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Abstract In this paper, we develop a method based on local
maximum entropy shape functions together with enrichment
functions used in partition of unity methods to discretize
problems in linear elastic fracture mechanics. We obtain
improved accuracy relative to the standard extended finite
element method at a comparable computational cost. In addi-
tion, we keep the advantages of the LME shape functions,
such as smoothness and non-negativity. We show numeri-
cally that optimal convergence (same as in FEM) for energy
norm and stress intensity factors can be obtained through
the use of geometric (fixed area) enrichment with no special
treatment of the nodes near the crack such as blending or
shifting.
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1 Introduction

Maximum entropy shape functions are a relatively new class
of approximation functions, as they were first introduced in
[1] in the context of polygonal interpolation. The idea of these
functions is to maximize the Shannon entropy [2] of the basis
functions, which gives a measure of the uncertainty in the
approximation scheme. The principle of maximum entropy
(max-ent) was developed by Jaynes [3,4], who showed that
there is a natural correspondence between statistical mechan-
ics and information theory. In particular, max-ent offers the
least-biased statistical inference when the shape functions
are viewed as probability distributions subject to the approx-
imation constraints (such as linear reproducing properties).
However, without additional constraints, the basis functions
are non-local, which due to increased overlapping makes
them unsuitable for analysis using Galerkin methods. The
increased overlapping of the basis functions generally leads
to more expensive numerical integration due to the large num-
ber of evaluation points. It also produces a non-sparse stiff-
ness matrix, resulting in a linear system that is much more
expensive to solve.

The local maximum-entropy (LME) approximation
schemes were developed in [5] using a framework similar
to meshfree methods. Here the support of the basis functions
is introduced as a thermalization (or penalty) parameter β

in the constraint equations. When β = 0, then the max-
ent principle is fully satisfied and the basis functions will
be least biased. For example, if only zero-order consistency
is required, the shape functions are Shepard approximants
[6] with Gaussian weight function. When β is large, then
the shape functions have minimal support. In particular, they
become the usual linear finite element functions defined on
a Delaunay triangulation of the domain associated with the
given node set. In [5] it was shown that for some values of β,
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the approximation properties of the maximum-entropy basis
functions are greatly superior to those of the finite element
linear functions, even when the added computational cost
due to larger support is taken into account.

Subsequent studies, such as [7–9], show that maximum
entropy shape functions are suitable for solving a variety
of problems such as thin shell analysis, compressible and
nearly-incompressible elasticity and incompressible media
problems. Higher order approximations can also be obtained
using the max-ent framework, as shown in [10]. This class
of methods is therefore related to the MLS-based meshless
methods (due to the node-based formulation) and isogeo-
metric analysis (with whom it shares features such as weak
Kronecker delta and non-negativity), inheriting some advan-
tages from both.

In this work, we propose a coupling of the LME shape
functions with the extrinsic enrichments used in partition of
unity enriched methods for fracture, such as the extended
finite element method (XFEM), see [11–13].

There is a growing interest in modeling fracture mechan-
ics with enrichment functions combined with meshless meth-
ods [14–16], isogeometric analysis [17], or strain-smoothed
XFEM [18,19]. Advantages of the meshless and isogeomet-
ric methods include the possibility to model curved bound-
aries through higher order shape functions and to resolve the
gradient fields more accurately than with low order Lagrange
elements. This higher regularity of the basis functions is also
particularly advantageous when the model problem requires
it, such as for the Kirchhoff–Love theory. Also in some
enriched meshless methods, no representation of the crack’s
topology is needed as this is handled through cracking parti-
cles as in [20] or weight-function enrichments as in [21,22].

Here, we show that the enriched maximum entropy shape
functions are suitable for this class of problems. Moreover,
this method is more accurate than standard XFEM and does
not require the so-called blending elements (the elements
near the crack tip). When compared to usual meshfree meth-
ods for crack propagation, such as Element Free Galerkin
(EFG), the method presented here can more easily deal with
essential boundary conditions, due to the fact that the shape
functions satisfy a weak Kronecker delta property. The shape
functions are also very smooth (C∞), which results in an
accurate numerical integration with a relatively low number
of integration points, especially for Gauss–Legendre quadra-
ture [5,8,10]. Moreover, smooth and non-negative basis func-
tions, such as those used in isogeometric analysis are gaining
impetus.

The paper is organized as follows: in the next section we
will briefly describe the LME approximants. Then we will
introduce the coupling between LME and XFEM, with par-
ticular reference to implementation issues such as numerical
integration. Next we examine the accuracy of the method
through several numerical examples, which indicate that the

convergence rates for the energy norm of the error and the
stress-intensity factors, are O(h) and O(h2) respectively.
Some concluding remarks are stated in the last section.

2 Local maximum entropy (LME) approximants

Local maximum entropy meshfree approximants, introduced
in [5], are related to other convex approximation schemes,
such as natural neighbor approximants [23], subdivision
approximants [24], or B-spline and NURBS basis func-
tions [25]. The LME basis functions will be denoted by
pa(x), a = 1, . . . , N with x ∈ R

d , d is the dimension of
the physical domain. They are non-negative and are required
to satisfy the zeroth-order and first-order consistency condi-
tions:

pa(x) ≥ 0, (1)
N∑

a=1

pa(x) = 1, (2)

N∑

a=1

pa(x)xa = x. (3)

In the last equation, the vector xa identifies the positions of
the nodes associated with each basis function. Consider a set
of nodes X = {xa}a=1,...,N , which we will call the node set.
The convex hull of X is the set

convX := {x ∈ R
d |x = Xλ, λ ∈ R

N+ , 1 · λ = 1} (4)

Here R
N+ is the non-negative orthant, 1 denotes the vector in

R
N whose entries are one, and X is the d × N matrix whose

columns are the co-ordinates of the position vectors of the
nodes in the node set X [5]. Convex approximants, which are
in the span of convex basis functions, can only exist within
the convex hull of X (or subsets of it) and satisfy a weak Kro-
necker delta property at the boundary of the convex hull of
the nodes. This means that the shape functions correspond-
ing to the interior nodes vanish on the boundary. With this
property, the imposition of essential boundary conditions in
the Galerkin method is straightforward.

The principle of maximum entropy comes from statisti-
cal physics and information theory, which consider the mea-
sure of uncertainty or information entropy [2]. Consider a
random variable χ : I → R

d , where I is the index set
I = {1, . . . , N } and χ(a) = xa gives to each index the posi-
tion vector of its corresponding node. Since the shape func-
tions of a convex approximation scheme are non-negative
and add to one, we regard {p1(x), . . . , pN (x)} as the corre-
sponding probabilities. The statistical expectation or average
of this random variable, as regarding Eq. (3), is x. Accord-
ing to this interpretation, the approximation of a function
u(x) ≈ ∑N

a=1 pa(x)ua from the nodal values {ua}a = 1,...,N
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is understood as an expected value u(x) of a random variable
μ : I → R where μ(a) = ua .

The main idea of max-ent is to maximize the Shannon’s
entropy, H(p1, p2, . . . , pN ), subject to the consistency con-
straints as follows:

(ME) For a fixed x maximize (5)

H(p1, p2, . . . , pN ) = −
N∑

a=1

pa log(pa)

subject to pa ≥ 0, a = 1, ..., N
N∑

a=1

pa = 1

N∑

a=1

paxa = x

Solving the (ME) problem produces the set of basis functions,
pa := pa(x), a = 1, . . . , N . However, these basis functions
are non-local, i.e. they have support in all of convX , and are
not suitable for use in a Galerkin approximation because it
would lead to a full, non-banded matrix. Nevertheless, they
have been used in [1] as basis functions for polygonal ele-
ments.

Another optimization problem which takes into account
the locality of the shape functions is Rajan’s form of the
Delaunay triangulation [26]. This can be stated as the fol-
lowing linear program:

(RAJ) For a fixed x minimize (6)

U (x, p1, p2, . . . , pN ) =
N∑

a=1

pa |x − xa |2

subject to pa ≥ 0, a = 1, . . . , N
N∑

a=1

pa = 1

N∑

a=1

paxa = x

It is easy to see that U (x, p1, p2, . . . , pN ) is minimized when
the shape functions p1, . . . , pN decay rapidly as the distance
from the corresponding nodes xa increases. There, the shape
functions that satisfy (RAJ) problem will have small sup-
ports, where the support can be defined up to a small tolerance
ε by

supp(pa) = {x : pa(x) > ε}

The main idea of LME approximants is to compromise
between the (ME) problem and the (RAJ) problem by intro-
ducing parameters βa that control the support of the pa .

Therefore we write:

For a fixed x minimize (7)
N∑

a=1

βa pa |x − xa |2 +
N∑

a=1

pa log(pa)

subject to pa ≥ 0, a = 1, . . . , N
N∑

a=1

pa = 1

N∑

a=1

paxa = x

The non-negative parameters βa can in general be functions
of the position x. This convex optimization problem is solved
efficiently by a duality method as described in [5]. Finally,
the shape functions are written in the form:

pa(x)= 1

Z(x, λ∗(x))
exp[−βa |x−xa |2+λ∗(x) · (x − xa)]

where

Z(x, λ) =
N∑

b=1

exp[−βb |x − xb|2 + λ · (x − xb)]

is a function associated with the node set X and λ∗(x) is
defined by

λ∗(x) = arg min
λ∈Rd

log Z(x, λ)

The local max-ent shape functions are as smooth as β(x)

and pa(x, βa) is a continuous function of β ∈ [0,+∞) [5].
For example LME shape functions are C∞ if β is constant.
In this paper we choose β = γ

h2 , where h is a measure of the
nodal spacing and γ is constant over the domain. In this case
the shape functions are smooth and their degree of locality is
controlled by the parameter γ . A plot of the LME functions
for γ = 1.8 and a particular choice of nodes is given in
Fig. 1. In general, the optimal β is not obvious and this will
be discussed later in this paper.

As we mentioned before, LME shape functions satisfy a
weak Kronecker delta property at the boundary of the con-
vex hull of the nodes. Therefore, the shape functions that
correspond to interior nodes vanish on the boundary.

3 Brief on extrinsic enrichments for partition of unity
methods

3.1 Description

The main idea of partition of unity (PU) enrichment as used
here is to extend the max-ent approximation space with some
additional enrichment functions. The proposed method is
based on a local PU and uses an extrinsic enrichment to
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Fig. 1 Local max-ent shape functions in 2D

model the discontinuity. The max-ent approximation can be
decomposed into a standard part and an enriched part:

uh(x) =
∑

I∈W

pI (x)uI +
∑

J∈Wb

pJ (x)χ(φ(x))aJ

+
∑

K∈Ws

pK (x)

4∑

k = 1

Bk(x)bkK

Here the first term is the standard approximation part and
the second and the third terms are the enriched parts. W
is the set of nodes in the entire discretization and Wb and
Ws are the sets of enriched nodes. pI are the shape func-
tions and χ and Bk are the enrichment functions. Normally,
χ is selected as a step or Heaviside function and is used
to enrich the nodes where the supports of the LME shape
functions are completely cut by the crack. Bk are branch
functions and are used to enrich the shape functions whose
supports include the crack tip. In this paper we use a geomet-
ric (fixed area) enrichment, and therefore we obtain optimal
convergence rate [O(h2)] without a special treatment of the
so-called ”blending” area around the crack tip. Branch func-
tions are defined as follows (in polar coordinate relative to
the crack tip, denoted by xtip):

B1(r, θ) = √
r sin

θ

2
(8)

B2(r, θ) = √
r cos

θ

2
(9)

B3(r, θ) = √
r sin

θ

2
cos θ (10)

B4(r, θ) = √
r cos

θ

2
cos θ, (11)

where r = ∣∣x − xti p
∣∣.

φ(x) is the signed distance from the point x to the crack
segment and aI and bk I are additional degrees of freedom
[27]. The signed distance function is defined as:

Fig. 2 Signed distance function

φ(x) = min
xΓ ∈Γ

|x − xΓ | sign(n · (x − xΓ ))

Here Γ is the curve of discontinuity, xΓ is an arbitrary point
on Γ and n is normal vector to Γ (see Fig. 2). If we choose
χ as a Heaviside function, then

H(φ(x)) =
{

1 if φ(x) > 0

−1 if φ(x) < 0
(12)

This enrichment function captures the jump across the crack
faces.

In order to model a curved crack, the signed distance
function can be approximated by the same shape functions
as the displacement. Assume t is a vector tangent to the
curved crack, directed towards the crack tip. We approximate
φ by:

φ̃(x) =
∑

I

pI (x)φI , x ∈ Ωφ (13)

Here φI are the nodal values of φ, pI are the shape functions
and Ωφ , is the domain of definition for φ, given by:

Ωφ := {x|t · ∇r(x) > 0} (14)

So, the approximated crack position is considered as:

Γ := {x|φ̃(x) = 0, x ∈ Ωφ} (15)

In this case, φ̃(x) is not defined beyond the crack tip. So,
two possibilities are considered for the angle θ of the Branch
functions. If t · ∇r ≤ 0, then the regular polar angle from −t
is computed. If t · ∇r > 0, θ is considered as in [28]:

θ = arctan(
−φ√

r2 − φ2
) (16)
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3.2 Numerical integration

3.2.1 Numerical integration for LME

The numerical integration of LME shape functions poses
similar challenges as that of the shape functions used in mesh-
less methods. In particular, the integrands used in the assem-
bly of the stiffness matrix are non-polynomial and (depend-
ing on the values of the parameter γ ) the supports of the shape
functions overlap more than in standard finite elements. How-
ever, the shape functions are smooth so only a relatively small
number of integration points are required.

In the examples we considered, we used quadrilateral
background integration cells for integrating the shape func-
tions whose support does not intersect the crack. For the
values of γ between 4.8 and 1.8, and for uniformly spaced
nodes and square we found that the 4 × 4 Gauss quadrature
rule is sufficient to ensure optimal convergence. Moreover,
a quadrature rule with 8 × 8 Gauss points provides close to
exact integration (i.e. the results change by less than 10−6

when the number of Gauss points is further increased).

3.3 Numerical integration for enriched LME

The usual numerical integration methods, for example Gauss
quadrature, are less accurate for PU-enriched methods for
fracture. This happens due to the discontinuity along the
crack, and the singularity at the crack tip. The usual rule
is to use a simple splitting of integration cells crossed by the
crack [29]. In [30], a method was proposed in which each part
of the elements that are cut or intersected by a discontinuity
is mapped onto the unit disk using a conformal Schwarz–
Christoffel map. However, for straight cracks, a triangulation
of the elements cut by the crack which takes into account the
location of the discontinuity is relatively easy to implement
and was used in this work.

For the integration cells that contain the crack tip, special
care has to be taken. These cells contain the discontinuity and
a singularity together. So, simply refining the triangles that
make up the integration cells leads to less accurate numerical
results. A simple solution is to refine locally each split trian-
gle, until an acceptable estimate of the integrands is achieved.
Unfortunately, this method is expensive. To solve this prob-
lem, the almost polar integration was introduced in [29].
The main idea is to build a quadrature rule on a triangle from
a quadrature rule on the unit square (see Fig. 3). The map
is:

T : (x, y) −→ (xy, y)

which maps a square into a triangle. By looking at the inte-
grands which contain the derivatives of the branch functions,
we notice that the Jacobian of the transformation T , will
cancel the r−1/2 singularity. This integration method gives

Fig. 3 Transformation of an integration method on a square into an
integration method on a triangle for crack tip functions

excellent results with a low number of integration points and
is used on the sub-triangles having the crack tip as a vertex.
In the other integration cells, we found it is sufficient to use
standard Gauss quadrature over a background mesh (such
as the Delaunay triangulation of the nodes that takes in to
account the discontinuity for the cells cut by the crack).

An important distinction between meshless methods and
standard finite elements is that, in the former, the numeri-
cal integration is almost never exact. Recent work [31] has
shown that integration errors in meshless methods negatively
impact the stability of the method when a large number of
degrees of freedom is involved. In particular, as the value of
the discretization parameter h decreases, the accuracy of the
numerical integration should increase proportionally, so that
optimal convergence can be obtained. We have conducted a
detailed study on the effect of approximate integration for
one of the numerical examples shown below.

3.4 Condition number

There are two ways to choose the enrichment area: topologi-
cal enrichment in which the area of enrichment shrinks with
the nodal spacing h, and geometric enrichment which uses a
fixed enrichment area. In topological enrichment, the branch
functions are multiplied by shape functions on a small set of
nodes around the crack tip. These singular functions live on
a compact support vanishing as h goes to zero. In the con-
text of meshless methods, only topological enrichment has
been studied, which leads to non-optimal convergence rate.
However, the numerical results of this paper show that the
enrichment area should have a size independent of the mesh
parameter (i.e. it should be geometric) to obtain optimal con-
vergence, as seen for standard XFEM in [29,32]. Unfortu-
nately, adding singular functions on all the nodes within a
fixed area around the crack tip leads to an increase in the
number of degrees of freedom and an increase in the condi-
tion number (see Fig. 4).

Some methods were proposed to improve the condition
number of the stiffness matrix, such as preconditioning
schemes. Here we use a method introduced in [32] which
relies on a Cholesky decomposition of the diagonal blocks
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Fig. 4 The condition number of geometric and topological enrichment
for γ = 1.8 and γ = 4.8, using a direct solver and the preconditioning
method

of the stiffness matrix corresponding to enriched nodes. This
method noticeably improves the condition number (see Fig.
4), but not the rate of increase as the mesh is refined. A robust
preconditioning scheme for XFEM was proposed in [33],
which is based on a domain decomposition and results in a
condition number close to the finite element matrices with-
out enrichment. Another promising development for improv-
ing the condition number of geometric enrichment has been
developed in [34]. This improvements will be discussed in a
future work.

4 Numerical examples

4.1 Infinite plate with a horizontal crack

Consider an infinite plate containing a straight crack of length
2a under a remote uniform stress field σ as shown in Fig. 5.
The analytical solution near crack tip for stress fields and
displacement in terms of local polar coordinates from the
crack tip are [14]

σxx (r, θ) = K I√
r

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

Fig. 5 Infinite plate with a center crack under uniform tension and
modeled geometry ABCD

σyy(r, θ) = K I√
r

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)

σxy(r, θ) = K I√
r

sin
θ

2
cos

θ

2
cos

3θ

2

ux (r, θ) = 2(1 + υ)√
2π

K I

E

√
r cos

θ

2

(
2 − 2υ − cos2 θ

2

)

uy(r, θ) = 2(1 + υ)√
2π

K I

E

√
r sin

θ

2

(
2 − 2υ − cos2 θ

2

)

where K I = σ
√

πa is the stress intensity factor (SIF), υ

is Poisson’s ratio and E is Young’s modulus. The analytical
solution is valid for region close enough to the crack tip. We
consider a square ABCD of length 10 mm × 10 mm, a =
100 mm, E = 107 N/mm2, υ = 0.3, σ = 104 N/mm2 and
the modeled crack length is 5 mm. In all problems of this
paper, plane strain state is assumed. We use Dirichlet bound-
ary conditions on the bottom, right and top edges and Neu-
mann boundary conditions on the left edge which includes
the crack. As we mentioned in Sect. 2, LME shape func-
tions satisfy a weak Kronecker delta property. This property
allows us to impose Dirichlet boundary conditions by com-
puting a node-based interpolant or an L2 projection of the
boundary data. The latter can also be used for edges that
contain enriched nodes. Numerical integration is performed
on a background mesh of rectangular elements and the almost
polar integration is used on the elements containing a crack
tip.

Approximation errors in L2 norm and energy norm
are illustrated in Figs. 6 and 7 for different values of γ .
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Fig. 6 Error in the L2 norm for the horizontal crack problem
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Fig. 7 Error in the energy norm for the horizontal crack problem

Figure 8 shows the percentage error for SIFs. It is obvious
from these figures that in this case there is an optimal value
for the parameter γ of around 1.8 for which accuracy is max-
imized. For very low values of γ , convergence is degraded.
This is due to numerical integration. With a higher number of
Gauss points and γ = 0.8, the optimal rate of convergence
for a plane elasticity problem was recovered in [5]. But in
that case, the method is very expensive. The LME results
converge to the standard XFEM results as γ increases.

As shown in Figs. 6 and 7, the rate of convergence for
different values of γ , the parameter that controls the sup-
port of the shape functions, is 2 for L2 norm and 1 for the
energy norm. This agrees with the a priori error estimates
for XFEM established in the literature (see [35]). For a fixed
number of nodes, when γ decreases the error also decreases.
For example, for n = 36 × 36 we see from Table 1 that
the error becomes smaller as γ decreases to 0.8. However,
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Fig. 8 Percentage error of stress intensity factor for horizontal crack

as γ decreases, because the support of the LME shape func-
tions becomes larger, we also need to consider a larger radius
of influence (the distance of the neighbor search between
the nodes), which leads to more function evaluations and
increases the computational cost. In this study, we found that
choosing γ = 1.8, which corresponds to a radius of influ-
ence of three nodes, provides a reasonable balance between
accuracy and computational cost.

We note from Table 1 that LME is significantly slower
than XFEM for the same number of nodes, and that the com-
putational cost increases as γ decreases due to larger radius
of influence. However, especially for γ = 1.8, the method is
much more accurate than XFEM, which makes up for some
of the computational cost. This is particularly true for the
computation of the SIF, where the error is almost nine times
smaller (although the method is 7 times slower). For γ = 0.8
and 36 × 36 nodes the method is even more accurate, but
unfortunately as was discussed before, the method becomes
prohibitively expensive.

In Table 1, we also show the computational efficiency of
the method which we define by:

efficiency = % improvement in accuracy

% increase in total computational time
(17)

We note that an efficiency index of 1 indicates the method
is as efficient as XFEM, an index >1 indicates the method
is more efficient than XFEM, and an index <1 indicates
the method is less efficient. Because of the additional over-
head required (Newton iterations, neighbor node search, less-
sparse stiffness matrix), XLME in the current implementa-
tion is generally less efficient than XFEM. The ratios showed
in Table 1 are representative for any number of nodes and for
the other model problems considered later in this paper. In
general, the results agree with other findings in literature,
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Table 1 Error for energy norm and SIF together with the running time and efficiency ratio (17) for a problem discretized with 36 × 36 nodes.

Method XFEM γ = 4.8 γ = 3.8 γ = 2.8 γ = 1.8 γ = 0.8

Rad. of Infl. 1 2 2 3 3 6

L2 error 0.00023 0.00023 0.00020 0.00015 0.00008 0.00002

Energy error 0.04610 0.04532 0.04161 0.03160 0.01752 0.00640

SIF error 0.08821 0.08474 0.07020 0.03979 0.01016 0.00226

Assembly time 7.2 26.2 24.4 59.7 58.8 226.0

Solution time 0.4 1.4 1.3 2.8 2.9 8.0

Post-proc. time 9.0 22.9 21.5 39.3 38.3 109.6

Total time 16.6 50.5 47.2 101.8 100.1 343.6

Efficiency (L2) 1.000 0.338 0.405 0.258 0.506 0.663

Efficiency (energy) 1.000 0.335 0.390 0.238 0.437 0.348

Efficiency (SIF) 1.000 0.343 0.442 0.362 1.443 1.886

which show that LME is more efficient than MLS but less
efficient than FEM [36].

For the problems studied in this work, even in the cases
of standard XFEM, the integration is not exact. This is
because the Branch enrichment functions (8)–(11) are non-
polynomial in nature. To study the effect of approximate inte-
gration on the accuracy and stability of the solution, we have
considered Gauss quadratures with a varying number of eval-
uation points. The relative errors in energy norm obtained for
XFEM and for XLME with γ = 1.8 are shown in Fig. 9. The
figure shows the convergence study for a larger number of
nodes (up to n = 196×196). We observe that for both XFEM
and XLME, a 3 × 3 Gauss quadrature is not sufficient for a
stable solution and the results diverge in the case of XFEM,
or become unstable in the case of XLME. However, with a
Gauss quadrature of 4×4 or more points, the error in XFEM
remains constant and optimal convergence is achieved (the
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Fig. 9 Error in the energy norm for XLME and XFEM and different
quadrature rules.

lines corresponding to 4 × 4, 5 × 5 and 6 × 6 Gauss points
overlap and have slope m = 1.00).

For XLME with γ = 1.8 and with a 4 × 4 Gauss quadra-
ture, the convergence rate becomes sub-optimal as the num-
ber of degrees of freedom increases (the slope is m = 0.83).
However, the lines corresponding to 5 × 5 and 6 × 6 Gauss
points overlap almost completely, with only a slight differ-
ence that appears when the number of degrees of freedom
exceeds 100,000. The slope of the convergence line that best
fits the data points is m = 0.95 in both cases. This indicates
that the error due to numerical integration when 5×5 or more
Gauss points are used is very small. It is possible that as the
number of degrees of freedom increases, an even larger num-
ber of Gauss points per integration element will be needed, in
line with the results obtained by [31]. In such cases, an adap-
tive numerical quadrature method may be needed. However,
the LME shape functions are very smooth (C∞), so in gen-
eral the integration should be less problematic in comparison
to other meshless methods.

We compute the SIFs by the interaction integral method,
where the domain form of the interaction integral is given by
[37]

I (1,2) =
∫

A

[
σ

(1)
i j

∂u2
i

∂x1
− σ

(2)
i j

∂u1
i

∂x1
− W (1,2)δ1 j

]
∂q

∂x j
d A

The domain of integration, A, is set to be the union of all
the elements which have a node within a ball of radius rd

around the crack tip (see Fig. 10). Since we use a fixed area
enrichment, rd is also a fixed distance. We found that most
accurate results are obtained when rd is half of the modeled
crack length. This results in a superconvergent (O(h2)) rate
for K I , as also reported for XFEM in [29] and [32].

The weight function q is taken to have a value of unity for
all nodes within the ball rd , and zero on the outside of the ball.
Hence, the bilinear shape functions are used as the weight
functions. W (1,2) is the interaction strain energy density
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Fig. 10 Elements which have a node within a ball of radius rd around
the crack tip

W (1,2) = σ
(1)
i j ε

(2)
i j = σ

(2)
i j ε

(1)
i j

σ
(1)
i j and ε

(1)
i j are computed stresses and strains and σ

(2)
i j

and ε
(2)
i j are auxiliary stresses and strains derived by Wester-

gaard and Williams, corresponding to mode 1 and mode 2 as
described in [37].

4.2 Edge crack under shear traction

The second problem investigated in this paper, is a finite
dimensional plate subjected to uniform shear on the top of
the plate τ = 1.0 N/mm2 and the bottom is fixed, as shown
in the Fig. 11. We choose Young’s modulus E = 3 × 107 Pa
and Poisson’s ratio ν = 0.25.

The SIFs K I and K I I , are calculated by the extended LME
method and compared to the reference solutions [38]:

K ref
I = 34.0

K ref
I I = 4.55

We note that these values were calculated using a bound-
ary collocation method and are given with an accuracy of
3 significant digits. The SIFs K I and K I I calculated by the
extended LME method on a fine mesh converge to the fol-
lowing values (accurate to 4 significant digits):

K 0
I = 34.04

K 0
I I = 4.537

We note that there is a very good agreement between the
reference solution and our computed solution. To study the
convergence of the method we calculated the percentage error
between the computed SIFs at various levels of refinement
and K 0

I and K 0
I I .

Figures 12 and 13 illustrate the percentage error for K I

and K I I . As evident from these figures, the smallest error
for this problem is obtained by γ = 1.8 and γ = 2.8. We

Fig. 11 Edge-cracked plate under shear stress
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Fig. 12 Percentage error of K I for edge-cracked plate under shear
stress

note that for these values of γ the error becomes <0.01 %,
which is equal to K 0

I and K 0
I I up to the given significant

digits. For values of γ that are lower than 1.8, computing the
SIF accurately becomes expensive due to the large support
of the shape functions. Therefore, we will not consider the
case γ = 0.8 in the following examples.
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Fig. 13 Percentage error of K I I for edge-cracked plate under shear
stress

4.3 Slanted crack in an infinite plate

Consider an infinite plate containing an angled crack as
shown in Fig. 14a. This problem is a mixed mode I–II prob-
lem. The analytical near-tip field solution for this problem in
polar coordinates is given in [39]

σxx (r, θ) = K I√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

− K I I√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)

σyy(r, θ) = K I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)

+ K I I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

σxy(r, θ) = K I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

+ K I I√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

ux (r, θ) = K I

2μ

√
r

2π
cos

θ

2

(
κ − 1 + 2 sin2 θ

2

)

+ K I I

2μ

√
r

2π
sin

θ

2

(
κ + 1 + 2 cos2 θ

2

)

uy(r, θ) = K I

2μ

√
r

2π
sin

θ

2

(
κ + 1 − 2 cos2 θ

2

)

− K I I

2μ

√
r

2π
cos

θ

2

(
κ − 1 − 2 sin2 θ

2

)

Here μ is the shear modulus, κ = 3 − 4υ for plane strain.
The angle θ and the distance r from the crack tip are indicated
in Fig. 14b.

We redefine the x-coordinate axis to coincide with the
crack orientation [40], see Fig. 14b. The applied stress is
decomposed into normal and shear components. The stress
normal to the crack, σyy , produces pure mode I loading, while
σxy applies mode II loading to the crack. The stress intensity
factors for the plate, can be computed by the relationship
between σyy and σxy relative to σ and α through Mohr’s
circle [41]

K I = σyy
√

πa = σ cos2 α
√

πa

K I I = σxy
√

πa = σ sin α cos α
√

πa

In this problem, we again modeled a square region around
the crack tip, the gray square in Fig. 14b, and chose different
values for crack’s angle. The same tendency as for the 1st
example is observed for this mixed mode problem. Again,

Fig. 14 a Slanted crack in an
infinite plate where the principal
stress is not perpendicular to the
crack. b An infinite plate rotated
with respect to the crack’s angle
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Table 2 Error and the average running time when the number of nodes is 36 × 36, the number of Gauss points is 16, α = 15◦, 30◦ and radius of
influence is 2 for γ = 4.8 and γ = 3.8, 3 for γ = 2.8 and γ = 1.8

γ Relative error of
K I , α = 15◦

Relative error of
K I I , α = 15◦

Relative error of
K I , α = 30◦

Relative error of
K I I , α = 30◦

Average total
running time (s)

XFEM 0.088212 0.014660 0.088209 0.014663 15.7

4.8 0.084748 0.013936 0.084753 0.013924 49.0

3.8 0.070224 0.011169 0.070251 0.011112 46.7

2.8 0.039802 0.005500 0.039819 0.005465 101.4

1.8 0.010153 0.002018 0.010146 0.002010 99.9
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Fig. 15 Percentage error of K I for slanted crack in an infinite plate
with α = 30◦
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Fig. 16 Percentage error of K I I for slanted crack in an infinite plate
with α = 30◦

γ = 1.8 gives the most accurate results and this method has
a convergence rate of approximately 2.

As shown in Table 2 when γ decreases to the optimal
value, in this case γ = 1.8, the error decreases, however

the computational cost increases due to a larger radius of
influence of the shape functions. Nevertheless, we note that
the error is much smaller (almost an order of magnitude)
between γ = 4.8, which is virtually the same as standard
XFEM, and γ = 1.8. We note that there is only a very small
difference between the α = 15◦ and α = 30◦. This can be
explained by the fact that the discretization is identical, the
only difference being the size of the forces applied to the
boundaries, as can been seen from Fig. 14. The log-log plots
indicating the convergence rates of K I and K I I with α = 30◦
are shown in Figs. 15 and 16. We also computed the errors
for K I and K I I for angles α = 45◦, 60◦, 75◦ with similar
results.

5 Conclusions

We have developed a LME approximation scheme for frac-
ture using enrichment functions to allow the approximation
to reproduce near-tip fields and the jumps through the crack
faces. The LME shape functions are non-negative which
improves stability, and they possess a weak Kronecker delta
property which makes it easy to impose the boundary condi-
tions. With a fixed area (geometric) enrichment, optimal con-
vergence is obtained. The LME basis functions are in general
not polynomials but rather particle-based smooth functions,
whose support is dictated by a non-dimensional parameter
γ . When γ decreases, the LME shape functions have better
approximation properties compared to standard FEM shape
functions, but the size of their support increases. Hence, accu-
rate numerical integration using standard Gauss quadrature
requires a greater number of function evaluations. We con-
clude that there is an optimal value of γ of around 1.8 that
maximizes the accuracy in relation to computational cost.

For computation of SIFs, this method is competitive in
terms of costs compared to XFEM. Very likely, it is pos-
sible to improve the computational efficiency further. In
particular, we plan to investigate the development of an
efficient integration scheme, goal-oriented adaptivity for
the parameter γ and the enrichment radius, as well as
methods to improve the condition number of the stiffness
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matrix. The proposed approximation also shows a lot of
potential for other problems which will be examined in
the future, such as crack growth and fracture in thin shell
bodies.
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