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Abstract Within the theme of ductile fracture in metals, we
propose an algorithm for FEM-based computational fracture
based on edge rotations and smoothing of complementarity
conditions. Rotation axes are the crack front nodes in surface
discretizations and each rotated edge affects the position of
only one or two nodes. Modified edge positions correspond to
the predicted crack path. To represent softening, porous plas-
ticity in the form of the Rousselier yield function is used. The
finite strain integration algorithm makes use of a consistent
updated Lagrangian formulation which makes use of polar
decomposition between each increment. Constitutive updat-
ing is based on the implicit integration of a regularized non-
smooth problem. The proposed alternative is advantageous
when compared with enriched elements that can be signifi-
cantly different than classical FEM elements and still pose
challenges for ductile fracture or large amplitude sliding. For
history-dependent materials, there are still some transfer of
relevant quantities between meshes. However, diffusion of
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results is more limited than with tip or full remeshing. To
illustrate the advantages of our approach, fracture examples
making use of the Rousselier yield function are presented.
The Ma-Sutton crack path criterion is employed. Traditional
fracture benchmarks and newly proposed verification tests
are solved. These were found to be very good in terms of
crack path and load/displacement accuracy.

Keywords Fracture · Plasticity · Porous · Ductile

1 Introduction

In metals at room temperature, void nucleation and parti-
cle debonding, void growth and coalescence are the mecha-
nisms for crack growth from the process region [15]. Detailed
multiple-scale analysis of these mechanisms require robust
polycrystalline plasticity and representation of dislocation
dynamics and grain boundary barriers (Roters et al. [29]
present a comprehensive review). Therefore, the so-called
phenomenological models (e.g. [24]) are observed as a cost-
effective tool for predicting damage and fracture in metals
when overall quantities, like maximum load and dissipated
energy, are of interest. Recently, several works have dealt
with ductile damage using phenomenological models com-
bined with enrichment [32] and tip remeshing techniques
[6,11,7,38]. Edge-based algorithms are specially appropriate
for ductile fracture, as recently shown by Areias and Rabczuk
[9].

The now well-established GTNmodel is based on the orig-
inal yield surface by Gurson [20] and was subsequently mod-
ified by Tvergaard and Needleman [36,37]. The void growth
part of the GTN model is based on the micromechanics of
the ductile process. Phenomenological models formulated
based on thermodynamical principles have also been pro-
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posed such as the Lemaitre model [24] and its subsequent
modifications. Among this class of constitutive models, the
Rousselier model [30] is interesting from a computational
perspective as it is simpler and requires the specification
of fewer parameters than the GTN model, while possessing
the ability to closely match the predictions of the latter by
determination of said parameters. It adheres to the idea that
the occurrence of localization, crack initiation and propa-
gation emerges as a direct consequence of strain softening
due to void growth. Hence, unlike micro-mechanics mod-
els of porous metal plasticity, the Rousselier model does not
directly model the mechanism of coalescence. However, two
properties are worth mentioning:

1. The Rousselier model predicts void fraction growth in
pure shear.

2. The Rousselier yield surface has an isochoric vertex caus-
ing a non-zero plastic volumetric term component.

An extension of the model for viscoplastic and temperature
dependent behavior was proposed by Tanguy and Besson
[34], who used it for simulations of Charpy testing. We use a
specialized and enhanced version of our integration scheme
for plasticity ([7,9]) for the Rousselier yield function. In addi-
tion to the smoothing of the complementarity condition, we
use extrapolation of the void fraction variable. Crack propa-
gation follows the newly developed algorithm based on rota-
tion of edges. Examples showing the applicability of the new
approach are shown with one verification example and three
numerical tests where comparisons with published work are
performed.

1.1 Equilibrium for an arbitrary reference configuration

Cauchy equations of equilibrium for an it reference configu-
ration can be obtained by manipulation of the spatial version
of equilibrium (the derivations for the latter are shown in
Ogden [28]). Using standard notation (cf. [35]) we write the
spatial version of Cauchy equations as (here, i is the direction
index and j is the facet index):

∂σi j

∂x p j

+ bi = 0, i = 1, 2, 3, j = 1, 2, 3 (1)

with σi j (i, j = 1, 2, 3) being the components of the Cauchy
stress in an orthonormed basis and bi the components of the
body force vector. The coordinates x p j are the spatial, or
deformed, coordinates of a given point (p) under considera-
tion. Equation (1) is satisfied for a time parameter t ∈ [0, T ]
with T being the total time of analysis and for a position
x p ∈ �t belonging to the deformed position domain at the
time of analysis (here denoted�t ). In tensor notation, Eq. (1)
can be presented as:

∇ · σ T + b = 0, (2)

where ∇ = ∂
∂x p

is the spatial gradient operator. Together
with (2), essential and natural boundary conditions defined
in terms of two functions gi and hi are required (cf. [22]):

ui = gi on �gi (3)

σi j n j = hi on �hi , (4)

where the boundary �t = ∂�t is partitioned in �g and
�h: �t = �g ∪ �h (respectively the essential and the nat-
ural boundaries). In Eq. (4), n j are the components of outer
normal to �t (in the deformed configuration). Using the def-
inition of the first Piola–Kirchhoff tensor (P) and denoting
the deformation gradient as F, it is possible to change the
derivative variables in (1). Using the relation σ = 1

J P FT

with J = det F we can write the equilibrium equation in
material form as:

∂Pi j

∂X p j

+ Jbi = 0, (5)

where X p j are the material, or undeformed, coordinates of a
given point under consideration. A direct manipulation of (5)
with the use of the second Piola–Kirchhoff stress, S, allows
the writing of the material form of equilibrium:

∂
(
Fik Sk j

)

∂X p j

+ Jbi = 0 (6)

or, using ∇0 as the material gradient operator (the derivative
with respect to X p):

∇0 (F · S)T + Jb = 0 (7)

The time parameter t is, in Eq. (7), the same as it was in
Eq. (2). However, the position domain is now �0 ≡ �t |t=0.

At this point, given (6), the conclusion of arbitrariness of
X p j as reference coordinates allows us to use a reference
configuration corresponding to an arbitrary instant tb and the
associated position domain�b. This results in the following
generalization of (7):

∇b (Fb · Sb)
T + Jbb = 0, (8)

where

∇b = ∂

∂X pb
(9)

Fb = ∇b x (10)

Jb = det Fb (11)

Sb = Jb F−1
b σ F−T

b (12)

The position domain is now�b ≡ �t |t=tb .The reader can
now observe that, if a given time instance ta is chosen from
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the interval [0, T ] not necessarily coinciding with t , we can
re-write (8) as:

∇b (Fab · Sab)
T + Jabb = 0 (13)

with Fab = ∇b x pa , ST
ab = Sab etc. Fab is denoted the

relative deformation gradient. Equation (13) will be used in
the weak form of equilibrium. The reader can note that it is
possible to transform the boundary conditions (3–4) to the
material setting. However, if boundary finite elements are
used, they can be directly written in the deformed configu-
ration. A fact worth pointing out is the following: ta must
be an equilibrium instant, in contrast with tb. This explains
why simplification attempts of the equilibrium Eq. (13) by
switching Fab for I1 result in loss of convergence for high
values of deformation.

1.2 Kinematics and stress integration

If (13) is adopted as the equilibrium equation with time para-
meters ta and tb, stress integration can be used in a form
that avoids the polar decomposition at the iteration level. In
a previous work [4] a rate-independent rotational approach
is proposed, but it entails a more complex constitutive algo-
rithm in finite strains. The present derivation achieves an
efficient and robust time-integration scheme for finite plastic
strains. In addition, if tb = 0, hyperelastic models can be used
directly in the material form (as discussed at length in [21]).
Let us consider three configurations a, b and c (respectively
at times ta ≥ tb ≥ tc) as depicted in Fig. 1. A consistent (and
consistently linearized) updated-Lagrangian formulation is
derived from (13) and the stepping suggested in that fig-
ure. The formulation can also be viewed as total Lagrangian,
since the strain–displacement matrices are equivalent in
structure.

The relative deformation gradient between two configu-
rations �a and �b is given by2:

Fab = ∂x pa

∂x pb
(14)

or, using the covariant basis the following product is
obtained:

Fab = xT
a yb, (15)

where

xa =
(
∂x pa

∂θ

)T

(16)

1 Those modifications result in sparse strain–displacement operators
coinciding with the small strain case, in contrast with what is presented
here.
2 Scalar components of Fab are introduced as [Fab]i j for the i th row
and j th column. x pa ∈ �a and x pb ∈ �b

Fig. 1 Intermediate configurations used for stress integration. θ
denotes parent domain coordinates

contains, as rows, the covariant basis vectors for configu-
ration a. Coordinates θ are locally identified with the par-
ent domain coordinates. In addition, ya = x−T

a contains, as
columns, the contravariant basis vectors of the same configu-
ration. The inverse of the deformation gradient is obtained by
swapping configurations a and b: F−1

ab = Fba . The Jacobian
determinant, using the same notation, is given by:

Jab = det Fab (17)

and measures the ratio between the volumes at configurations
a and b. The spatial covariant metric is defined as:

maa = xa xT
a (18)

The relative velocity gradient is given from the derivative
of xa as lab = ẋT

a yb
3and the strain rate as its symmetric part:

ε̇ab = 1
2

(
FT

ab lab+lT
ab Fab

)= 1
2

(
yT

b xa ẋT
a yb + yT

b ẋa xT
a yb

)

= 1
2 yT

b ṁaa yb. Using the spatial metric we write the right
Cauchy-Green tensor (see [28] for the original nomencla-
ture) between two configurations a and b directly from its
definition (15), using the nomenclature Cab:

Cab = yT
b maa yb (19)

Stress tensors are also given in relation to two configu-
rations a and b. Specifically, using the Cauchy stress tensor
(Saa or σ in the traditional notation) can be obtained from
the second Piola–Kirchhoff stress Sab between a and b4:

3 Note that the chain rule for this case is as follows:

lab = ∂va

∂xb
= ∂2x pa

∂θ∂t

∂θ

∂xb
= ẋT

a yb

4 As discussed before, Sab can be interpreted as the second Piola–
Kirchhoff stress at time ta relative to the reference configuration at time
tb

123



1432 Comput Mech (2013) 52:1429–1443

Saa = 1

Jab
Fab Sab FT

ab (20)

The reference configuration for the stress can be changed
from b to c by a direct generalization of (20):

Sac = Jac

Jab
Fcb Sab FT

cb (21)

Power-conjugate quantities involving this definition of
stress must be of the form:

ẇ = 1

2
Sab : Ċab (22)

∀ta > tb. The weak form of equilibrium is given by (the
upper triangle indicates a “virtual quantity”, as employed by
Antman [1]):

1

2

∫

�b

Sab :
�
Cabd�b

︸ ︷︷ ︸
�
W int

=
�
W ext (23)

when ta > tb and, alternatively,

∫

�a

Saa : �
εaad�a =

�
W ext (24)

when ta = tb. These two forms follow directly from (2) and
(13) in the previous section and the application of Green’s
theorem. The so-called “stress updates” in the sense of
approximations for the Lie derivative (described in Chapters
7 and 8 of [33]) are concisely given as:

Sab = �Šab + 1

Jbc
Fbc Sbc FT

bc
︸ ︷︷ ︸

Sbb

(25)

with �Šab being the relative constitutive stress5 and Sbb

can be interpreted as the “transported” stress, whose source
is purely kinematic, as Fig. 1 suggests. The strict total
Lagrangian formulation is recovered for b = c = 0. When
considering plasticity it is convenient for�Šab to depend on
a “strain” measure, which in our case is the relative Green-
Lagrange strain Eab:

Eab = 1

2
[Cab + I (2αTab − 1)] , (26)

where α is the linear thermal expansion coefficient and
Tab is the temperature difference between configurations
a and b. For completeness, we also show that the back-
stresses (here denoted by B) are given by a similar update
scheme,

5 Both elastic and inelastic parts contribute to �Šab

Bab = �B̌ab + 1

Jbc
Fbc Bbc FT

bc
︸ ︷︷ ︸

Bbb

(27)

To create a stress contour map, Cauchy stresses are
physically meaningful and correspond to Saa , calculated

as Saa = Fab

(
�S̆ab + Sbb

)
FT

ab/Jab with the appropri-

ate transformations for a global coordinate system. The pro-
posed approach implies a re-writing of classical Fe F p plas-
ticity codes to work with time increments (one of such codes
is discussed in [8]). The linearization of (23) is straightfor-
ward (with fewer operations at the constitutive level than
the traditional Kirchhoff-stress/strain rate approach) and
follows:

d
�
W int = 1

2

∫

�b

Sab : d
�
Cabd�b + 1

4

∫

�b

dCab : C :
�
Cabd�b

(28)

and dW ext being calculated according to the deformation-
dependent loads. The determination of Cab and Fab does
not have to be compatible in the sense that since an updated
problem is solved when switching from b to c as reference
configuration, it follows that mixed formulations can be used
for Cab and not for Fbc in (25). This aspect is dealt in the
following section. Restrictions to moderate elastic strains
are applicable once b and c do not coincide. The interest-
ing versatility of the present approach is that for hyperelastic
materials we can coalesce b = c = 0 and the Lagrangian
description of hyperelasticity can be used without specific
conditions and for arbitrarily large strains. Otherwise, it is
clear that a Lie derivative of the stress is being implicitly
calculated and the proposed algorithm belongs to the non-
corotational hypoelastic class of algorithms (discussed in
[16]). The following limitations are known to exist with this
approach:

• Energy dissipation for large amplitude closed loading
cycles.

• Restriction to elastic isotropy when using elasto-plastic
constitutive laws.

In contrast with the Fe F p approaches, where errors result
from the plastic integration algorithm (cf. [7]), in the present
approach the stress time integration has an associated error
without plastic flow. A direct comparison with classical
approximations (Kirchhoff/Saint-Venant using the Hencky
strain) and hyperelastic models (Neo-Hookean according to
the description by Wriggers [39]) is made to assess the range
of elastic deformations for which the present approach can be
accepted (cf. Fig. 2). When considering elasticity, high val-
ues of step size result in stress drifting. It is noticeable that,
for metal elasto-plasticity, the error is not important since
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Fig. 2 Closed cycle loading
with high values of elastic
strains: comparison with
Neo-Hookean and
Kirchhoff/Saint-Venant using
the Hencky strain

elastic strain components are typically less than 2 % of the
total.

1.3 Assumed-strain elements: polar decomposition when
reaching convergence

For assumed-strain formulations, agreement must exist
between Fab and Cab. Since Cab (or, in alternative, Eab)
has an assumed form (or, in alternative enhanced form) a
long standing problem is the compatibility between Cab and
Fab, see [14]. This is solved by approximating the rela-
tive rotation matrix (identified as Rab) by a purely kine-
matic one, which we identified as Rkin

ab . With our consistent
incremental approach, no requirement for permanent polar

decomposition exists. However, any mismatch between Fab

and F	ab = Rab
√

Cab typically grows with the number of
time steps. To circumvent this problem, we perform a polar
decomposition at the end of each time step and use a kine-
matic rotation (here denoted as Rkin

ab ) to obtain:

Fab updated = Rkin
ab

√
Cab (29)

The kinematic rotation tensor Rkin
ab depends on the ele-

ment technology adopted. For shells, for example, the Kirch-
hoff rotation can be used [10]. In this paper, a simple iso-
parametric plane stress element is used. Plane strain elements
make use of a bubble shape function and continuous pressure
(the so-called MINI elements [12]). Selective-reduced inte-
gration is used for the axisymmetric element [22].
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1.4 Semi-implicit integration

Distinct semi-implicit integration approaches for constitutive
laws have been proposed in the past with different meanings.
Three of the typical perspectives are:

1. The flow vector being explicitly integrated, as in Moran
et al. [27].

2. The flow law has a constant term dependent on the elastic
left Cauchy Green tensor, as in Areias et al. [7].

3. Void fraction, or damage are frozen in the previous time-
step and explicitly integrated [24].

We extend approach 3. with the implicit integration of void
fraction and effective plastic strain and extrapolation. The
use of particular properties in stress integration for elasto-
plasticity allows considerable savings in serial codes (for
example, concerning the Gurson model, the approach by
Aravas [2] of splitting volumetric and deviatoric terms in the
flow rule has been long established and extended). We must
note that the use of OpenMP is currently widespread and
computational load distribution by element groups a common
practice. This shifts the focus from hand-optimized consti-
tutive integration algorithms to effective general integration
approaches with particular yield functions being introduced
as particular cases. Using�γ as the plastic strain increment,
ϕ(�γ,�Šab) as the yield function, n = ∂ϕ

∂�Šab
as the flow

vector and v as the set of history variables for a particular
material (including the back-stresses), a constitutive system
can be established. The evolution law for v is given by:

v̇ = γ̇ ψ(Sab, v), (30)

where γ̇ is the plastic multiplier and ψ is the internal vari-
able function (a thermodynamical approach was recently
employed by Van Goethem and Areias [38]). The implicit
integration of the constitutive laws and their implicit integra-
tion reveals the following residuals {rε, rγ , rv}6

rε = C −1
linear�Šab − Eab +�γ n(�γ,�Šab, v) = 0 (31)

rγ = ϕc(�γ,�Šab, v) = 0 (32)

rv = �v −�γψ(�γ,�Šab, v) = 0 (33)

complemented, for plane stress, by the equation
[
�Š
]

33
= 0,

[10]:

[E]33 = �γ n33 + 1

C3333

[
C3311 (�γ n11 − [E]11)

+C3322 (�γ n22 − [E]22)
]

(34)

6 Note that the system does not correspond to a return-mapping
approach.

In (31–33), Clinear is the linear elasticity tensor, n is the
flow vector. The terms �γ and �v are increments corre-
sponding to γ̇ and v, respectively. The increment in the thick-
ness strain is determined after all relevant quantities have con-
verged. It is a post-processing step at each quadrature point.
The nonsmooth Eq. (32) has the following right-hand-side:

ϕc =
〈
μ�γ + ϕ

(
�γ,�Šab

)〉
− μ�γ (35)

In (31), the flow vector is given by:

n = ∂ϕ

∂�Šab

∣
∣∣∣
Sab=Šab+Sbb

(36)

We further modify the constitutive system with the following
combined implicit/extrapolation scheme:

• History variables v are implicitly integrated by the
backward-Euler method after the first two constitu-
tive Eqs. (31–32) are satisfied, by applying Newton-
Raphson method to the following system: v	n+1 = v	n +
�γψn+1

(
�γ,�Šab, v

	
n+1

)
, noting the dependence of

ψn+1 on v	n+1.
• Extrapolation from the previous step is adopted for the

arguments of n andϕc:vn+2 = v	n+1+�tn+2
�tn+1

(
v	n+1 − v	n

)

where v	 indicates an implicitly integrated history vari-
able and v indicates an extrapolated history variable.

The reduced constitutive system is finally given by:

rε = C −1
linear�Šab − Eab +�γ n(�γ,�Šab, vn+1) = 0

(37)

rγ = ϕc(�γ,�Šab, vn+1) = 0 (38)

The system (31–33) is typically solved for�Šab and�γ
by means of the Newton-Raphson method, which requires the
derivatives of both equations with respect to �Šab and �γ .
Using the residual rc = {rε, rγ }T we calculate the Jacobian
as:

J =
[

C −1
linear +�γ ∂n

∂�Šab
n +�γ ∂n

∂�γ
∂ϕc

∂�Šab

∂ϕc
∂�γ

]

(39)

The consistent tangent modulus is defined as:

Cconsistent = ∂�Šab

∂Eab
(40)

which, of course, is obtained from the Eqs. (31,32) perform-
ing the elimination for �γ :

Cconsistent =
[

C −1
linear +�γ

∂n

∂�Šab
−
(
∂ϕc

∂�γ

)−1 (
n +�γ

∂n
∂�γ

)
⊗ ∂ϕc

∂�Šab

]−1

(41)
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for ∂ϕc/∂�γ �= 0. In alternative, performing the elimination
for �Šab:

Cconsistent = C −

[
C
(

n +�γ ∂n
∂�γ

)]
⊗
[(

∂ϕc

∂�Šab

)T
C

]

(
∂ϕc

∂�Šab

)T
C
(

n +�γ ∂n
∂�γ

)
− ∂ϕc

∂�γ

(42)

with

C =
(

C −1
linear +�γ

∂n

∂�Šab

)−1

(43)

It is noticeable that form (42), contrasting with form
(41), remains well behaved when ∂ϕc/∂�γ ∼= 0. Using the
Sherman–Morrison formula it is possible to present a differ-
ent expression for Cconsistent, with no gain in the number of
arithmetic operations.

1.5 The Rousselier model and its integration

The Rousselier [30] model for ductile damage is charac-
terized by the following yield function in non-dimensional
form:

ϕ (y, Sab, f ) = σ(Sab)

(1 − f ) y
+ σ1 f

y
D exp

[
tr [Sab]

3 (1 − f ) σ1

]

−1 = 0 (44)

in which f is the void fraction and y is the hardening value,
given as a function of εp. In addition to the hardening charac-
teristics, the only additional properties are σ1, D and f0. The
property σ1 can be estimated from the original yield stress,
y0 = y|εp=0 and the ultimate tensile strength, ymax = max

εp
y

as:

σ estimate
1 = 1

3
(y0 + ymax) (45)

Note that ymax must be provided by the actual hardening
curve in the porous case (with f evolving). Void fraction
follows from volume change and is calculated as

f = 1 − (1 − f0) exp [−3εm] (46)

or, in alternative, using a linearized version,

f = 1 − (1 − f0) (1 − 3εm) (47)

The applicability of function ϕ(y, Sab, f ) is of course
conditional, since the system (37–38) may not have a solu-
tion. A conservative upper bound for an allowable f is:

fmax = 1 − tr [Sab]

3σ1 log
(

y
dσ1

) (48)

It can be observed that D indirectly controls the void
growth rate. We can force the growth near the critical value

of void fraction to model coalescence as in the GTN model,
but with a slight difference:

f	 = fc + f f − fc

fa − fc
( f − fc) (49)

with fa , fc and f f being additional properties. An initial
void fraction f0 must also be provided. Using Voigt notation,
the corresponding deviatoric stress is S′

ab = Dev · Sab, and

σ =
√

3S′
ab · I6 · S′

ab/2 is the von-Mises equivalent stress.
Here, the Voigt form of I6 is given by:

[I6]i j = δi j

(

1 +
3∑

k=1

δik+3

)

(50)

The deviatoric matrix Dev in the Voigt form is given by:

Dev = 1

3

⎡

⎢⎢⎢⎢
⎢⎢
⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

(51)

The equivalent plastic strain increment is computed based
on the power equivalence relation:

Sab · ε̇ p = (1 − f	) yε̇p (52)

The effective plastic strain rate is given by this power
equivalence:

ε̇p = γ̇

y(1 − f	)
Sab · n (53)

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Fig. 3 Replacement of �γ − 〈�γ + ϕ〉 by �γ − S(�γ + ϕ) as a
function of an Error parameter
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Fig. 4 Edge-based crack propagation algorithm in 2D. Node 3 is moved by rotation around node 0

Fig. 5 Plane stress verification
test: relevant data and thickness
contour plot (11,771 nodes)

Integration of constitutive quantities follow the uncondi-
tionally stable backward-Euler scheme:

εpn+1 = εpn + �γ

yn+1(1 − f	)
Sab · n (54)

Time stepping is adapted so that�εp = εpn+1 −εpn is kept
below 5 %. This measure is necessary for accuracy reasons in
problems with localization. The derivation of the derivatives
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Fig. 6 Effect of displacement
step and effect of the
extrapolation of f and εp
(11,771 nodes)

Fig. 7 Effect of mesh size in
the load/displacement results
and void fraction evolution
(�u = 2 × 10−5)

of ϕ discussed in Sect. 1.4 are performed with AceGen [23]
and exported to Simplas [3].

1.6 Implementation details

Since an equation containing the ramp function 〈x〉 is non-
smooth, the Newton-Raphson method will typically have
convergence difficulties or fail to converge, and therefore a
replacement can have convergence advantages. Eterovic and
Bathe [19] recognized this in 1991 and used a semi-smooth
function. We here use the Chen–Mangasarian replacement
function ([18,17]) S(x) ∼= 〈x〉, which is smooth in the

complete domain, to replace the ramp function. The func-
tion depends on an Error parameter. Consequences of this
replacement were discussed by Areias and Rabczuk [8].
Figure 3 shows the effect of this replacement in the satis-
faction of the complementarity condition. In the examples
we use a non-dimensional Error of 1 × 10−4.

Crack propagation follows the edge rotation recently
introduced by Areias and Rabczuk [9]. A representation
depicting the procedure is shown in Fig. 4. The criterion is
simply the critical void fraction, using the condition:

f ≥ f f �⇒ crack advance (55)
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Fig. 8 Lorentz notched problem (cf. [25]). Hardening law is imple-
mented with a piecewise linear function.

The crack path is determined by the Ma-Sutton method
(cf. [26]) which is based solely on the relative displacement
near the crack tip. Further details are provided in reference
[6].

1.7 Verification of the Rousselier model integration: time
and mesh dependence

A basic rectangular specimen is used to assess the discussed
approach in terms of objectivity (both step size and mesh
size). Dependence of load/displacement results in terms of
displacement step size and mesh size is investigated. Toward
this objective, a simple plane stress rectangular bar is tested,
with Fig. 5 showing the necessary benchmark data. The effect
of displacement step size is presented in Fig. 6 and the effect
of mesh size is shown in Fig. 7. We can observe that:

• Larger step sizes tend to produce higher loads.
• For the same step size, extrapolation improves the accu-

racy.

Fig. 9 Lorentz notched rod problem: effective plastic strain and void fraction contour plots. Three stages of crack propagation are shown.
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Fig. 10 Lorentz notched rod
problem: load/diameter
reduction results for two
meshes, compared with the
results of Lorentz et al. [25].

• Since a semi-implicit constitutive integration algorithm is
adopted, relatively mesh-independent results are obtained,
supporting the confidence in the formulation and compu-
tational implementation.

2 Numerical examples

2.1 Lorentz notched rod problem

The notched rod problem proposed by Lorentz et al. [25] is
now inspected in detail. Figure 8 shows the relevant data,
in agreement with the original reference. An axisymmet-
ric approach is adopted, with selectively reduced-integration
triangular elements. For mesh dependence assessment, two
meshes are employed: one with 7,964 nodes and another
with 15,283 nodes. The crack propagation sequence is shown
in Fig. 9. A close agreement with what is known can be
observed: initiation at the center and propagation toward the
notch up to final rupture. The load/diameter reduction results
obtained with our approach are compared with the results in
reference [25] in Fig. 10 showing acceptable agreement.

2.2 Cup and cone fracture

The axisymmetric problem problem by Besson et al. [13]
is reproduced, now including the crack propagation after
the satisfaction of f ≥ f f . Cup and cone formation was
detected, corresponding to experimental observation. Rele-
vant data for this problem, using consistent units, is shown in
Fig. 11. The stress/displacement results are compared with
results obtained by Besson et al. [13]. A difference exists in
the loading part of the curve due to the piecewise approxi-
mation of the hardening curve adopted in the present work

Fig. 11 Besson cylindrical specimen modeled with axisymmetric ele-
ments. Relevant data (see also [13]).

(see Fig. 12). We are also concerned with the cup and cone
formation, which requires a sufficiently refined mesh and
elongated elements in the radial direction. Figure 13 shows
the crack formed in the necking region and propagating
toward the outer surface, forming the cup and cone. This
type of results, combining the localization in ductile mate-
rials and a physically meaningful ductile crack formation
is very rare in the literature. In addition, robustness is very
favorable when compared with GFEM/XFEM.
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Fig. 12 Besson cylindrical
specimen: second
Piola–Kirchhoff stress versus
longitudinal displacement,
compared with the results of
Besson et al. [13].

Fig. 13 Besson cylindrical specimen: cup and cone formation.

2.3 Compact tension specimen

The compact tension specimen by Samal et al. [31] is repro-
duced. In that work the Rousselier yield function was adopted

Fig. 14 Compact tension specimen. Lengths given in meters. The hard-
ening curve is provided in [31].

to model the ductile fracture of the specimen and experi-
mental results were reported. The Authors used a gradient
model to attenuate the mesh dependence (similarly to the one
by Areias et al. [5]). Relevant data for this test is shown in
Fig. 14. We compare the force F as a function of the imposed
displacement v with the experimental results reported in
Samal’s paper. The comparison is shown in Fig. 15 where
good agreement can be observed. Slightly higher values were
numerically obtained in [31]. In contrast with the previous
examples, we use the linearized version of the Rousselier
void fraction equation. A sequence of contour plots for the
void fraction and effective plastic strain is shown in Fig. 16.
Very high deformations are possible without convergence
problems.
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Fig. 15 Compact tension
specimen: comparison between
experimental (reported in [31])
and numerical results.

Fig. 16 Compact tension specimen (cf. [31]): sequence of void fraction and effective plastic strain contour plots.

3 Conclusions

This work presented a combination of established and newly
proposed techniques which, in different contexts have proven

effective for the solution of finite strain problems in plasticity
and fracture. Specifically, the avoidance of return-mapping
algorithms, the smoothing of elasto-plasticity complemen-
tarity conditions, the use of edge rotations to model fracture

123



1442 Comput Mech (2013) 52:1429–1443

[9], the use of variable extrapolation and the simplified finite-
strain approach based on relative stresses which circumvent
the use of polar decomposition during iteration, contribute to
a very efficient solution. The Rousselier yield function was
used for practical reasons: it has fewer material parameters
than the GTN model and a simple interpretation of D and σ1.
With respect to the examples and benchmarks, we found that
a good agreement was observed with results from the litera-
ture and, for the compact tension test, excellent accuracy was
observed when comparing with the experimental results by
Samal et al. [31]. Mesh insensitivity and step-size insensitiv-
ity were approximately achieved and the overall implemen-
tation fully verified. Compared with the extended finite ele-
ment method (XFEM) our algorithm retains the underlying
finite element technology, quadrature is unchanged and more
complex crack patterns can be reproduced. Further exten-
sions are the temperature dependence with a continuation
of the work by Van Goethem and Areias [38] and plastic
anisotropy.
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