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Abstract We present the space–time variational multiscale
(ST-VMS) computation of wind-turbine rotor and tower
aerodynamics. The rotor geometry is that of the NREL
5MW offshore baseline wind turbine. We compute with a
given wind speed and a specified rotor speed. The compu-
tation is challenging because of the large Reynolds num-
bers and rotating turbulent flows, and computing the cor-
rect torque requires an accurate and meticulous numerical
approach. The presence of the tower increases the com-
putational challenge because of the fast, rotational relative
motion between the rotor and tower. The ST-VMS method is
the residual-based VMS version of the Deforming-Spatial-
Domain/Stabilized ST (DSD/SST) method, and is also called
“DSD/SST-VMST” method (i.e., the version with the VMS
turbulence model). In calculating the stabilization parameters
embedded in the method, we are using a new element length
definition for the diffusion-dominated limit. The DSD/SST
method, which was introduced as a general-purpose moving-
mesh method for computation of flows with moving inter-
faces, requires a mesh update method. Mesh update typi-
cally consists of moving the mesh for as long as possible
and remeshing as needed. In the computations reported here,
NURBS basis functions are used for the temporal representa-
tion of the rotor motion, enabling us to represent the circular
paths associated with that motion exactly and specify a con-
stant angular velocity corresponding to the invariant speeds
along those paths. In addition, temporal NURBS basis func-
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tions are used in representation of the motion and deforma-
tion of the volume meshes computed and also in remesh-
ing. We name this “ST/NURBS Mesh Update Method (STN-
MUM).” The STNMUM increases computational efficiency
in terms of computer time and storage, and computational
flexibility in terms of being able to change the time-step size
of the computation. We use layers of thin elements near the
blade surfaces, which undergo rigid-body motion with the
rotor. We compare the results from computations with and
without tower, and we also compare using NURBS and lin-
ear finite element basis functions in temporal representation
of the mesh motion.

Keywords Space–time VMS method · DSD/SST-VMST ·
Wind-turbine rotor and tower aerodynamics · Mesh motion ·
Remeshing · Temporal NURBS functions · ST/NURBS
Mesh Update Method · STNMUM

1 Introduction

The Deforming-Spatial-Domain/Stabilized Space–Time
(DSD/SST) formulation [1–8] is a general-purpose moving-
mesh method for computation of flows with moving
interfaces. Its stabilization components are the Streamline-
Upwind/Petrov-Galerkin (SUPG) [9] and Pressure-Stabi-
lizing/ Petrov-Galerkin (PSPG) [1,10] methods. The ST vari-
ational multiscale (ST-VMS) method [7] is a shorter name
for the VMS version of the DSD/SST method, which was
originally called “DSD/SST-VMST” (i.e. the version with
the VMS turbulence model) in [6]. The VMS components
are from the residual-based VMS method given in [11–14].
The original DSD/SST formulation was named “DSD/SST-
SUPS” in [6] (i.e. the version with the SUPG/PSPG stabi-
lization), which was also called “ST-SUPS” in [8].
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The Arbitrary Lagrangian–Eulerian (ALE) finite element
formulation [15] is the most commonly used moving-mesh
approach in computation of flow problems with moving inter-
faces, including fluid–structure interaction (FSI) problems
(see, for example, [16–34]). However, the DSD/SST formu-
lation has also been applied to some of the most challenging
moving-interface problems, including FSI (see, for example,
[5,7,8,35–49] and references therein).

An ST method will naturally involve more computational
cost per time step than an ALE method. However, as the
stability and accuracy analysis reported in [6,7,50] for the
DSD/SST formulation of the advection equation shows, ver-
sions of the DSD/SST method with higher-order basis func-
tions in time have also higher-order accuracy in time. Con-
sequently, the DSD/SST versions with higher-order basis
functions in time can attain the desired accuracy with larger
time steps. This, in some cases, might make those higher-
order versions more computationally efficient than the lower-
order ones. Considerations for parallel-computing efficiency
also make the higher-order versions more favorable, because
increasing the computational cost per time step is better for
parallel efficiency than increasing the number of time steps.
Furthermore, when higher-order spatial basis functions (such
as NURBS [18,21,51,52]) are used, it is much more effec-
tive to use also higher-order temporal basis functions. The
DSD/SST method motivated a number of ideas and stud-
ies [53–57] on increasing the computational efficiency in
iterative solution of the large, coupled linear equation sys-
tems encountered in every nonlinear iteration of every time
step of a DSD/SST computation.

Moving-mesh methods require mesh update methods.
Mesh update typically consists of moving the mesh for as
long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near solid
surfaces and to minimize frequency of remeshing, a num-
ber of advanced mesh update methods [5,35,40,58,59] were
developed in conjunction with the DSD/SST method, includ-
ing those that minimize the deformation of the layers of
small elements placed near solid surfaces. The ST context,
with higher-order functions in time, gives us more effective
ways of mesh moving and remeshing (see [42,45–47,60]).
Temporal versions of the NURBS basis functions are very
good choices for higher-order functions in time (see [42,45–
47,60]).

The DSD/SST method was earlier applied to flows involv-
ing two objects in fast, rotational relative motion. This was
accomplished with the Shear–Slip Mesh Update Method
(SSMUM) [37,61,62]. The SSMUM was first introduced
for computation of flow around two high-speed trains pass-
ing each other in a tunnel (see [37]). The challenge was to
accurately and efficiently update the meshes used in com-
putations based on the DSD/SST formulation and involving
two objects in fast, linear relative motion. The idea behind

the SSMUM was to restrict the mesh moving and remeshing
to a thin layer of elements between the objects in relative
motion. The mesh update at each time step can be accom-
plished by a “shear” deformation of the elements in this layer,
followed by a “slip” in node connectivities. The slip in the
node connectivities, to an extent, un-does the deformation
of the elements and results in elements with better shapes
than those that were shear-deformed. Because the remeshing
consists of simply re-defining the node connectivities, both
the projection errors and the mesh generation cost are mini-
mized. A few years after the high-speed train computations,
the SSMUM was implemented for objects in fast, rotational
relative motion and applied to computation of flow past a
rotating propeller [61] and flow around a helicopter with its
rotor in motion [62].

The ST-SUPS computation of wind-turbine rotor aero-
dynamics was first reported in [28], followed by the first
ST-VMS computation in [63], and numerical performance
studies for ST-SUPS and ST-VMS computation of rotor aero-
dynamics in [64]. The rotor geometry was that of the NREL
5MW offshore baseline wind turbine. All this work, which
was reviewed in [8,33], was done as part of a collaboration
with Bazilevs et al. , who, starting with what they reported
also in [28], have done the most extensive work in model-
ing of wind-turbines, including the FSI and tower effects
(see [8,29,33,65–70]). To handle the interaction between
the rotor and tower, in [68–70] the authors used a sliding-
interface approach, which was first proposed in [52]. This
technique requires no remeshing, however, the presence of
sliding interfaces, where the kinematics and tractions are
imposed weakly, requires additional computer implementa-
tion.

The DSD/SST formulation, like most stabilized formula-
tions, involves stabilization parameters that play an impor-
tant role in determining the accuracy of the formulation.
For the ST-SUPS method, these stabilization parameters are
called τSUPG, τPSPG and νLSIC, the last one being the stabi-
lization parameter embedded in the “least squares on incom-
pressibility constraint (LSIC)” stabilization. For the ST-VMS
method, they are called τM (τSUPS in [8,33,44]) and νC (νLSIC

in [8,33,44]). There are various ways of defining the stabi-
lization parameters (see, for example, [1,4,5,71–85]). The
ones used with the DSD/SST formulation in recent years have
mostly been those given in [4,5]. They involve two differ-
ent element length definitions. For the advection-dominated
limit it is hUGN (originating from [71]), and for the diffusion-
dominated limit hRGN (originating from [4]).

The ST-VMS computations of wind-turbine rotor aerody-
namics in [63] included tests with two definitions of νLSIC:
the one given by Eq. (17) in [6] (originating from Eq. (17)
in [5]), which is called “TC2,” and the one given by Eq.
(18) in [6] (originating from [14]), which is called “TGI.”
The computations in [64] involved a third definition, given
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by Eq. (1) in [64], which is called “LHC.” The computa-
tions in [63] showed that both better subgrid scale modeling
and better mesh refinement (which is what [63] had com-
pared to [28]) were important in obtaining correct torque
values in this class of problems. For that reason, the rotor
aerodynamics computations in [64] included extensive mesh
refinement studies. In this paper, we introduce a new element
length definition for the diffusion-dominated limit, which
posseses better stabilization features and which we will call
“hRGNT.”

The DSD/SST computations in [28,63,64] did not include
a wind-turbine tower, and therefore a mesh update method
was not required. The presence of a tower in our compu-
tations here requires a mesh update method that can han-
dle the fast, rotational relative motion between the rotor
and tower. The SSMUM would have been one option, but
we decided to use a mesh update method that is more
general. We use NURBS basis functions for the temporal
representation of the rotor motion, mesh motion and also
in remeshing. This is essentially the same computational
technology used in the ST-VMS computations of flapping-
wing aerodynamics reported in [42,45–47]. We name it
“ST/NURBS Mesh Update Method (STNMUM)” in this
paper.

The rotor surface geometry is a NURBS surface, gener-
ated by starting from the quadratic NURBS patches that were
created by Bazilevs et al. [28] and generating a quadratic
NURBS surface with G2 and G1 continuity between the
patches around and along the blade, respectively. The motion
of the rotor surface mesh created from the NURBS geometry
is represented by quadratic temporal NURBS basis functions,
with sufficient number of temporal patches for one rotation.
This enables us to represent the circular paths associated with
the rotor motion exactly and, with a “secondary mapping” [6–
8,42], specify a constant angular velocity corresponding to
the invariant speeds along those paths.

Given the motion of the surface mesh, we compute meshes
that serve as temporal-control points. This is done by creat-
ing with an automatic mesh generator a new mesh at the
central control point of the temporal patch, and computing
the meshes at the other two control points by using the mesh
moving technique [5,35,40,58,59] mentioned earlier. The
STNMUM allows us to do mesh computations with longer
time in between, but get the mesh-related information for
each ST slab, such as the coordinates and their time deriv-
atives, from the temporal representation whenever we need.
This approach where the mesh-related information is com-
puted “directly” will be called in this paper “Direct Temporal
Representation (DTR).” As an alternative approach, we can
get the mesh-related data after first computing the finite ele-
ment meshes associated with each ST slab by interpolation
from the temporal NURBS representation of the mesh. We
will call this approach “Interpolated-Mesh Temporal Repre-

sentation (IMTR).” For better mesh resolution, we use layers
of thin elements near the blade surfaces. These layers of ele-
ments are created with a special mesh generation process and
are not part of what we create with the automatic mesh gen-
eration process. They undergo rigid-body motion with the
rotor.

We perform the ST-VMS computations of the wind-
turbine rotor and tower aerodynamics with a given wind
speed and a specified rotor speed. We test both the DTR and
IMTR approaches. For comparison purposes, we compute
the rotor aerodynamics also without the tower. The rota-
tion representation with constant angular velocity and the
new element length definition for the diffusion-dominated
limit are given in Sect. 2. The rotor and tower geometries
are described in Sect. 3. The problem setup, mesh generation
and computations are presented in Sect. 4. The concluding
remarks are given in Sect. 5.

2 Computational techniques

2.1 Rotation representation with constant angular velocity

We use quadratic NURBS functions, as described in [6–
8,42], to represent a circular arc. We discretize time and
position as follows:

t =
nent∑

α=1

T α(Θt (θ))tα, (1)

x =
nent∑

α=1

T α(Θx (θ))xα. (2)

Here nent is the number of temporal element nodes, T α is the
basis function, Θt (θ) and Θx (θ) are the secondary mappings
for time and position, and tα and xα are the time and position
values corresponding to the basis function T α . The basis
functions could be finite element or NURBS basis functions.
For the circular arc, nent = 3 and they are quadratic NURBS.
The secondary mapping concept above was introduced in [6],
and the velocity can be expressed as follows:

dx
dt

=
(

nent∑

α=1

dT α

dΘx

dΘx

dθ
xα

) (
nent∑

α=1

dT α

dΘt

dΘt

dθ
tα

)−1

, (3)

leading to

dx
dt

=
(

nent∑

α=1

dT α

dΘx
xα

) (
nent∑

α=1

dT α

dΘt
tα

)−1 (
dΘx

dθ

dθ

dΘt

)
. (4)

Thus, the speed along the path can be specified only by modi-
fying the secondary mapping. For a circular arc, two methods
were introduced in [7,42] and also described in [8]; one is
modifying the secondary mapping for position and the other
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one is modifying both such that dt
dθ

is constant. We note that,
in theory, the secondary mapping selections do not make any
difference as long as the relationship dΘx

dΘt
is the same.

In our implementation, to keep the process general, we
search for the parametric coordinate θ by using an iterative
solution method [7,8,42]. We use the latter set of the sec-
ondary mappings, having constant dt

dθ
.

Remark 1 When we use a secondary mapping for discretiza-
tion of unknowns, the selection of the mappings affects the
numerical integration accuracy in the physical domain.

For the IMTR, we find the parametric coordinate corre-
sponding to each time level and interpolate the position to
obtain the corresponding mesh. For the DTR, we first calcu-
late time corresponding to each integration point, including
the time step size because of the jump term, and then calcu-
late Θx and Θt to interpolate the position and velocity from
Eqs. (2) and (4).

2.2 Element length definition for the diffusion-dominated
limit

The element length definition for the diffusion-dominated
limit is used in calculating the diffusion-dominated limit of
the stabilization parameters τSUPG, τPSPG and τM (= τSUPS),
and, directly or indirectly (through τSUPS), in calculating all
options of νLSIC and νC (= νLSIC) except for TGI. That
includes the option that was defined in [64] as a component
of the LHC version, which was named in [8] “HRGN”:

νLSIC−HRGN = h2
RGN

τSUPS
. (5)

The element length definition introduced in [4] for the
diffusion-dominated limit is expressed as follows:

hRGN = 2

(
nen∑

a=1

|r · ∇∇∇Na |
)−1

, (6)

where nen is the number of ST element nodes, Na is the ST
basis functions associated with the ST node a, and

r = ∇∇∇‖uh‖∥∥∇∇∇‖uh‖∥∥ (7)

represents the solution gradient. Here ∇∇∇‖uh‖ is calculated as

∇∇∇‖uh‖ = ∇∇∇
((∥∥∥uh

∥∥∥
2
) 1

2
)

= 1

2‖uh‖∇∇∇
(∥∥∥uh

∥∥∥
2
)

, (8)

∇∇∇‖uh‖ = ∇∇∇uh · uh

‖uh‖ , (9)

resulting in

r = ∇∇∇uh · uh

‖∇∇∇uh · uh‖ . (10)

This expression becomes ill defined when ∇∇∇uh · uh = 0.
We introduce a new element length definition for the

diffusion-dominated limit:

hRGNT =
(

n∑

i=1

w2
i

1

h2
i

)− 1
2

, (11)

where hi > 0 is element length for the i th direction, wi ≥ 0
is the weight for that direction, n is the number of directions,
and

n∑

i=1

wi = 1. (12)

Equation (11) is well defined if the element length for at least
one of the directions is nonzero.

We define the element length and weight for each of the
n directions based on an nsd × n tensor R:

hi = 2 ‖Ri‖
(

nen∑

a=1

|Ri · ∇∇∇Na |
)−1

, (13)

wi = ‖Ri‖
‖R‖ , (14)

where nsd is the number of space dimensions, Ri is the i th

column vector of R, the vector norm is L2, and the matrix
norm is Frobenius. From Eqs. (11), (13) and (14) we obtain

hRGNT = 2 ‖R‖
⎛

⎝
n∑

i=1

(
nen∑

a=1

|Ri · ∇∇∇Na |
)2

⎞

⎠
− 1

2

, (15)

which is well defined if at least one of the column vectors is
nonzero. We propose to define the tensor R as

Ri = ∇∇∇ui , (16)

with n = nsd. If all column vectors are zero, which implies
uniformness in the flow field, to make the expression for
hRGNT well defined, we define R as

Ri = ∇∇∇Ni , (17)

with n = nen. The following is a brief justification for
Eq. (17). Suppose where there is uniformness in the flow
field we change only one coefficient, (ub)i , which means
that the solution gradient is in the ∇∇∇Nb direction. Therefore,
it is reasonable to assume that there is an equal chance of
having a solution gradient in all ∇∇∇Nb directions. Therefore
we use all those directions as the column vectors of R. As an
alternative to the definition given by Eq. (17), we propose

123



Comput Mech (2014) 53:1–15 5

Ri = ∇∇∇Ni −
(

uh

‖uh‖ · ∇∇∇Ni

)
uh

‖uh‖ , (18)

and this is based on the assumption that there is an equal
chance of having a solution gradient in all ∇∇∇Nb directions
perpendicular to uh . In this alternative option, uh = 0 would
revert the definition back to the one given by Eq. (17).

With the new element length hRGNT for the diffusion-
dominated limit, the HRGN option of νLSIC becomes

νLSIC−HRGN = h2
RGNT

τSUPS
. (19)

3 Geometry construction for the wind-turbine rotor
blade, hub, and tower

The geometry construction for the wind-turbine rotor blade
and hub we are using in the computations was described
in [28,63], and also partially in [64]. For completeness we
repeat some of that information here. The geometry of the
rotor blade is based on the NREL 5MW offshore baseline
wind turbine reported in [86]. A 61 m blade is attached to
a hub with radius of 2 m, making the total rotor radius, R,
63 m. The blade is composed of several airfoil types. The
first portion of the blade is a perfect cylinder. Farther away
from the root the cylinder is smoothly blended into a series
of DU (Delft University) airfoils. Starting at 44.55 m from
the root and all the way to the tip, the NACA64 profile is
used. For each cross-section, we use quadratic NURBS to
represent the 2D airfoil shape. The weights of the NURBS
functions are set to unity. The weights are adjusted near
the root to represent the circular cross-sections exactly. The
cross-sections are lofted along the blade axis direction, also
using quadratic NURBS and unit weights. This geometry-
construction process yields a smooth blade surface with a
relatively small number of input parameters, which is an
advantage of the isogeometric representation. Images of the
airfoil types used in the wind-turbine rotor blade and the
final blade including the twisting cross-sections can be found
in [28,63,64].

The tower geometry was created based on the tower design
specified for the NREL 5MW offshore baseline wind turbine,
which describes a circular tower with a height of 87.6 m, a
base diameter of 6 m, and a top diameter of 3.87 m. This
geometry was generated by lofting between NURBS curves
for the top and base of the tower. The rotor axis is 90◦ to the
tower, and there is no tilt or precone. The distance between the
tower axis and the point where the three blade axes intersect
is 5 m. For most of the blade, the clearance from the tower is
in the range 2.3 m to 2.8 m.

Fig. 1 Wind-turbine rotor and tower geometries

4 Computations

4.1 Problem setup

We compute the aerodynamics of the rotor with and without
its tower for a given rotor shape and wind speed and a spec-
ified rotor speed. The rotor and tower geometries are shown
in Fig. 1.

The wind speed is uniform at 9 m/s and the rotor speed is
1.08 rad/s, giving a tip speed ratio of 7.55 (see [87] for wind-
turbine terminology). We use air properties at standard sea-
level conditions. The Reynolds number (based on the chord
length at 3

4 R and the relative velocity there) is approximately
12 million. At the inflow boundary the velocity is set to the
wind velocity, at the outflow boundary the stress vector is
set to zero, and at the top, side, and bottom boundaries slip
conditions are imposed.

4.2 Rotor motion

The circular turbine rotation is represented with temporal
NURBS basis functions and secondary mapping, described
in Sect. 2.1. Because the 3 blades of the turbine are 120◦
apart, rotational geometric periodicity is used such that a
full 360◦ rotation is defined by 3 identical 120◦ segments.
Each 120◦ segment is divided into 6 patches to keep the
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Fig. 2 Path of a blade tip with temporal patches and control point
numbering local to each patch. A control point at the start of a patch
and colocated with a control point at the end of the previous patch is in
parentheses. For the color code, see Table 1

Table 1 Figure 2 color code for the temporal patches

Temporal patch Fig. 2 color

1 Blue

2 Orange

3 Purple

4 Green

5 Red

6 Teal

mesh distortion under control. Each patch is a 20◦ arc, with
3 temporal-control points. The 6 temporal patches and their
control points are illustrated in Fig. 2 and Table 1.

4.3 Surface mesh

The rotor surface mesh is generated by discretizing the
NURBS surface geometry at each knot intersection, subdi-
viding the knot spans into quadrilateral finite elements in a
structured way, and subdividing the quadrilateral elements
into two triangles. Small adjustments are made to improve
the mesh near the hub. The surface mesh position is calcu-
lated at each temporal-control point shown in Fig. 2. Fig-
ure 3 shows the rotor surface at the three temporal-control
points of the first patch. We note that control points 1 and
3 lie on the path traveled by the points on the blades and
a portion of the hub at the start and end of the 20◦ rota-
tion, but control point 2 lies outside the circular arc. This
means that the temporal-control mesh 2 is deformed com-
pared to the temporal-control meshes 1 and 3. A temporal-
control mesh 2 has to be generated for the part of the sur-
face between the hub cross-sections rotating with the blades
and fixed to the tower. The tower surface mesh is generated

Fig. 3 Rotor surface at the three temporal-control points of the first
patch

from the NURBS representation of the surface by using an
unstructured triangular mesh generator and matched with the
previously generated hub mesh at the intersection. The rotor
surface mesh consists of 34,087 nodes and 68,112 triangles.
The tower surface mesh consists of 6,952 nodes and 13,806
triangles.

4.4 Volume mesh

4.4.1 Boundary-layer mesh

The layers of thin elements near the blades are generated by
extruding the NURBS surface geometry into NURBS vol-
ume representation, subdividing the knot spans into hexa-
hedral finite elements in a structured way, and subdividing
the hexahedral elements into six tetrahedral elements. The
resulting boundary-layer mesh for each blade consists of 4
layers with a first-layer thickness of about 2.85×10−2 m and
a total thickness of about 2.85×10−1 m, 52 nodes in the cir-
cumferential direction around the blade, and approximately
145 nodes in the longitudinal direction. The tower boundary-
layer mesh is generated by extruding the tower surface mesh
to layers of prismatic elements, which are then subdivided
into 3 tetrahedral elements each. It consists of 4 layers, with a
first-layer thickness of 2.85×10−2 m and a total thickness of
3.0×10−1 m. The blade and tower boundary-layer meshes do
not undergo any mesh deformation. This maintains the mesh
quality in the boundary-layer regions. Figure 4 illustrates the
outer surface of the blade boundary-layer mesh and cutplanes
showing the tower and blade boundary-layer meshes.
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Fig. 4 T op Outer surface of blade and boundary-layer mesh. Middle
Boundary-layer mesh at 3

4 R. Bottom Tower boundary-layer mesh

4.4.2 Overall mesh

Three different meshes are used in the computations: Mesh
1, Mesh 2, and Mesh 3. Mesh 2 has both the rotor and the
tower, with boundary-layer mesh only for the blades. Mesh
1 has only the rotor, and is identical to Mesh 2 except the
tower is filled with volume elements. Mesh 3 has both the
rotor and the tower, with boundary-layer mesh for both the
blades and the tower, and a mesh refinement region down-
stream of the tower. All three meshes have an outer, coarser
region, with an inner cylindrical refinement region surround-
ing the rotor. This inner refinement region includes most
of the tower for Mesh 2 and Mesh 3, and the mesh refine-
ment region downstream of the tower for Mesh 3. Figure 5
illustrates, as an example, cut planes of Mesh 3, and Fig. 6
shows zoomed longitudinal cut planes of all three meshes.
The inflow and outflow boundaries are at 3.79R and 10.35R
from the hub center, respectively. The side, top, and bottom
boundaries are at 2.29R, 3.17R, and 1.43R, respectively (see
Fig. 5). The volume mesh is generated once per patch using
an automatic mesh generator (a total of 6 times). The mesh
is generated at control point 2 of each patch to minimize
mesh distortion between control points. We note that only
the mesh in the inner cylindrical refinement region surround-
ing the rotor is generated for each patch. The outer, coarser
mesh is generated only once, and is kept the same when the
inner meshes are generated for each patch. The mesh moving

Fig. 5 Cut planes of temporal-control mesh 1 of patch 1 for Mesh 3

Fig. 6 Zoomed cut planes of temporal-control mesh 1 of patch 1 for
Mesh 1 (top), Mesh 2 (middle), and Mesh 3 (bottom)
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Table 2 Number of nodes (nn) and elements (ne) for the fluid mechan-
ics meshes used in each temporal patch

Mesh Temporal patch nn ne

1 1 470,880 2,725,614

1 2 466,983 2,701,657

1 3 460,932 2,665,562

1 4 462,733 2,676,747

1 5 464,712 2,687,745

1 6 468,529 2,711,069

2 1 446,709 2,553,100

2 2 442,876 2,529,556

2 3 436,825 2,493,524

2 4 438,802 2,505,789

2 5 440,870 2,517,233

2 6 444,517 2,539,512

3 1 598,125 3,454,865

3 2 596,111 3,442,699

3 3 592,345 3,420,273

3 4 590,628 3,410,226

3 5 595,719 3,440,031

3 6 596,522 3,445,407

technique [5,35,40,58,59] mentioned earlier is used to com-
pute the mesh position for control points 1 and 3. The outer
surfaces of the boundary-layer meshes serve as the bound-
aries where we specify the inner boundary conditions for the
mesh motion. The external boundaries of the computational
domain serve as the boundaries where we specify the outer
boundary conditions, with zero displacement. In the elas-
ticity equations of the mesh moving technique, a Young’s
modulus of 1.0, a Poisson’s ratio of −0.20, and a Jacobian-
based stiffening exponent of 1.5 are used. We use 1,500
GMRES [88] iterations for each step of the mesh motion,
with diagonal preconditioner. Each 10◦ range of motion is
computed over 40 steps. Number of nodes and elements for
all 6 temporal patches of the 3 volume meshes are given in
Table 2.

4.5 Computational conditions

In the ST-VMS computations, τM(= τSUPS) comes from the
τSUPG definition in [4], specifically the definition given by
Eqs. (107)–(109) in [4], which can also be found as the defin-
ition given by Eqs. (7)–(9) in [5], with hRGN(= hRGNT) given
by Eq. (15). For νC(= νLSIC), we use the νLSIC−HRGN defin-
ition given by Eq. (19). The DTR and IMTR approaches are
used on all three meshes. Least-squares projection is used
to interpolate the velocity and pressure between temporal
patches. Because the boundary-layer meshes and the tower
and rotor surface meshes remain identical between tempo-

Table 3 Summary of the computations

Mesh Tower Temporal representation

1 No DTR

2 Yes DTR

3 Yes DTR

1 No IMTR

2 Yes IMTR

3 Yes IMTR
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Fig. 7 Torque for Mesh 1 with the DTR approach, compared with the
NREL data

ral patches, the velocity values are transferred exactly for
those nodes. The computations performed are summarized
in Table 3.

The time-step size is 2.23×10−3 s (145 time steps per
patch), with 4 nonlinear iterations per time-step. First we
develop the flow field for 500 time steps while the rotor is
static, ramping up the inflow velocity during the first 300
steps from zero to the wind speed using a cosine ramp. Dur-
ing this flow-development stage of the computation, we use
150, 150, 200, and 400 GMRES iterations for the 4 nonlin-
ear iterations. In computations with the rotor in motion, we
use 150, 150, 200, and 400 GMRES iterations for Mesh 1,
and 150, 250, 350, and 500 GMRES iterations for Mesh 2
and Mesh 3. With the GMRES iterations in flow computa-
tions, we use nodal-block-diagonal preconditioner. The mesh
is partitioned based on the METIS algorithm [89] to improve
parallel efficiency in the computations.

4.6 Results

Figure 7 shows the torque for Mesh 1 with the DTR approach,
for the last 360◦ rotation of a blade, with the rotation amount
measured from the orientation seen in Fig. 2. For reference
purposes, Fig. 7 includes the NREL data for the 5MW off-
shore wind turbine reported in [86]. The torque is within 8
% of the NREL data.
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Fig. 8 Torque for a single blade of Mesh 1 with the DTR approach,
compared with the torque from an earlier single-blade computation
using the TGI option of νC(= νLSIC)
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Fig. 9 Torque for Mesh 1, Mesh 2 and Mesh 3 with the DTR approach

Figure 8 shows the torque for the last 80◦ rotation of a sin-
gle blade of Mesh 1 with the DTR approach, compared with
the torque from an earlier single-blade computation using the
TGI option of νC (= νLSIC). The single-blade computation
has the same blade geometry, wind speed, and rotor speed, but
has a single-blade mesh in a rotationally-periodic domain. It
has a more refined boundary-layer mesh and a time-step size
that is approximately 5 times smaller. The higher torque seen
for the single-blade computation may be due to the fact that
the computation was carried out for a much shorter duration,
only 80◦ of rotation versus 1,080◦ for the Mesh 1 computa-
tion. Therefore the current computation likely represents a
more settled torque value.

Figures 9 and 10 show the torque for all three meshes with
the DTR and IMTR approaches. As can be seen from these
figures, Mesh 1 (no tower) has a very stable torque, while
Mesh 2 and Mesh 3 (with tower) exhibit a significant but
expected drop in torque each time a blade passes the tower.

Figure 11 shows, for each of the three meshes, the torque
obtained with the DTR and IMTR approaches. The figure
illustrates that the DTR and IMTR approaches result in a
nearly identical torque magnitude for all 3 meshes.
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Fig. 10 Torque for Mesh 1, Mesh 2 and Mesh 3 with the IMTR
approach
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Fig. 11 Torque with the DTR and IMTR approaches for Mesh 1 (top),
Mesh 2 (middle), and Mesh 3 (bottom)

Figure 12 shows the torque for Mesh 1 with the DTR
approach, using two different time-step sizes: 2.23×10−3 s
(145 time steps per patch) and 4.49×10−3 s (72 time steps
per patch). Doubling the time-step size still yields a compa-
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Fig. 12 Torque for Mesh 1 with the DTR approach, using two dif-
ferent time-step sizes: 2.23×10−3 s (145 time steps per patch) and
4.49×10−3 s (72 time steps per patch)
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Fig. 13 Torque for Mesh 2 with the DTR approach and the conserv-
ative and convective forms of the ST-VMS formulation. The time-step
sizes: 4.46×10−4 s (725 time steps per patch) for the convective form
and 2.23×10−3 s (145 time steps per patch) for the conservative form.
The torques shown are from the same period in a rotation cycle, but the
conservative-form torque is from the last 360◦ of the computation, and
the convective-form torque is from a recently-started, ongoing compu-
tation

rable torque value, within 10 % of the value for the smaller
time-step size.

We also carried out a computation with the convective
form of the ST-VMS formulation (see Eq. (8.17) in [7]), but
with a smaller time-step size: 4.46×10−4 s (725 time steps
per patch). Figure 13 shows the torque for Mesh 2 with the
DTR approach and the conservative and convective forms of
the ST-VMS formulation. The conservative-form computa-
tion is with the standard time-step size: 2.23 × 10−3 s (145
time steps per patch).

Figure 14 shows the torque for the individual blades of
Mesh 2 with the DTR approach. The figure clearly shows
the expected torque drop for each blade as it passes the
tower, while the other two blades maintain relatively con-
stant torque.

Figure 15 shows the torque for 10 equal-length spanwise
sections of a blade of Mesh 2 with the DTR approach. Great-
est amount of torque is generated in sections 6–9 of the blade,
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Fig. 14 Torque for the individual blades of Mesh 2 with the DTR
approach
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Fig. 15 Torque for 10 equal-length spanwise sections of a blade of
Mesh 2 with the DTR approach

while section 10 at the tip and the other lower sections gen-
erate less torque.

Figure 16 shows a volume rendering of the vorticity for
Mesh 2 with the DTR approach. The flow patterns vary con-
siderably along each blade length, illustrating the necessity
to carry out the computations in 3D.

Figure 17 shows the pressure coefficient at 0.90R for the
last 0◦ orientation of a blade of Mesh 2, with the DTR and
IMTR approaches, with the last 0◦ orientation being common
between the two computations. There is very little difference
in the pressure coefficient around the blades between the
DTR and IMTR approaches.

Figure 18 shows the pressure coefficient at 0.90R for the
last 180◦ orientation of a blade of Mesh 1, Mesh 2 and
Mesh 3, with the DTR approach, with the last 180◦ orien-
tation being common between Mesh 2 and Mesh 3 compu-
tations.

Table 4 provides the averaged torque for the last 360◦
rotation in all 6 computations. The values show that the dif-
ference in torque between the DTR and IMTR approaches,
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Fig. 16 Volume rendering of the vorticity (in s−1) from the last 360◦
of the computation for Mesh 2 with the DTR approach

Fig. 17 Pressure coefficient at 0.90R for the last 0◦ orientation of a
blade of Mesh 2, with the DTR (top) and IMTR (bottom) approaches

and between Mesh 2 and Mesh 3, is rather small. The differ-
ence in torque between Mesh 1 and Mesh 2 and 3 illustrates
effect of the tower.

Fig. 18 Pressure coefficient at 0.90R for the last 180◦ orientation of a
blade of Mesh 1 (top), Mesh 2 (middle), and Mesh 3 (bottom), with
the DTR approach

Table 4 Averaged torque (MN·m) for the last 360◦ rotation in all 6
computations

Mesh DTR IMTR

1 2.31 2.32

2 2.34 2.34

3 2.39 2.35

Figure 19 shows the vorticity around the tower for Mesh
2 and Mesh 3 with the DTR approach. Mesh 3 is able to
represent the wake behind the tower far more effectively,
although no vortex shedding is observed at this stage of the
computation, possibly due to insufficient computing duration
or mesh refinement.

5 Concluding remarks

We presented the ST techniques we have developed for com-
putation of wind-turbine rotor and tower aerodynamics. The
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Fig. 19 Vorticity (in s−1) around the tower at a cross-section 1.1R from
the hub center for Mesh 2 (top) and Mesh 3 (bottom) with the DTR
approach. The pictures are from the last time step of the computation

main computational challenges are the large Reynolds num-
bers and rotating turbulent flows, the care and high-resolution
meshes needed in computing the correct torque values, and
the presence of the tower, which requires a method that can
deal with the fast, rotational relative motion between the
rotor and tower. The core numerical technology is the ST-
VMS method, which is the residual-based VMS version of
the DSD/SST method, and which is also called DSD/SST-
VMST. In calculating the stabilization parameters embedded
in the ST-VMS method used in the computations reported
here, we are using a new element length definition for the
diffusion-dominated limit, and this has better stabilization
features. The rotor geometry is that of the NREL 5MW off-
shore baseline wind turbine. We compute with a given wind
speed and a specified rotor speed. The mesh update tech-
nique is based on using NURBS basis functions for the tem-
poral representation of the rotor and mesh motion and in
remeshing. We named it “ST/NURBS Mesh Update Method
(STNMUM)” in this paper. We used 6 quadratic temporal
NURBS patches for a 1/3 rotation of the turbine. Using

NURBS basis functions for the temporal representation of
the rotor motion enables us to represent the circular paths
associated with that motion exactly and, with a secondary
mapping, specify a constant angular velocity corresponding
to the invariant speeds along those paths. Given the rotor
surface mesh and its motion, the mesh at the central con-
trol point of each patch is created with an automatic mesh
generator, and the meshes at the other two control points are
computed by using the mesh moving method that is normally
used with the DSD/SST method. The STNMUM allows us
to do mesh computations with longer time in between, but
get the mesh-related information for each ST slab from the
temporal representation whenever we need. The automatic
mesh generator is used only 6 times. For better mesh reso-
lution, we have layers of thin elements near the blade sur-
faces, created with a special process outside the automatic
mesh generation. These layers of elements undergo rigid-
body motion with the rotor. We used two different ways of
getting the mesh-related information for each ST slab from
the temporal representation: (a) directly as described above,
which we call Direct Temporal Representation (DTR), and
(b) after first computing the finite element meshes associated
with each ST slab by interpolation from the temporal NURBS
representation of the mesh, which we call Interpolated-Mesh
Temporal Representation (IMTR). We presented results from
the computations with and without the tower, with both the
DTR and IMTR approaches. We compared the torque val-
ues obtained to the NREL data. The results demonstrate that
the ST-VMS method and using NURBS basis functions in
temporal representation of the mesh provide an accurate and
flexible computational technology for computation of wind-
turbine rotor and tower aerodynamics.
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