
Comput Mech (2013) 52:1445–1462
DOI 10.1007/s00466-013-0886-z

ORIGINAL PAPER

A meshfree weak-strong (MWS) form method for the unsteady
magnetohydrodynamic (MHD) flow in pipe with arbitrary wall
conductivity

Mehdi Dehghan · Rezvan Salehi

Received: 14 February 2013 / Accepted: 20 May 2013 / Published online: 13 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper a meshfree weak-strong (MWS)
form method is considered to solve the coupled equations in
velocity and magnetic field for the unsteady magnetohydro-
dynamic flow throFor this modified estimaFor this modified
estimaFor this modified estimaugh a pipe of rectangular and
circular sections having arbitrary conducting walls. Com-
putations have been performed for various Hartman num-
bers and wall conductivity at different time levels. The MWS
method is based on applying a meshfree collocation method
in strong form for interior nodes and nodes on the essential
boundaries and a meshless local Petrov–Galerkin method in
weak form for nodes on the natural boundary of the domain.
In this paper, we employ the moving least square repro-
ducing kernel particle approximation to construct the shape
functions. The numerical results for sample problems com-
pare very well with steady state solution and other numerical
methods.

Keywords Unsteady magnetichydrodynamic flow ·
Meshfree method · Weak-strong form · Meshless local
Petrov–Galerkin method · Moving least square reproducing
kernel particle (MLSRKP) approximation

1 Introduction

In recent decades, the finite element method, the finite vol-
ume method and the finite difference method (FDM) [11]
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have been facing some difficulties due to increasing require-
ments for simulating more and more complicated natural
problems. In these methods based on meshes, the global
meshing difficulties and a large number of re-meshes in suc-
cessive computational steps lead to the complexity of the
computer program. Meshless methods, as alternative numer-
ical approaches have attracted much attention in the past
decade. The main objective of the meshless methods is to
get rid of, or at least alleviate the difficulty of, meshing
and re-meshing the entire structure, by only adding or delet-
ing nodes in the entire structure, instead. Meshless meth-
ods [12,15,51,54] may also alleviate some other problems
associated with the finite element method, such as locking,
element distortion, and others [32,62].

Some meshfree methods have been developed, such as
smooth particle hydrodynamics (SPH) methods [23], diffuse
element method (DEM) [44], element free Galerkin method
(EFG) [7], reproducing kernel particle method (RKPM)
[25,34–36,38], hp- clouds [21], partition of unity method
(PUM) [43], meshless local Petrov–Galerkin method (MLPG)
[2–5], finite point method [45,55] and so on.

The meshfree collocation strong form method, is a truly
meshless method which is easy to implement and computa-
tionally efficient but in problems with Neumann boundary
conditions is unstable and inaccurate. Moreover, the mesh-
free weak form methods are accurate and stable approaches
that naturally dealt with the Neumann boundary conditions.
In spite of this, employing the background cells for numerical
integration makes the weak form method not totally mesh-
free and computationally expensive. Considering the above
stated matters, Liu and Gu [39,40] introduced the meshfree
weak-strong form (MWS) method based on a combination of
strong form and local Petrov–Galerkin weak form of Atluri
[3]. The aim of the MSW method is to remove the quadrature
cells as much as possible and still achieve an accurate and
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stable numerical procedure. The MWS method has been suc-
cessfully developed and applied for the static and dynamic
analysis of structures [16,17,26,39–41,63]. The method uses
the moving least square approximation [47] or radial point
interpolation [17] to construct the shape functions for the
collocation method and employs them for internal nodes and
nodes on the essential boundaries while applies the meshless
local Petrov–Galerkin method for nodes on natural boundary
of the problem domain.

Magnetohydrodynamic (MHD) equation studies the inter-
action between the flow of an electrically conducting fluid
and magnetic fields. Faraday first pointed out an interaction of
sea flows with the earth as magnetic field (1832). In the begin-
ning of the 20th century the first proposals for applying elec-
tromagnetic induction phenomenon in technical devices with
electrically-conducting liquids and gases appeared. System-
atic studies of magnetohydrodynamic (MHD) flows began
in the 30s when the first exact solutions of MHD equa-
tions were obtained and experiments on liquid metal flows
in MHD channels were performed by Hartmann and Lazarus
[29]. The discovery of Alfvén waves finalized the establish-
ment of magnetohydrodynamic as an individual science for
which he received the Nobel Prize in Physics (1970) [1]. The
study of flow of conducting fluids in the presence of magnetic
fields has attracted owning to its applications in the evolu-
tion and dynamics of astrophysical objects, thermonuclear
fusion, metallurgy and semiconductor crystal growth, etc.

The set of equations which describe MHD are a com-
bination of the Navier–Stokes equations of fluid dynamics
and Maxwell’s equations of electromagnetism. Due to this,
the equations governing MHD are rather cumbersome and
exact solutions are available only for simple geometry subject
to simple boundary conditions [10,20,24,28,49]. Gupta and
Singh [27] obtained exact solution for unsteady flows in some
special cases. Hence, some numerical methods have been
applied to give the approximate solution for the MHD flow
problems. For numerical research on MHD flow, we can refer
to works of Singh and Lal [52,53] by finite element method
for Hartmann numbers less than 10, Tezer–Sezgin and Köksal
[56] by finite element method for moderate Hartmann num-
bers, Sheu and Lin [50] by finite difference method, Tezer–
Sezgin and Bozkaya [59], Tezer-Sezgin [57], Tezer-Sezer
and Aydin [58], and Hosseinzadeh et al. [30] by boundary
element method [30] and dual reciprocity boundary element
method, stablized finite element method by Salah et al. [46],
Veradi et al. [60,61] by element free Galerkin method, Shak-
eri and Dehghan [48] by a combination of finite volume
and spectral element method, Dehghan and Mirzaei [13] by
meshless local boundary integral equation method, Dehghan
and Mirzaei [14] by meshless local Petrov–Galerkin method.
Some other research works can be found in [9,8,42].

In the current paper, the meshfree weak-strong form
method is applied to numerically solve the unsteady MHD

flow with arbitrarily conducting walls. We consider pipes
of rectangular and circular cross-sections to demonstrate the
numerical method. For different Hartmann number and wall
conductivity, the velocity and induced magnetic field have
been computed at various time levels. In the current work, we
employed the MLSRKP approximation to obtain the shape
functions.

The reminder of this paper is structured as follows: In
Sect. 2, the governing equations of the studied problem are
presented. A brief discussion of the moving least reproduc-
ing kernel particle (MLSRKP) approximation is presented
in Sect. 3. In Sect. 4, a time stepping method and numeri-
cal implementation of the method are demonstrated. Section
5 includes some test problems and comparisons to reveal
the efficiency and accuracy of the proposed method. Finally,
some concluding remarks are drawn in Sect. 6.

2 Governing equation

The set of equations which describe MHD are a combina-
tion of the Navier–Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism. For viscous and
incompressible fluid, the governing equations in the flow
region are [53,61]

ρ
∂VZ

∂T
−K F(T )= ή∇2VZ + B0

μ0

(
cos(θ)

∂BZ

∂X
+ sin(θ)

∂BZ

∂Y

)
,

(2.1)
∂BZ

∂T
= 1

μ0σ
∇2 BZ + B0

(
cos(θ)

∂VZ

∂X
+ sin(θ)

∂VZ

∂Y

)
, (2.2)

where

ρ, ή, σ density, viscosity and conductivity of fluid,
μ0 a constant = 4π × 10−7 in MKS, system,
T time variable,
θ orientation of applied magnetic filed with X-axis,

B0 applied magnetic filed,
VZ , Bz axial velocity and induced magnetic field,

−K F(T ) pressure gradient,
∇2 is the two-dimensional Laplacian operator.

The boundary conditions on VZ and BZ are

VZ = 0,
∂BZ

∂ �N + σ

σ́

BZ

h́
= 0, (2.3)

where �N is the outward normal to the boundary of the
domain, σ́ and h́ are the wall conductance and the small
wall thickness, respectively.

The initial conditions depend upon how the motion starts
initially. If initially the fluid is rest and the motion starts by
applying the constant pressure, then the initial conditions
become
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VZ (X,Y, 0) = 0, BZ (X,Y, 0) = 0. (2.4)

Considering the non–dimensional variables and parameters
by

V = VZ

V0
, V0 = K a2

ή
, B = BZ

V0μ0
√
σ ή
,

x = X

a
, y = Y

a
, M2 = B2

0 a2σ

ή
, λ = σa

σ́ h́
,

R = ρaV0

ή
, Rm = V0aμ0σ, t = T V0

a
,

f (t) = F

(
aT

V0

)
,

where M, R and Rm are the Hartmann number, Reynolds
number and magnetic Reynolds number, respectively. Then
the governing equations are reduced to

R
∂V

∂t
− f (t) = ∇2V + M

(
cos(θ)

∂B

∂x
+ sin(θ)

∂B

∂y

)
,

(2.5)

Rm
∂B

∂t
= ∇2 B + M

(
cos(θ)

∂V

∂x
+ sin(θ)

∂V

∂y

)
, (2.6)

in 	× [0,∞) with boundary conditions

V = 0, on ∂	, (2.7)
∂B

�n + λB = 0, on ∂	, (2.8)

and initial conditions

V (x, y, 0) = B(x, y, 0) = 0, (x, y) ∈ 	, (2.9)

where 	 represents the section of the pipe in the non–
dimensional form with boundary ∂	.

In the limiting case of perfectly insulating (σ́ = 0, λ=∞)

and conducting (σ́ = ∞, λ = 0) walls, the boundary con-
ditions become V = B = 0 and V = ∂B

∂ �n = 0, respectively
[27].

3 Approximation in the MWS form method

The classical MWS form method employs the moving least
square approximation and radial point interpolation method
to approximate the unknown function. In the current work,
we make the approximation by moving least square repro-
ducing kernel particle (MLSRKP) [33,37]. The MLSRKP
was provided as a different version of the moving last square
(MLS) approximation where the shape functions are gener-
ated by a MLS process. The interpolation of this kind contains
a reproducing kernel (RK), which, as a generalization of the
discrete case, establishes a continuous basis for a partition of
unity and can reproduce any smooth function accurately in

a global least square sense. Now we give an outline of this
method.

Let u(x), x ∈ R
d , be a sufficiently smooth function

defined on a simply open set 	 ⊂ R
d with a Lipschitz con-

tinuous boundary. For each x ∈ 	, we define

B(x) =
{

y ∈ 	|ϕ
(

x − y

ρ

)
�= 0

}
⊆ 	. (3.1)

Also, for a positive integer m, the space of polynomials of
degree ≤ m in R

d is defined as

Pm,d = span{(x − y)α}α: |α|≤m, (3.2)

and define ux : B(x) → R by

∀y ∈ B(x), ux (y) = u(y). (3.3)

The process of finding the global approximating function
uG : 	 → R is that at each point x̄ ∈ 	, by employing
the concept of the inner product a local approximant Lx̄ u :
B(x̄) → R for function ux̄ : 	 → R is obtained. Then the
global approximant is obtained as follows:

uG(x) := lim
x̄→x

(Lx̄ u)(x), ∀x ∈ 	. (3.4)

In the current contribution, for a fixed point x̄ ∈ 	̄, the local
approximant is considered as follows:

ul(x) ∼= (Lux̄ )(x) :=
Q∑

i=1

ψi

(
x − x̄

ρ

)
di (x̄)

= 


(
x − x̄

ρ

)
d(x̄), (3.5)

where Q = dimPm,d =
(

m + d
d

)
and

dt (y) := {d1, d2, . . . , dQ}(y), (3.6)


(y) := {p1, p2, . . . , pQ}, (3.7)

pi = (x − y)αi

ρ
, i = 1, 2, . . . ,m. (3.8)

Since the polynomial series is finite, then we can define a
residual rρ

rρ := ul(x)−


(
x − x̄

ρ

)
d(x̄), x ∈ B(x̄). (3.9)

Then a functional related to this residual is defined as

J (d(x̄)) =
∫

B(x̄)
r2
ρ(x, x̄)ωρ(x − x̄) dB, (3.10)

where ωρ(x − x̄) = ω( x−x̄
ρ
). One can obtain the following

equation by minimizing the quadratic form J (d(x̄))
∫

B(x̄)

 t

(
x − x̄

ρ

)
(ul(x)−


(
x − x̄

ρ

)
d(x̄))ωρ(x − x̄) dB = 0.

(3.11)
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When supp{ωρ(x − x̄)} ⊆ B, then the above integral can be
extended over the whole domain
∫
	x


 t
(

x − x̄

ρ

)
(ul(x)−


(
x− x̄

ρ

)
d(x̄))ωρ(x− x̄) d	x = 0,

(3.12)

which yields⎛
⎜⎝

∫
	x


 t
(

x − x̄

ρ

)
ωρ(x − x̄)


(
x − x̄

ρ

)
d	x

⎞
⎟⎠ d(x̄)

=
∫
	x


 t
(

x − x̄

ρ

)
u(x)ωρ(x − x̄)d	x . (3.13)

Now, if we define an (Q)–by–(Q) matrix M(x) as follows:

M(x̄) :=
∫
	x


 t
(

x − x̄

ρ

)
ωρ(x − x̄)


(
x − x̄

ρ

)
d	x ,

(3.14)

then the unknown vector d(x̄) is determined as:

d(x̄) = M−1(x̄)
∫
	x


 t
(

x − x̄

ρ

)
u(x)ωρ(x − x̄)d	x .

(3.15)

According to (3.5) and (3.15), we will have

∀x ∈ B(x̄) ul(x) = (Lx̄ u)(x) = 


(
x − x̄

ρ

)
d(x̄)

= 


(
x − x̄

ρ

)
M−1(x)

∫
	y


 t
(

y − x̄

ρ

)
u(y)ωρ(y − x̄)d	y .

(3.16)

So, according to relation (3.4), the global approximation
function uG : 	 → R is obtained in the following form:

∀x ∈ 	 uG(x) = (Lx u)(x)

= 
(0)M−1(x)
∫
	


 t
(

y − x

ρ

)
u(y)ωρ(y − x)d	.

(3.17)

Now, we set

Cρ(x, x − y) = 
(0)M−1(x)
 t
(

y − x

ρ

)
. (3.18)

Substituting (3.18) into (3.17), gives

∀x ∈ 	 uG(x) =
∫
	

Cρ(x, x − y)u(y)ωρ(y − x)d	.

(3.19)

Let

Kρ(x, x − y) = Cρ(x, x − y)ωρ(y − x), (3.20)

where the function Kρ is the so–called reproducing kernel
function. Therefore, we will have

u(x) :=
∫
	

Kρ(x, x − y)u(y)d	. (3.21)

In order to use (3.21) in the numerical approximation, the
integral must be discretized. Let {xi }N P

i=1, be an admissible
particle distribution [37], then by employing the numerical
quadrature, one can approximate (3.21) as follows:

u(x) =
N P∑
i=1

u(xi )Ch
ρ(x, xi − x)ωρ(xi − x)�Vi

=
N P∑
i=1

Kh
ρ(x, xi − x)ui�Vi , (3.22)

where�Vi denotes the nodal domain associated with the i th
particle and

Ch
ρ(x, y − x) = 
(0)(Mh)−1(x)
 t

(
y − x

ρ

)
, (3.23)

and

Mh(x) =
N P∑
i=1




(
xi − x

ρ

)
ωρ(xi − x)
 t

(
xi − x

ρ

)
�Vi .

(3.24)

Now, (3.21), can be written as

u(x) =
N P∑
i=1

N h
i (ρ, x, xi )ui , (3.25)

where

N h
i (ρ, x, xi ) = Ch

ρ (x, xi − x)ωρ(xi − x)�Vi , (3.26)

= 
(0)(Mh)−1(x)
 t
(

xi − x

ρ

)
ωρ(xi − x)�Vi ,

(3.27)
= Kh

ρ(x, xi − x)�Vi . (3.28)

4 The MWS form method implementation

4.1 Time difference approximation

To obtain a fully discrete scheme, the time interval (0, T0) has
been divided into the N uniform subintervals by employing
nodes 0 = t0 ≤ t1 ≤ · · · ≤ tN = T , where tn = n�t , then
to deal with the time derivatives, the following difference
approximations have been considered
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∂V

∂t
(x, t) 
 V n+1(x)− V n(x)

�t
,

∂B

∂t
(x, t) 
 Bn+1(x)− Bn(x)

�t
,

V (x, t) 
 V n+1(x)+ V n(x)
2

,

B(x, t) 
 Bn+1(x)+ Bn(x)
2

, (4.1)

where V n(x) = V (x, n�t), Bn(x) = B(x, n�t). So, Eqs.
(2.5)–(2.6) become as given in the following

Rβ

2
V n+1 − 1

2
∇2V n+1 − M

2

(
cos(θ)

∂Bn+1

∂x
+ sin(θ)

∂Bn+1

∂y

)

= f n + Rβ

2
V n + 1

2
∇2V n + M

2

(
cos(θ)

∂Bn

∂x
+ sin(θ)

∂Bn

∂y

)
,

(4.2)

Rmβ

2
Bn+1 − 1

2
∇2 Bn+1 − M

2

(
cos(θ)

∂V n+1

∂x
+ sin(θ)

∂V n+1

∂y

)

= Rβ

2
Bn + 1

2
∇2 Bn + M

2

(
cos(θ)

∂V n

∂x
+ sin(θ)

∂V n

∂y

)
,

(4.3)

where β = 1
�t .

4.2 The strong form for internal nodes and nodes
on essential boundary

Using strong form, the MWS form method yields a system
of discretized equations for nodes inside the domain and on
essential boundary. Approximating Bn and V n as (3.25), sub-
stituting into Eqs. (4.2) and (4.3) and applying collocation
method at each interior point x j , lead to

Rβ

2
V n+1

j − 1

2
∇2V n+1

j − M

2

(
cos(θ)

∂Bn+1
j

∂x
+ sin(θ)

∂Bn+1
j

∂y

)

= f n
j + Rβ

2
V n

j + 1

2
∇2V n

j + M

2

(
cos(θ)

∂Bn
j

∂x
+ sin(θ)

∂Bn
j

∂y

)
,

(4.4)

Rmβ

2
Bn+1

j − 1

2
∇2 Bn+1

j − M

2

(
cos(θ)

∂V n+1
j

∂x
+ sin(θ)

∂V n+1
j

∂y

)

= Rβ

2
Bn

j + 1

2
∇2 Bn

j + M

2

(
cos(θ)

∂V n
j

∂x
+ sin(θ)

∂V n
j

∂y

)
,

(4.5)

where

Bk
j = B(x j , k�t) =

N P∑
i=1

Ni (x j )B̂
n
i ,

V k
j = V (x j , k�t) =

N P∑
i=1

Ni (x j )V̂
n
i ,

∂Bk
j

∂x
=

N P∑
i=1

∂Ni

∂x
(x j )B̂

k
i ,

∂Bk
j

∂y
=

N P∑
i=1

∂Ni

∂y
(x j )B̂

k
i ,

∇2 Bk
j =

N P∑
i=1

(
∂2Ni

∂x2 (x j )+ ∂2Ni

∂y2 (x j )

)
B̂k

i .

Also, the boundary conditions (2.7) are imposed as follow

N P∑
i=1

Ni (x j )V̂
n+1
i = 0, x j ∈ ∂	, (4.6)

also, in the case of λ = ∞, the boundary condition (2.8) is
imposed similar to (4.6).

4.3 The weak form for nodes on natural boundary condition

In MWS form method, the natural boundary condition is
imposed using the local weak form method which is firstly
introduced by Atluri and Zhu [3] in the MLPG method.
Applying a weighted residual method over each quadrature
cell, the MLPG method obtains a local weak form over local
sub–domains 	s which are small regions considered over
each node in the global domain 	 as can be seen in Fig. 1.
Therefore, to impose the natural boundary condition (2.8),
we consider the following local weak form of (4.2) and (4.3)
at each node xi on the natural boundary (2.8)
∫

	i
q

[
Rβ

2
V n+1 − 1

2
∇2V n+1 − M

2

(
cos(θ)

∂Bn+1

∂x

+ sin(θ)
∂Bn+1

∂y

)]
u∗(x) d	

=
∫

	i
q

[
f n + Rβ

2
V n + 1

2
∇2V n + M

2

(
cos(θ)

∂Bn

∂x

+ sin(θ)
∂Bn

∂y

)]
u∗(x) d	, (4.7)

and∫

	i
q

[
Rmβ

2
Bn+1 − 1

2
∇2 Bn+1 − M

2

(
cos(θ)

∂V n+1

∂x

+ sin(θ)
∂V n+1

∂y

)]
u∗(x) d	

∫

	i
q

[
Rβ

2
Bn + 1

2
∇2 Bn + M

2

(
cos(θ)

∂V n

∂x
+ sin(θ)

∂V n

∂y

)]

×u∗(x) d	, (4.8)

where u∗(x) is a test function. Employing the divergence
theorem and[
∇2 B

]
u∗ = B,llu

∗ = [
B,lu

∗]
,l − B,lu

∗
,l , (4.9)
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Fig. 1 Local sub-domains and the global domain of the approximation

Table 1 Comparison of velocity field of Shercliff’s problem at M = 5 using MLPG method [14] FVE method [48], FVSE method [48] and MWS
method

(x, y) Exact value FVE method FVSE method MLPG method MWS
N = 722 N = 162 N = 441 N = 441

(0.00, 0.00) 0.171601814 0.170829389 0.171556364 0.170849580 0.171578698

(0.25, 0.00) 0.168372009 0.166994125 0.168326676 0.167642203 0.168344479

(0.50, 0.00) 0.155787639 0.153954518 0.155742364 0.155128896 0.155785003

(0.00, 0.25) 0.164754886 0.160365891 0.164718369 0.164090329 0.164787878

(0.25, 0.25) 0.161621571 0.156257834 0.161585326 0.161035982 0.161651490

(0.50, 0.25) 0.149458308 0.143932112 0.149422849 0.148874152 0.149601572

(0.00, 0.50) 0.141207698 0.132898732 0.141184658 0.140772330 0.141410621

(0.25, 0.50) 0.138504000 0.129751728 0.138481830 0.138115184 0.138704288

(0.50, 0.50) 0.128048264 0.119841829 0.128027365 0.127831234 0.128341303

(0.25, 0.75) 0.089937761 0.080865884 0.089930550 0.089835973 0.089467164

(0.50, 0.75) 0.083498372 0.075216935 0.083492387 0.083378769 0.083964199

(0.75, 0.75) 0.064544256 0.059579241 0.064547312 0.064740823 0.064507588

Equations (4.7) and (4.8) become as follow

Rβ

2

∫

	i
q

V n+1u∗ d	− 1

2

∫

∂	i
q

V n+1
,l n,l u

∗ d� + 1

2

∫

	i
q

V n+1
,l n,l u

∗
,l d	

− M

2

∫

	i
q

(
cos(θ)

∂Bn+1

∂x
+ sin(θ)

∂Bn+1

∂y

)
u∗ d	,

=
∫

	i
q

f nu∗ d	+ Rβ
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Table 2 Comparison of velocity field of Shercliff’s problem at M = 20 using MLPG method [14] FVE method [48], FVSE method [48] and MWS
method

(x, y) Exact value FVE method FVSE method MLPG method MWS
Nx = Ny = 30 Nx = Ny = 10 N = 1681 N = 441

(0.00, 0.00) 0.049918641 0.049949831 0.049904635 0.049921141 0.049906549

(0.25, 0.00) 0.0498802236 0.049931721 0.049866591 0.049883013 0.049865186

(0.50, 0.00) 0.049760102 0.049810629 0.049745566 0.049764512 0.049737697

(0.00, 0.25) 0.049662783 0.04973904 0.049646821 0.049684382 0.049631254

(0.25, 0.25) 0.049570651 0.049653541 0.049555008 0.049593666 0.049537495

(0.50, 0.25) 0.049299034 0.049311106 0.049282439 0.049327163 0.049261090

(0.00, 0.50) 0.047716857 0.047654403 0.047697841 0.047785558 0.047605067

(0.25, 0.50) 0.047452918 0.047395908 0.047434150 0.047520638 0.047346003

(0.50, 0.50) 0.046677531 0.046513455 0.046657809 0.046745300 0.046584030

(0.00, 0.75) 0.037657703 0.037475349 0.037637608 0.037763549 0.037502361

(0.50, 0.75) 0.036166028 0.036002088 0.036145676 0.036262629 0.036025300

Table 3 Numerical solution of velocity for some selected points at different times for non-conducting walls at different times for non-conducting
walls and M = 20

(x, y) Numerical method t = 0.025 t = 0.05 t = 0.01 t = 0.15 Steady state

(0.00, 0.00) MWS 0.02478 0.04387 0.04985 0.04991 0.04992

CMWS 0.02489 0.04349 0.04987 0.04990 0.04992

(0.50, 0.00) MWS 0.02293 0.03711 0.04913 0.04976 0.04976

CMWS 0.02164 0.03487 0.04874 0.04973 0.04976

(0.00, 0.25) MWS 0.02478 0.04345 0.04958 0.04966 0.04966

CMWS 0.02488 0.04331 0.04967 0.04968 0.04966

(0.25, 0.25) MWS 0.02456 0.04178 0.04951 0.04956 0.04957

CMWS 0.02437 0.04191 0.04985 0.04946 0.04957

(0.50, 0.25) MWS 0.02281 0.03718 0.04874 0.04929 0.04930

CMWS 0.02246 0.03450 0.04829 0.04931 0.04930

(0.00, 0.50) MWS 0.02476 0.04269 0.04768 0.04771 0.04772

CMWS 0.02467 0.04270 0.04759 0.04779 0.04772

(0.25, 0.50) MWS 0.02442 0.04052 0.04735 0.04746 0.04745

CMWS 0.02339 0.03875 0.04693 0.04749 0.04745

(0.50, 0.50) MWS 0.02279 0.03604 0.04641 0.04666 0.04668

CMWS 0.02137 0.03374 0.04559 0.04676 0.04668

(0.25, 0.75) MWS 0.02185 0.03313 0.03719 0.03728 0.03730

CMWS 0.02137 0.03167 0.03669 0.03724 0.03730

where ∂	q is the boundary of the local sub-domain 	q and
for the nodes on the boundary, as one can see in Fig. 1,
we have ∂	i

q = �i
q
⋃

Łi
q . In the MLPG5 method, the test

function is taken as Heaviside step function

u∗ =
{

1, x ∈ 	s,

0, x /∈ 	s,
(4.12)

and then u∗
,l = 0, therefore the local weak form (4.10)

and (4.11) are changed into the following integral
equations
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Imposing the natural boundary condition, Eq. (4.14) is trans-
formed into
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To obtain a discretized system of equations for weak
form, we approximate the unknown functions with MLSRKP
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Fig. 4 The contour plots of velocity (left) and induced magnetic field (right) for λ = ∞, M = 30 at t = 0.05 with N = 1681

approximation. Substituting the MLSRKP approximation
into Eq. (4.15), yields

N P∑
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2
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2
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2
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2
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(4.16)

where
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cos(θ)
∂N j

∂x
(x) d	,

Ni j =
∫

	i
q

sin(θ)
∂N j

∂y
(x) d	. (4.17)

5 Numerical results

In the test problems, the quadratic basis (m = 2) and
Gaussian weight function are employed as:

wi (x) =
{

exp[−(di /ci )
2]−exp[−(ri /ci )

2]]
1−exp[−(ri /ci )

2] , 0 ≤ di ≤ ri ,

0, di > ri ,
(5.1)

where di = ‖x−xi‖2, ci is a constant controlling the shape of
the weight functionwi and ri is the size of the support domain
for node i . Except in the case of circular cross-section, we
illustrate our procedure by considering a square pipe |x | ≤
1, |y| ≤ 1. The calculation has been executed for different
values of θ, λ and M . We have f (t) = 1 in the case of
transient flow with constant pressure gradient. Also, we have
taken R = Rm = 1.

5.1 Test 1: pipes with non-conducting walls, λ = ∞
and horizontal magnetic field, θ = 0

As time tends to infinity, the steady state solutions are taken
which are founded in special cases. Shercliff [49] obtained
the steady solution for the flow in pipes with non-conducting
walls with an applied magnetic field parallel to one pair of
sides. In this case, these solutions are used to check the accu-
racy of the results for certain values of Hartmann numbers.

The obtained numerical results by Meshless Local Petrov–
Galerkin (MLPG) method [14], Finite Volume Element
(FVE) method [48], Finite Volume Spectral Element (FVSE)
method [48] and the new method, i.e., Meshfree Weak-Strong
(MWS) form method are presented in Tables 1 and 2 for
solving the MHD equations with Hartmann numbers M = 5
and 20, respectively. From these tables, one can see that the
numerical solutions are in a good agreement with steady state
solutions, as time increases. Also, a comparison between the
present approach and classical MWS (CMWS) with MLS
approximation has been provided in Table 3 at different times
for M = 20.

123



1454 Comput Mech (2013) 52:1445–1462

0.0045665

0.0045665

0
00

45
66

5

0.0045665

0.0045665

0
0045665

0.
00

45
66

5

0.0081388

0.0081388

0
00

81
38

8

0.0081388
0.0081388

0
0081388

0.
00

81
38

8

0.011711

0.011711

0.
01

17
11

0.0117110.011711

0.011711

0.
01

17
11

0.015284

0.015284

0.
01

52
84

0.015284
0.015284

0.015284

0.
01

52
84

0.018856

0.018856

0.
01

88
56

0.018856

0.018856

0.
01

88
56

0.022428

0.022428

0.
02

24
28

0.022428

0.022428

0.
02

24
28

x

y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0
.0

18
00

3

−0.018003

−0
.0

18
00

3

−0.018003

−0
.0

12
86

−0.01286

−0
.0

12
86

−0.01286−0
.0

07
71

57

−0.0077157

−0.0077157

−0
00

77
15

7

−0.0077157

−0.0025719

−0
.0

02
57

19

−0.0025719

−0
00

25
71

9

−0.0025719
0.0025719

0.0025719

0.
00

25
71

9

0
0025719

0.
00

25
71

9

0.0077157

0.
00

77
15

7

0.0077157
0

0077157

0.
00

77
15

7 0.01286

0.
01

28
6

0.01286
0.01286

0.018003

0.
01

80
03

0.018003

0.
01

80
03

x
y

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5 The contour plots of velocity (left) and induced magnetic field (right) for λ = ∞, M = 40 at t = 0.05 with N = 1681
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Fig. 6 The contour plots of velocity (left) and induced magnetic field (right) for λ = 0, M = 30 with N = 441

The behaviour of velocity and induced magnetic field
along the x-axis, in y = 0 plane of the duct, for M = 5
and 10 are plotted in Figs. 2 and 3 at several time levels. It
can be seen from the figures that the solutions V and B tend
to steady state by increasing the times.

The contour plot of velocity and induced magnetic field
for different Hartmann numbers M = 30 and 40 are depicted

in Figs. 4 and 5, respectively. The plots reveal that the veloc-
ity is symmetric with respect to both x- and y-axes, but
the induced magnetic field is not symmetric with respect to
y- axes and therefore the contour lines change their direc-
tion in the left and right parts of pipes. Also, these fig-
ures show that the boundary layers develop as the Hartmann
number increases in both velocity and induced magnetic
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Fig. 8 Graph of induced magnetic field along the x-axes (y = 0) for M = 10, θ = 0 and different values of λ

field cases. Furthermore, the thickness of boundary layers
becomes smaller by increasing the Hartmann number which
is the well–known behaviour of MHD duct flow. Finally,
in Fig. 13, we depict results for the case of irregular nodal
distribution.

5.2 Test 2: ducts with arbitrary wall conductivity
λ, 0 ≤ λ < ∞ and horizontal magnetic field, θ = 0

First of all, we consider λ = 0 which is the case of MHD
flow in a duct with prefect conducting walls of the duct. In
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Fig. 9 The contour plot of velocity (left) and induced magnetic field (right) for M = 20, λ = ∞ and θ = π
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Fig. 10 The contour plot of velocity (left) and induced magnetic field (right) for M = 20, λ = ∞ and θ = π
3

Fig. 6, the contour plots of velocity and the induced mag-
netic field with M = 20 are depicted. From this figure,
it can be observed that for high conducting wall case, the
induced magnetic field contours are perpendicular to the
walls.

Also, Figs. 7 and 8 are plotted to investigate the effect
of wall conductivity, λ for both the velocity and induced

magnetic field. The graphs along the x-axes tend to the case
λ = ∞ as λ increases.

5.3 Test 3: ducts under oblique magnetic field, θ > 0

In this case, we consider the MHD equation that by using
externally applied magnetic field, makes angle θ with the
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Fig. 12 Plot of induced magnetic field along the x-axes (y = 0) for M = 10, λ = ∞ and different values of θ

x-axes. The contour plots for M = 20, λ = ∞, θ =
π
4 , and θ = π

3 are graphed in Figs. 9 and 10, respectively.
Figures 11 and 12 demonstrate the effect of different values
of θ along the x-axes for M = 10, λ = ∞. The graphs show
that the induced magnetic field along the x-axes decreases
when θ increases from 0 to π

2 .

5.4 Test 4: ducts with M = 0, λ, θ = arbitrary

Finally, we consider MHD equation with M = 0. The exact
solution of this case has been obtained by Singh and Lal [52].
Clearly, in this test problem, the velocity and induced mag-
netic field results are independent of λ and θ . The values of
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Table 4 Comparison of velocity field of Shercliff’s problem at M = 0 using FVE method [48], FVSE method [48] and MWS method

(x, y) Exact value FVE method FVSE method MWS
N = 722 N = 162 N = 441

(0.00, 0.00) 0.294685413 0.292268617 0.294639646 0.294211214

(0.25, 0.00) 0.278882332 0.277749251 0.278837322 0.278435000

(0.50, 0.00) 0.229339626 0.227641472 0.229310695 0.229839018

(0.75, 0.00) 0.139729128 0.138616943 0.139718764 0.139445092

(0.00, 0.25) 0.278882332 0.277749251 0.278826724 0.278261119

(0.25, 0.25) 0.264148031 0.264140337 0.264093068 0.264560730

(0.50, 0.25) 0.217799304 0.217023600 0.217760813 0.218317699

(0.75, 0.25) 0.133327705 0.132722756 0.133311067 0.133946130

(0.00, 0.50) 0.229339629 0.227641472 0.229284974 0.229839015

(0.25, 0.50) 0.217799304 0.217023600 0.217744528 0.217831769

(0.50, 0.50) 0.181144632 0.179895157 0.181102961 0.181719238

(0.75, 0.50) 0.112736689 0.111849409 0.112715493 0.113457367

(0.00, 0.75) 0.139729128 0.138616943 0.139689585 0.139445086

(0.25, 0.75) 0.133327705 0.132722756 0.133288009 0.133946124

(0.50, 0.75) 0.112736685 0.111849409 0.112704285 0.113457359

(0.75, 0.75) 0.072819791 0.072124775 0.072803408 0.072568704
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Fig. 13 Irregular nodal distribution and contour plots of the induced magnetic field for M = 20
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Fig. 14 Contour plots of velocity (left) and induced magnetic field (right) for M = 20 at t = 0.05
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Fig. 15 Contour plots of velocity (left) and induced magnetic field (right) for M = 40 at t = 0.05
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Table 5 Numerical solution of velocity for selected points at different times for circular pipes at M = 5

(x, y) t = 0.1 t = 0.2 t = 0.5 t = 1.0 Steady state

V (0.0, 0.0) 0.0916 0.1337 0.1525 0.1530 0.1530

(1/3, 0.0) 0.0863 0.1261 0.1460 0.1466 0.1466

(2/3, 0.0) 0.0654 0.0967 0.1161 0.1165 0.1165

(0.0, 2/3) 0.0632 0.0835 0.0913 0.0918 0.0918

–B (0.0, 0.0) 0.0000 0.0000 0.0000 0.0000 0.0000

(1/3, 0.0) 0.0103 0.0272 0.0403 0.0408 0.0408

(2/3, 0.0) 0.0199 0.0445 0.0621 0.0624 0.0624

velocity at different time levels are compared with the exact
solution in Table 4. The obtained results show the accuracy
of the proposed method (Fig. 13).

5.5 Test 5: circular pipes with insulating walls, λ = ∞
and θ = 0

As an example of an irregular cross section, we studied the
case of a circular cross section, x2 + y2 ≤ 1. An arbitrary
node distribution is considered which is one of the advantages
of using meshfree methods. The numerical solution for flow
on a circular pipes for Hartmann numbers M = 20 and 40,
are presented in Figs. 14 and 15, respectively. It observes
from the figures that the velocity and induced magnetic filed
behave similar to rectangular ones. In Table 5, the numerical
results of the velocity and induced magnetic fields are given
at different times for M = 5, it can be seen that the numerical
results are in a good agreement with the steady state solution
as time increasing.

6 Conclusion

In this work, the MWS form method is employed for solving
the unsteady two dimensional magnetic hydrodynamic flow
in rectangular and circular pipes. The MWS form method
applied the moving least square approximation and radial
point interpolation to construct the shape functions. But,
since the MLSRKP scheme was given as a different version
of the moving least square method, the MLSRKP approxi-
mation is used to approximate the unknown functions. More-
over, a time stepping method is applied to deal with the time
derivatives. The numerical results are presented for MHD
duct problems with various values of θ , orientation of applied
magnetic field with x-axes, λ, the wall conductivity and M ,
the Hartmann number. The figures are depicted to simulate
the effect of these parameters. The numerical results are com-
pared with three other methods in the cases with steady state
solutions. In these cases, comparisons reveal that the new
method is accurate and agrees with the exact solutions.
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