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Abstract We introduce space–time computation tech-
niques with continuous representation in time (ST-C), using
temporal NURBS basis functions. This gives us a tempo-
rally smooth, NURBS-based solution, which is desirable in
some cases, and a more efficient way of dealing with the
computed data. We propose two versions of ST-C. In the
first version, the smooth solution is extracted by projection
from a solution computed with a different temporal repre-
sentation, typically a discontinuous one. We use a succes-
sive projection technique with a small number of temporal
NURBS basis functions at each projection, and therefore the
extraction can take place as the solution with discontinuous
temporal representation is being computed, without storing
a large amount of time-history data. This version is not lim-
ited to solutions computed with ST techniques. In the second
version, the solution with continuous temporal representa-
tion is computed directly by using a small number of tem-
poral NURBS basis functions in the variational formulation
associated with each time step.
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1 Introduction

One of the earliest space–time (ST) computation techniques
targeting fluid mechanics problems with moving interfaces
is the deforming-spatial-domain/stabilized ST (DSD/SST)
method [1–4]. It is a general-purpose moving-mesh tech-
nique that serves as core numerical technology in model-
ing fluid–structure interaction (FSI), fluid–object interaction,
fluid–particle interaction, free-surface and multi-fluid flows,
and flows with mechanical components in fast, linear or rota-
tional relative motion. It is an alternative to the arbitrary
Lagrangian–Eulerian (ALE) finite element formulation [5],
which is the most widely used moving-mesh technique, with
increased emphasis on FSI in recent years (see, for example,
[6–39]). Though less widely used than the ALE formulation,
over the past 20 years the DSD/SST method has been applied
to some of the most challenging moving-interface problems,
including FSI (see, for example, [34,35,40–59] and refer-
ences therein). Prior to the inception of the DSD/SST formu-
lation, the ST finite element formulations were introduced
and tested by other researchers in the context of problems
with fixed spatial domains (see [60]).

In the DSD/SST formulation, as it was originally envi-
sioned, the ST computations are carried out for one ST
“slab” at a time, where the “slab” is the slice of the ST
domain between the time levels n and n + 1. The basis
functions are continuous within a ST slab, but discontinu-
ous from one ST slab to another. The formulation is based
on the streamline-upwind/Petrov–Galerkin (SUPG) [61] and
pressure-stabilizing/Petrov–Galerkin (PSPG) [1,62] stabi-
lizations. It also includes the “LSIC” (least-squares on
incompressibility constraint) stabilization. New versions of
the DSD/SST method have been introduced since its incep-
tion, including those in [46], which have been serving as
the core numerical technology in the majority of the ST

123



92 Comput Mech (2014) 53:91–99

FSI computations carried out in recent years. The most
recent DSD/SST method is the ST version [51,63] of the
residual-based variational multiscale (VMS) method [64–
67]. It was named “DSD/SST-VMST” (i.e. the version
with the VMS turbulence model) in [63], which was also
called “ST-VMS” in [51]. The original DSD/SST method
was named “DSD/SST-SUPS” in [63] (i.e. the version with
the SUPG/PSPG stabilization), which was also called “ST-
SUPS” in [34].

The ST techniques give us the option of using higher-
order basis functions in time, including the NURBS basis
functions, which have been used very effectively as spatial
basis functions (see [8,12,68,69]). This has positive conse-
quences beyond just increasing the order of accuracy in the
computations [51,63,70]. It provides us better accuracy and
efficiency in temporal representation of the motion and defor-
mation of the moving interfaces and volume meshes, and bet-
ter efficiency in remeshing. This has been demonstrated in
a number of 3D computations, specifically, flapping-wing
aerodynamics [48,52,53,55], separation aerodynamics of
spacecraft [57], and wind-turbine aerodynamics [58].

There are some advantages in using a discontinuous tem-
poral representation in ST computations. For a given order
of temporal representation, we can reach a higher order
accuracy than one would reach with a continuous repre-
sentation of the same order. When we need to change the
spatial discretization (i.e. remesh) between two ST slabs,
the temporal discontinuity between the slabs provides a
natural framework for that change. There are advantages
also in continuous temporal representation. We obtain a
smooth solution, NURBS-based when needed, and that
is desirable in some cases. We also can deal with the
computed data in a more efficient way, because we can
represent the data with fewer temporal control points,
and that reduces the computer storage cost. These advan-
tages motivated the development of the ST computation
techniques with continuous temporal representation (ST-
C).

We propose two versions of the continuous temporal rep-
resentation. In the first version, the continuous representation
is extracted by projection from a solution computed with a
different temporal representation, typically a discontinuous
one. We use a successive-projection technique with a small
number of temporal NURBS basis functions at each projec-
tion. Because of that, the extraction can take place as the
solution with discontinuous temporal representation is being
computed, without storing a large amount of time-history
data. We note that this version is not limited to solutions
computed with ST techniques. For example, they can also
be applied to solutions computed with an ALE approach.
In the second version, the solution with continuous tempo-
ral representation is computed directly from the ST varia-
tional formulation associated with each time step. Again,

we use a small number of temporal NURBS basis func-
tions.

The first version is described in Sect. 2, and the second
version in Sect. 3. Test computations are presented in Sect. 4,
and the concluding remarks are given in Sect. 5.

2 Extracting continuous temporal representation from
computed data

This is essentially a post-processing method, and can also be
seen as a data compression method.

2.1 Least-squares projection for full temporal domain

When we have the complete sequence of computed data,
we can project that to a smooth representation, with basis
functions that provide us that smooth representation, such as
NURBS basis functions. As an example, Fig. 1 shows the
goal continuous data φC and its basis functions, where ϑ

denotes the parametric temporal coordinate. The projection
for each spatial node can be done independently from the
other nodes. Consider the time-dependent, typically discon-
tinuous computed data φD for a node. We define the basis
functions as T α

C , where α = 0, 1, . . ., and the coefficients
to be determined in the projection as φα . We use a standard
least-squares projection: given φD, find the solution φC ∈ SC,
such that for all test functions wC ∈ VC:

T∫

0

wC (φC − φD) dt = 0, (1)

where T represents time period of the computation, and SC

and VC are the solution and test function spaces constructed
from the basis functions. This approach requires that we store
all the computed data before the projection, and that would

Fig. 1 Continuous solution (top) and its basis functions (bottom),
where ϑ is the parametric coordinate
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Fig. 2 Continuous solution up to tn = 4.0 (top) and its basis functions
(bottom)
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Fig. 3 Continuous solution up to tn+1 = 5.0 (top) and its basis func-
tions (bottom). The bold part of the top curve indicates the part of the
solution that does not change. The empty squares denote the temporal
control values to be determined. The dashed lines denote the modified
and new basis functions, which correspond to those control values

be a significant computer storage cost when the number of
time steps is large.

2.2 Successive-projection technique

In ST-C with the successive-projection technique (ST-C-
SPT), we extract the continuous solution shown in Fig. 1
without storing all the computed data.

2.2.1 Special case with quadratic B-splines

To explain the successive nature of the SPT, let us suppose
that we have the continuous solution extracted up to tn = 4.0,
as shown in Fig. 2. We assume that this continuous solution,
which we will call φC, has already replaced φD up to tn =
4.0. With that, we describe how we extract the continuous
solution up to tn+1 = 5.0, as shown in Fig. 3. With the newly
computed dataφD between tn = 4.0 and tn+1 = 5.0, we solve
the following projection equation: given φD on t ∈ (4.0, 5.0),
φC on t ∈ [2.0, 4.0], and φα

C, α = 2, 3, find φC ∈ SC, such
that ∀wC ∈ VC:

Fig. 4 Basis functions for the initial part (first two steps) of the extrac-
tion

4.0∫

2.0

wC
(
φC − φC

)
dt +

5.0∫

4.0

wC (φC − φD) dt = 0. (2)

We note that Eq. (2) is essentially used for defining the
coefficients φα

C, α = 4, 5, 6, which correspond to the basis
functions T α

C .
We now explain the initial part of the extraction. Figure 4

shows basis functions for the first two steps. In the first step,
we calculate the three coefficients to be determined by using
the equation

1.0∫

0.0

wC (φC − φD) dt = 0. (3)

In the second step, with the solution φC from the first
step, and the newly computed data φD, which is defined on
the parametric space 1

8 to 2
8 , we calculate the three new coef-

ficients to be determined by using the equation

1.0∫

0.0

wC
(
φC − φC

)
dt +

2.0∫

1.0

wC (φC − φD) dt = 0. (4)

For the steps after that, Eq. (2) is used.

2.2.2 General case

Let us suppose that we are using pth-order functions, as
shown in Fig. 5. We have the solution φC up to tn and the
newly computed data φD between tn and tn+1. We solve the
following projection equation written over p + 1 intervals
for the p + 1 coefficients φα

C to be determined: given φC and
φD, and with p coefficients φα

C specified, find φC ∈ SC, such
that ∀wC ∈ VC:

tn∫

tn−p

wC
(
φC − φC

)
dt +

tn+1∫

tn

wC (φC − φD) dt = 0. (5)
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Fig. 5 Continuous solution and basis functions up to tn (top two) and
for extraction up to tn+1 (bottom two). The bold part of the curve in
third plot indicates the part of the solution that does not change. The
empty squares denote the control values to be determined. The dashed
lines denote the modified and new basis functions, which correspond to
those control values

Fig. 6 Basis functions for the initial part (first p steps) of the compu-
tation

We again explain the initial part of the extraction. Figure 6
shows basis functions for the first p steps. In the first step
there are p + 1 coefficients to be determined. In the second
step, we keep the first coefficient and calculate the remaining
p + 1 coefficients. In the third step we keep also the second

coefficient and calculate the remaining p + 1 coefficients.
We keep going this way until we reach step p + 1, and that
is when we switch to Eq. (5). We generalize the extraction
procedure as follows:

tn∫

tm

wC
(
φC − φC

)
dt +

tn+1∫

tn

wC (φC − φD) dt = 0, (6)

where m = max(n − p, 0). In summary, the number of
unknowns is always p + 1, the number of specified coef-
ficients is min(n, p), and the number of intervals of the pro-
jection equation is min(n + 1, p + 1).

Remark 1 Another way of looking at this, we determine
the coefficients corresponding to all basis functions that are
nonzero in the last interval. This also means that the basis
functions with specified coefficients do not change between
the previous and current steps.

2.3 Efficient implementation of the SPT

In general, φD could be a solution computed over many time
steps in the interval tn to tn+1; for example, there could be
1,000 steps. We do not need to store such a large amount of
computed data to solve Eq. (5).The integration

tn+1∫

tn

wCφDdt (7)

would be performed at one of those 1,000 time steps at a
time.

3 Direct computation of the solution with continuous
temporal representation

In ST-C with the direct-computation technique (ST-C-DCT),
instead of extracting φC from φD, we compute it directly
from the variational formulation. To explain this concept,
let us consider an abstract differential equation, Ł(φ) = f .
Then, the counterpart of Eq. (1), before any integration by
parts, would be

tn+1∫

t0

∫

Ωt

wŁ(φ)dΩdt =
tn+1∫

t0

∫

Ωt

w f dΩdt. (8)

Instead of using Eq. (8), we use the counterpart of Eq. (6):

tn+1∫

tm

∫

Ωt

wŁ(φ)dΩdt =
tn+1∫

tm

∫

Ωt

w f dΩdt. (9)

As before, the number of equations and unknown coefficients
is p + 1, the number of specified coefficients is min(n, p),

123



Comput Mech (2014) 53:91–99 95

SP 1 LSP 1
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Fig. 7 SP with linear functions, compared with the exact solution and
solution obtained with LSP. The symbols denote the control values

and the number of intervals is min(n + 1, p + 1). The
initial guess for the unknown coefficients of the modified
basis functions can be set in such a way that the result-
ing φC is unchanged until tn (Bézier extraction technique
[71] can be used for determining the new coefficients). The
initial guess for the unknown coefficient of the new basis
function would be set by taking into account the problem-
dependent factors, such as using the same function value or its
derivative.

Remark 2 We note that Eq. (9) does not involve the jump
term seen in a typical ST formulation, and that is because
here the functions are continuous in time. However, if the
computation involves a temporal patch boundary because
of remeshing (see [48,52]), the jump term would come
back.

As an example, let us consider a first-order ordinary dif-
ferential equation, Ł(φ) = dφ

dt . The counterpart of Eq. (9),
after the integration by parts, is

wn+1φn+1 −
tn+1∫

tm

dw

dt
φdt =

tn+1∫

tm

w f dt. (10)

When the jump term comes back, which would happen at
t = t0, we start with

Fig. 8 SP with quadratic B-splines, compared with the exact solution
and solution obtained with LSP. The symbols denote the control values

w+
0

(
φ+

0 − φ−
0

) +
t1∫

t0

w
dφ

dt
dt =

t1∫

t0

w f dt, (11)

and after the integration by parts we obtain

w1φ1 − w+
0 φ−

0 −
t1∫

t0

dw

dt
φdt =

t1∫

t0

w f dt. (12)

Here φ−
0 is the value prior to remeshing.

An alternative to Eq. (9) would be

tn∫

tm

∫

Ωt

wŁ(φ)dΩdt −
tn∫

tm

∫

Ωt

wŁ(φ)dΩdt

+
tn+1∫

tn

∫

Ωt

wŁ(φ)dΩdt =
tn+1∫

tn

∫

Ωt

w f dΩdt, (13)

where φ, similar to φC, is the solution up to tn . While
this alternative form is a closer extension of Eq. (6),
we prefer Eq. (9) because we see it as a more direct
source.
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SP 3 LSP 3

Exact

Fig. 9 SP with cubic B-splines, compared with the exact solution and
solution obtained with LSP. The symbols denote the control values

4 Test calculations

We carry out test calculations to show how ST-C-SPT works.
In place of φD, we use the following function:

φ(t) = exp

(
− (t − 4)2

4

)
, (14)

where 0 ≤ t ≤ 8. We test SP with linear, quadratic, cubic,
and quartic B-splines. Figures 7,8,9, and 10 show the test
results for Δt = 2.0, together with the exact solution and
solution obtained with least-squares projection (LSP).

Figure 11 shows the “L2 Error,” defined as

L2 error =
⎛
⎝1

8

8∫

0

(
φh(t) − φ(t)

φ(t)

)2

dt

⎞
⎠

1
2

. (15)

Essentially both the SP and LSP have the same order of
accuracy; nth-order functions result in (n + 1)th-order accu-
racy. Figure 12 shows the “L2 Symmetry Error,” defined as

L2 symmetry error =
⎛
⎝1

8

8∫

0

(
φh(t) − φh(8 − t)

)2
dt

⎞
⎠

1
2

.

(16)

Fig. 10 SP with quartic B-splines, compared with the exact solution
and solution obtained with LSP. The symbols denote the control values

E
rr
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SP 1 LSP 1

SP 2 LSP 2

SP 3 LSP 3

SP 4 LSP 4

Fig. 11 L2 error
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SP 1

SP 3 SP 4

SP 2

Fig. 12 L2 symmetry error

We note that for LSP this error is zero. The figure shows that
the asymmetry is decreasing quickly with increasing order
of the basis functions.

5 Concluding remarks

We have introduced ST computation techniques with contin-
uous representation in time (ST-C), using temporal NURBS
basis functions. With ST-C, we can have a temporally smooth
solution, which is sometimes desirable. We also deal with the
computed data in a more efficient way, because we can rep-
resent the data with fewer temporal control points, resulting
in reduced computer storage cost. We have introduced two
versions of ST-C. In the first version, the continuous repre-
sentation is extracted by projection from a solution already
computed, typically a discontinuous one, but not necessarily
limited to solutions computed with ST techniques. Because
we use a SPT with a small number of temporal NURBS
basis functions at each projection, the extraction can take
place as the solution with discontinuous temporal represen-
tation is being computed, without storing a large amount of
time-history data. We call the first version ST-C-SPT. In the
second version, the solution with continuous temporal rep-
resentation is obtained by a direct computation technique
(DCT), from the ST variational formulation associated with
each time step. Again, this can be done with a small number of
temporal NURBS basis functions, resulting in efficient com-

putation and storage. We call the second version ST-C-DCT.
The test calculations with ST-C-SPT show that the technique
works quite effectively.
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