggests
that the extension of the DSD/SST method provides an effi-
cient method for solving the hydrodynamics and heat trans-
fer problems involving the complex fluids by considering the
moving boundaries to understand the complex flow phenom-
ena and physical mechanisms. It shall be undertaken as an
important topic for the research in the near future.
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