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Abstract To increase aerodynamic performance, the geo-
metric porosity of a ringsail spacecraft parachute canopy
is sometimes increased, beyond the “rings” and “sails”
with hundreds of “ring gaps” and “sail slits.” This creates
extra computational challenges for fluid–structure interac-
tion (FSI) modeling of clusters of such parachutes, beyond
those created by the lightness of the canopy structure, geo-
metric complexities of hundreds of gaps and slits, and the
contact between the parachutes of the cluster. In FSI compu-
tation of parachutes with such “modified geometric porosity,”
the flow through the “windows” created by the removal of the
panels and the wider gaps created by the removal of the sails
cannot be accurately modeled with the Homogenized Mod-
eling of Geometric Porosity (HMGP), which was introduced
to deal with the hundreds of gaps and slits. The flow needs
to be actually resolved. All these computational challenges
need to be addressed simultaneously in FSI modeling of clus-
ters of spacecraft parachutes with modified geometric poros-
ity. The core numerical technology is the Stabilized Space–
Time FSI (SSTFSI) technique, and the contact between the
parachutes is handled with the Surface-Edge-Node Contact
Tracking (SENCT) technique. In the computations reported
here, in addition to the SSTFSI and SENCT techniques and
HMGP, we use the special techniques we have developed
for removing the numerical spinning component of the para-
chute motion and for restoring the mesh integrity without a
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remesh. We present results for 2- and 3-parachute clusters
with two different payload models.
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1 Introduction

Fluid–structure interaction (FSI) modeling of ringsail space-
craft parachute clusters poses a number of computational
challenges [1,2]. These include the lightness of the para-
chute canopy compared to the air masses involved in the
parachute dynamics, the geometric porosity created by the
construction of the canopy from “rings” and “sails” with hun-
dreds of “ring gaps” and “sail slits,” and the contact between
the parachutes of the cluster. The Team for Advanced Flow
Simulation and Modeling (T�AFSM) has been addressing
these computational challenges with the Stabilized Space–
Time FSI (SSTFSI) technique [3], which was developed and
improved over the years by the T�AFSM and serves as the
core numerical technology, and a number of special tech-
niques developed in conjunction with the SSTFSI technique.

The SSTFSI technique originates from the Deforming-
Spatial-Domain/Stabilized ST (DSD/SST) method [4–7] and
its new versions [3,8,9]. The DSD/SST formulation is a
general-purpose moving-mesh (interface-tracking) method
for flows with moving interfaces. Its stabilization parts are
the Streamline-Upwind/Petrov-Galerkin (SUPG) [10] and
Pressure-Stabilizing/Petrov-Galerkin (PSPG) [4,11] meth-
ods. The DSD/SST method is used with the advanced mesh
update methods [3,12–15] developed by the T�AFSM. Mesh
update includes moving the mesh for as long as possible
and remeshing when needed. The ST approach, with higher-
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order functions in time, gives us more effective ways of
mesh moving and remeshing [16–20]. While the Arbitrary
Lagrangian–Eulerian (ALE) finite element formulation [21]
is the most commonly used moving-mesh approach in FSI
computations [22–38], the DSD/SST formulation now also
has a good record of being applied to some of the most chal-
lenging FSI computations (see [1–3,9,39–42] and references
therein).

Parachute FSI computations of the T�AFSM with the
DSD/SST method precede the development of the SSTFSI
technique and the associated special techniques. These com-
putations started as early as 1997 [43], with 3D computations
going as far back as 2000 [44,45], and with a good number of
parachute FSI problems solved [46–52] before reaching the
SSTFSI technique. However, it was the SSTFSI technique,
and the special techniques developed in conjunction with it,
that brought the parachute FSI computations to a new era
in addressing some of the most formidable computational
challenges and truly supporting actual parachute design and
testing [1,3,19,41,53–60].

In an FSI computation with a moving-mesh method,
the FSI coupling technique determines how the coupling
between the equation blocks representing the fluid mechan-
ics, structural mechanics, and mesh moving equations is
handled. The coupling techniques used in the T�AFSM
parachute computations evolved from block-iterative FSI
coupling [61] (see [3,51] for the terminology) used in the
computations reported in [44–47] to a more robust version
of block-iterative coupling [51,52,61,62] and to quasi-direct
coupling [51,52] and direct coupling [51,52] techniques.
The quasi-direct and direct coupling techniques, which are
applicable to cases with nonmatching fluid and structure
meshes at the interface, yield more robust algorithms for
FSI computations where the structure is light, such as para-
chute FSI computations. The SSTFSI technique is based
on the new versions of the quasi-direct and direct coupling
techniques with upgraded and additional interface projec-
tion methods [3,53,55,56,63], has a substantially increased
robustness in FSI computations, and rendered the earlier ST
FSI solvers obsolete. These new quasi-direct and direct cou-
pling techniques automatically reduce to “monolithic” cou-
pling when the interface has matching fluid and structure
meshes. Allowing nonmatching meshes at the interface sub-
stantially increases the scope of the FSI solver, leading to
success in FSI modeling of challenging problems, such as
ringsail spacecraft parachutes [1,19,41,53–60].

A good number of special FSI techniques were intro-
duced in [3,19,53,55–60,63] in conjunction with the SSTFSI
technique. These special techniques are mostly in the cate-
gory of interface projection techniques. They include the FSI
Geometric Smoothing Technique (FSI-GST) [3], Separated
Stress Projection (SSP) [53,56], Homogenized Modeling of
Geometric Porosity (HMGP) [53], adaptive HMGP [55],

“symmetric FSI” method [55], accounting for fluid forces
acting on structural components (e.g. parachute suspension
lines) that are not expected to influence the flow [55], new
versions of the HMGP that are called “HMGP-FG” [56]
and “HMGP-FGR” [60], and other interface projection tech-
niques [63]. The special FSI techniques in other categories
include the Surface-Edge-Node Contact Tracking (SENCT)
technique [3], which is a contact algorithm, multiscale
sequentially-coupled FSI techniques [55,57], rotational-
periodicity techniques [56,57], a new, conservative version
of the SENCT technique [58], computed-data reduction tech-
niques [58,59], intra-canopy versions of the contact algo-
rithm [60], and using higher-order temporal functions in
mesh moving [19].

The ringsail spacecraft parachutes the T�AFSM has been
focusing on are very large, made of a large number of gores.
A gore is the slice of the canopy between two radial reinforce-
ment cables running from the parachute vent to the skirt. The
construction of the canopy from rings and sails happens at the
gore level. With the HMGP, we bypass the intractable com-
plexities of the geometric porosity by approximating it at the
fluid interface with an “equivalent,” locally-varying “homog-
enized” porosity. This is obtained from an HMGP computa-
tion with an n-gore slice of the parachute canopy where the
flow through the ring gaps and sail slits is actually resolved
(see [53,54,56,57,60] for details). In the earlier HMGP com-
putations with a 4-gore slice, slip conditions were applied on
the boundaries intersecting the canopy. With the rotational-
periodicity techniques, less constraining conditions can be
imposed on those boundaries [56,57].

Spacecraft parachutes are typically used in clusters of
two or three parachutes. The computational challenge asso-
ciated with the contact between the parachutes of a cluster
is addressed with the conservative version of the SENCT
technique [58], which is also more robust than the original
SENCT technique [3]. During the FSI computation, there
might also be a contact within a canopy. This could be a
contact between the gores of a parachute canopy, or even a
contact between the nodes of a gore. These computational
challenges are addressed with the intra-canopy versions of
the contact algorithm [60].

As an additional computational challenge, the ringsail
parachute canopy might, by design, have some of its pan-
els and sails removed. The purpose is to increase the aero-
dynamic performance of the parachute. In FSI computation
of parachutes with such “modified geometric porosity,” the
flow through the “windows” created by the removal of the
panels and the wider gaps created by the removal of the sails
cannot be accurately modeled with the HMGP and needs
to be actually resolved. This and the other computational
challenges described in the earlier paragraphs all need to
be addressed simultaneously in FSI modeling of clusters of
spacecraft parachutes with modified geometric porosity. This
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is what we have succeeded in doing to a large extent for the
computations reported in this paper.

In the parachute FSI computations reported here, we also
use two special techniques that we have developed. With
one of the special techniques we remove the numerical spin-
ning component of the parachute motion. We believe that
this nonphysical spinning has its roots in two of our model-
ing features: (a) the parachute risers are modeled with cable
structures, which are currently unable to represent the tor-
sional stiffness that the risers should have, (b) in the HMGP,
the fluid interface does not see the “valleys” and “peaks” of
the gores that the structure interface has, currently not even at
some milder level, offering basically no aerodynamic resis-
tance to spinning. Therefore, once the spinning is triggered,
for example by an unsymmetric vortex, there is essentially no
resistance to it. With the other one of the special techniques,
we restore the mesh integrity lost during the mesh motion
without resorting to remeshing. The loss of mesh integrity,
though not frequent because of the advanced mesh moving
methods we are using, should be expected in FSI compu-
tations with the level of complexity we have in clusters of
ringsail parachutes with modified geometric porosity. When
we face such a loss of mesh integrity, as an alternative to
remeshing, we use a technique where the mesh is “relaxed”
without altering the mesh at the fluid–structure interface and
thus the mesh integrity is restored to some extent. This is of
course a less costly and less disruptive alternative to remesh-
ing.

These two special techniques are described in Sect. 2. The
computational conditions and results for 2- and 3-parachute
clusters with two different payload models are presented in
Sect. 3, and the concluding remarks are given in Sect. 4.

2 Special techniques

2.1 Removing spinning

We first define, as described in Sect. 4.1.2 of [58], the indi-
vidual parachute axes:

rk ≡ (xc)k − xp, (1)

where k indicates the kth parachute, and (xc)k and xp are the
centroid of the parachute and the confluence of the cluster,
respectively, and obtain

(gr )k = rk

‖rk‖ . (2)

We consider the angular momentum

Lk =
∫

�k

ζ × ρud�, (3)

where ρ is the density, u is the velocity, and ζ is the vector
from the origin. Based on that, we define an average angular
velocity:

ωk = (Itotal)
−1
k Lk, (4)

where (Itotal)k is the inertia tensor. We want to remove the
component of that in the (gr )k direction:

(ωS)k = (ωk · (gr )k) (gr )k . (5)

That would lead to the following new velocity for the points
of the kth parachute:

uRS = u − (ωS)k × ζ . (6)

Remark 1 Choosing the origin to be along the parachute
axis, which passes through the parachute centroid, makes
the velocity modification unique. Here we choose the origin
to be the confluence of the cluster.

2.2 Mesh relaxation

In the mesh relaxation technique we propose here, the new
mesh will have the same number of nodes and elements as
before, but certain nodes are moved slightly to improve the
quality of certain elements within the domain. For that, we
use the large-deformation solid mechanics equations rather
than the linear-elasticity equations with Jacobian-based stiff-
ening [3,12–15] that we use in mesh moving. One of the
advantages of this is the ability to choose from many consti-
tutive models and include geometric stiffness, which means
that we can define the undeformed shapes in arbitrary orien-
tations.

To add more flexibility to the equations we are using, we
introduce an element-based undeformed shape �e

0 for the eth
element. This is essentially a shape generated for each ele-
ment. In general we do not need to relate it to the current
domain, but in the mesh relaxation technique we propose
here, we do. Given mesh position XREF ∈ �REF for the cur-
rent mesh, we solve for the displacement y and obtain a better
quality mesh with XREF + y. In solving the solid mechanics
equations, we integrate over each element domain �e

0, and
the full displacement for an element node a is obtained as
follows:

xe
a = (

Xe
REF

)
a − (

Xe
0

)
a + ye

a . (7)

By design, the undeformed shape is the shape we want
to obtain from solving the solid mechanics equations. We
now call those elements “target elements.” There are several
options for constructing the target element shapes, and the
current mesh could be thought of as the starting point.

The first option is setting a minimum desired element vol-
ume. If an element in the current mesh has a volume less than
that, the volume of the element is increased incrementally
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until it reaches the minimum desired volume. This option is
useful for increasing the volume of specific elements in a
mesh relative to other elements.

The second option is a global volume scaling. It is a factor
by which all element volumes are multiplied, thus placing all
elements in the mesh in either tension or compression. This
is sometimes important for obtaining a stable solution from
the solid mechanics equations.

The third option is to shape the element such that it is
a regular tetrahedron, has its shape in the current mesh we
are relaxing, or is a linear interpolation between the two.
The linear interpolation needs to be done carefully. First we
define a regular tetrahedron Xe

REG such that the volume is the
same as the volume in the current mesh and the centroid is at
the origin. With that, we calculate the following deformation
gradient tensor at the element center:

F = ∂Xe
REF

∂Xe
REG

, (8)

and obtain the right Cauchy–Green tensor:

C = FT F. (9)

After the polar decomposition of C, we obtain the rigid-body
rotation tensor R. With this, we exclude the rigid-body rota-
tion for an element node a:(

X̂e
REG

)
a

= R
(
Xe

REG

)
a , (10)

and obtain the target element shape as

(
Xe

0

)
a = (1 − s)

(
Xe

REF

)
a + s

(
X̂e

REG

)
a
. (11)

Here 0 ≤ s ≤ 1, s = 1 leads to the target element that is
a regular tetrahedron with the same volume as the volume
in the current mesh, and s = 0 leads to the element in the
current mesh.

The fourth, and the last, option is to specify a minimum
aspect ratio to fix: Amin. For any element with an aspect ratio
less than or equal to that, we use s = 0 in the interpolation
given by Eq. (11). For any element that has an aspect ratio
above Amin, we use a globally specified s value to relax the
shape.

These options, listed in order of precedence, are com-
bined to generate a database of target element shapes. With
these element-specific unstressed shapes, the solid mechan-
ics solver attempts to reduce the stress in the new mesh. This
makes the elements in the new mesh more closely resemble
the target elements, thus increasing the quality of the ele-
ments in the mesh.

Relaxing the mesh has several advantages over remeshing.
It is much less time consuming, is easier to automate, and
reduces the amount of error introduced by projecting data
from one mesh to a new mesh.

3 Parachute clusters

The objective of the parachute cluster computations pre-
sented in this paper is to determine how the newest gen-
eration of the NASA Orion Capsule parachute system, the
modified-porosity (MP) parachute, performs when used in
cluster configurations. The purpose of the MP design is to,
compared to previous designs, reduce cluster flyout angles,
increase stability, and reduce canopy interactions.

The MP parachute modeled in this paper has the same
physical parameters as the pad abort (PA) parachute mod-
eled in [57,58], except it has a suspension-line to nominal
diameter ratio, Ls/Do, of 1.44 instead of Ls/Do = 1.15. In
addition, every 5th gore on Sail 11 is removed as well as the
top 25 % of Sail 6. Each parachute in the cluster has 80 gores,
a nominal diameter of about 120 ft, 4 rings and 9 sails. The
material properties are the same as described in [60].

Four different fully-open MP cluster configurations are
modeled, each with a different number of parachutes and
payload configuration. A single initial coning angle (θINIT)
is used for each cluster. All 2-parachute MP clusters (2-MP)
in this paper have θINIT = 15◦. All 3-parachute MP clusters
(3-MP) have θINIT = 25◦.

The payload is modeled as either a point mass at the con-
fluence of the risers (PAC) or a series of truss elements (PTE)
[58]. In drop tests, the parachutes are connected to a rectan-
gular pallet that is designed to represent the mass and inertial
properties of a proposed crew capsule. The PTE configura-
tion distributes the payload mass at nine different points to
match the mass, center of gravity, and six components of the
inertia tensor of the pallet used in drop tests. The points are
connected by 5 cable elements and 26 truss elements below
the confluence (Fig. 1). To facilitate comparison to PA clus-

2 x Harness Legs

Attach Point 2

Attach Point 1

Harness Leg

2 x Harness Legs

3 Point Fitting

Attach Point 4

Cable Element
Payload Element
(Node with Mass)
Truss Element

Load C.G.

Attach Point 3

Fig. 1 Payload as a truss element (PTE) configuration showing the
point masses and the cable and truss elements (figure from [64]). The
cable elements are the four longer ones and the truss elements are the
remaining, shorter ones
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Fig. 2 Structural mechanics mesh (top) and fluid interface mesh (bot-
tom) for a single MP parachute. For the number of nodes and elements
at these interfaces, see Table 1

Table 1 Number of nodes (nn) and elements (ne) for the parachute
clusters

2-MP 3-MP

Structure

nn 58,147 87,220

Membrane ne 48,480 72,720

Cable ne 24,642 36,963

Payload ne 1 1

Interface nn 55,104 82,656

ne 48,480 72,720

Fluid

Volume nn 335,212 307,217

ne 1,966,851 1,786,212

Interface nn 4,472 6,708

ne 8,104 12,156

The PTE configuration has 10 more structure nodes (8 of them point
masses), 5 more cable elements, and 26 truss elements

ters reported in [58], PAC computations use a payload mass
of 16,704 lbs, while PTE computations have total payload
mass of 19,200 lbs.

Remark 2 In the computations reported in [58], the payload
mass of the PAC configuration was incorrectly reported as
19,200 lbs. The correct weight for this specific configuration
is 16,704 lbs, and that is what was used in the computations
reported in [58].

All computations are carried out using air properties at
standard sea-level conditions. The density is 2.38×10−3

slug/ft3. The kinematic viscosity is 1.57×10−4 ft2/s.

Table 2 HMGP coefficients kF and kG used in the PA parachute com-
putations reported in [57–59] (note that Patch 1 and Patch 14 do not
have a kG value because those patches do not contain a ring gap or sail
slit)

Patch kF (CFM) kG

1 125.5

2 115.0 0.967

3 115.0 0.971

4 75.8 0.960

5 39.9 0.949

6 39.8 0.756

7 39.7 0.769

8 39.7 0.824

9 39.6 0.831

10 68.8 0.816

11 98.3 0.819

12 97.7 0.820

13 97.0 0.867

14 97.1

We use these values also in the MP parachute computations reported in
this paper, with some special treatment where we created windows and
wide gaps. For the patch where we created a wide gap, we use only the
corresponding kF value. For the two gore patches that contain a window,
we use only the two corresponding kF values. This is what was done
also in the single-MP parachute computations reported in [60]

3.1 Starting conditions

We first build a starting condition for a single parachute.
We begin with a parachute shape obtained with the sym-
metric FSI computation reported in [60]. We do another
single-parachute symmetric FSI computation with a hori-
zontal inflow velocity of Uref sin(θINIT), where Uref is the
reference value of the payload descent speed. It is 30 ft/s for
2-MP, and 25.7 ft/s for 3-MP. We compute for three breathing
cycles. We use the parachute shape and position correspond-
ing to the time when the parachute skirt diameter is at its
average value to assemble the cluster structural mechanics
mesh. A cluster of parachutes is generated by duplicating
and rotating the structure and interface meshes from the sin-
gle parachute such that each parachute is at the specified θINIT

and joined together at a confluence.
After that, we generate a fluid mechanics mesh and do

a fluid mechanics computation, holding the structural para-
chute shapes and positions fixed. The inflow velocity is Uref .
Next, we do a fluid mechanics computation with a prescribed,
time-dependent shape for all parachutes of the cluster. The
time-dependent shape comes from the single-parachute sym-
metric FSI computation carried out earlier with a horizontal
inflow velocity of Uref sin(θINIT). We use the solution from
the fluid mechanics computation with prescribed parachute
motion as the starting condition for the FSI computation.
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Fig. 3 Payload descent speed and drag coefficient for 2-MP with PAC
and PTE

3.2 Computational methods and parameters

The computational domain is cylindrical with a diameter of
1,740 ft and a height of 1,566 ft. Figure 2 shows, for a single
parachute, the canopy structure mesh and the fluid mechanics
interface mesh. The fluid mechanics volume mesh consists of
four-node tetrahedral elements, and the membrane elements
used in the parachute structure are quadrilateral. The number
of nodes and elements for the fluid and structure are given in
Table 1. We move the reference frame with a vertical velocity
of Uref , and translate the mesh horizontally and vertically
with the average displacement rate of the structure beyond
the reference velocity Uref . We use the velocity form of the
free-stream conditions at the lateral boundaries as well since
the mesh translates horizontally.

All computations are carried out in a parallel comput-
ing environment. The meshes are partitioned to enhance the
parallel efficiency of the computations. Mesh partitioning is
based on the METIS [65] algorithm. In solving the linear
equation systems encountered at every nonlinear iteration,
the GMRES search technique [66] is used with a diagonal
preconditioner.

Fig. 4 Payload descent speed and drag coefficient for 3-MP with PAC
and PTE

Fig. 5 2-MP with PTE at t = 44.08 s and t = 46.40 s

In the symmetric FSI computation with a single MP for
three breathing cycles, we use the SSTFSI-TIP1 technique
(see Remarks 5 and 10 in [3]), with the SUPG test function
option WTSA (see Remark 2 in [3]). The stabilization para-
meters used are those given in [3] by Eqs. (9)–(12), (14)–(15)
and (17), with the τSUGN2 term dropped from Eq. (14). The
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Fig. 6 2-MP with PTE at t = 47.79 s and t = 51.04 s

Fig. 7 3-MP with PTE at t = 60.55 s and t = 67.28 s

Fig. 8 3-MP with PTE at t = 74.47 s and t = 79.11 s

porosity model is HMGP-FGR [60]. The values of the HMGP
“fabric porosity (kF)” and “geometric porosity (kG)” for the
14 “patches” we have (see [53,56] for the terminology) come
essentially from the values used in the PA parachute compu-
tations reported in [57–59]. Those values are given in Table 2.
The interface projection methods used include the SSP tech-

Fig. 9 Vent-separation distance for 2-MP with PAC

Fig. 10 Vent-separation distance for 2-MP with PTE

Fig. 11 Vent-separation distances for 3-MP with PAC

nique [53]. The fully-discretized, coupled fluid and structural
mechanics and mesh-moving equations are solved with the
quasi-direct coupling technique (see Sect. 5.2 in [3]). We use
selective scaling [3], with the scale for the structure part set
to 10 and for the other parts set to 1. The time-step size is
0.0232 s, with 6 nonlinear iterations per time step. The num-
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Fig. 12 Vent-separation distances for 3-MP with PTE

Fig. 13 Decomposition of the descent speed for 2-MP with PAC

ber of GMRES iterations per nonlinear iteration is 90 for the
fluid + structure block, and 30 for the mesh-moving block.

The cluster fluid mechanics computations with fixed
shapes and positions are done in two parts. The first part
uses the semi-discrete formulation given in [7]. We com-
pute 800 time steps with a time-step size of 0.232 s and 6

Fig. 14 Decomposition of the descent speed for 2-MP with PTE

nonlinear iterations per time step. The number of GMRES
iterations per nonlinear iteration is 90. There is no porosity
model in the first part. The second part uses the DSD/SST-
TIP1 technique [3], with the same SUPG test function option
and stabilization parameters as those described above. We
compute 1,800 time steps with a time-step size of 0.0232 s,
6 nonlinear iterations per time step, and 90 GMRES itera-
tions per nonlinear iteration. The porosity model is HMGP-
FG [56].

For the cluster fluid mechanics computations with pre-
scribed, time-dependent shapes, we use the DSD/SST-TIP1
technique, with the same SUPG test function option and sta-
bilization parameters as those described above. The porosity
model is HMGP-FGR. We compute roughly 300 time steps
with a time-step size of 0.0232 s, with 6 nonlinear iterations
per time step. The number of GMRES iterations per nonlin-
ear iteration is 90 for the fluid mechanics block, and 30 for
the mesh-moving block.

In the cluster FSI computations we use the SSTFSI-TIP1
technique, with the same SUPG test function option and sta-
bilization parameters as those described above. The poros-
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Fig. 15 Decomposition of the descent speed for 3-MP with PAC

ity model is HMGP-FGR. The interface projection meth-
ods used include the SSP technique. The SENCT-FC con-
tact algorithm [58] is used with εS = εC = 2.9 ft. We use
the quasi-direct coupling technique and selective scaling,
with the scale for the structure part set to 1,000 and for
the other parts set to 1. The time-step size is 0.0232 s, and
the number of nonlinear iterations per time step is 6. The
number of GMRES iterations per nonlinear iteration is 120
for the fluid + structure block, and 30 for the mesh-moving
block.

We compute each parachute cluster for about 80 s. The
numerical spinning component of the parachute motion is
removed using the technique described in Sect. 2.1, approx-
imately every 150 time steps. The mesh update for the fluid
mechanics part includes, as needed, mesh relaxation, as
described in Sect. 2.2, or remeshing. The frequency and the
choice between mesh relaxation and remeshing vary for each
computation and depend on how much the cluster rotates
about the vertical axis and how much each parachute rotates
about its own axis.

Fig. 16 Decomposition of the descent speed for 3-MP with PTE

Fig. 17 Individual-parachute contributions to descent speed for 2-MP
with PAC

3.3 Results

The critical measure of performance for the parachutes mod-
eled in this paper is the payload descent speed, not only in
terms of its average value, but also in terms of its fluctua-
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Fig. 18 Individual-parachute contributions to descent speed for 2-MP
with PTE

Fig. 19 Individual-parachute contributions to descent speed for 3-MP
with PAC

tions. Drag coefficient is another way of expressing the per-
formance, and is calculated as follows:

CD = W
1
2ρU 2So

, (12)

where W is the payload weight, ρ is the density of the air, U
is the payload descent speed, and So is the nominal area of the
parachute. Figures 3 and 4 show the payload descent speed
and drag coefficient for the MP parachute clusters. Figures 5,
6, 7 and 8 show the clusters at different instants. Figures 9,
10, 11 and 12 show the vent-separation distances (“LVS”) for
the clusters. The horizontal black line on each plot shows the
approximate vent-separation distance when the parachutes
are in contact.

To better understand the descent speed fluctuations, a
method to decompose the payload velocity into compo-
nents based on geometric contributing factors was intro-

Fig. 20 Individual-parachute contributions to descent speed for 3-MP
with PTE

Fig. 21 Individual-parachute contributions to drag for 2-MP with PAC

duced in [58]. We use that method here to decompose
the payload velocity of the MP parachute clusters.
Figures 13, 14, 15 and 16 show the decomposition results.
In those figures, as in [58], uB, uS, and uC refer to the aver-
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Fig. 22 Individual-parachute contributions to drag for 2-MP with PTE

age, over the number of parachutes, the parachute breath-
ing, swinging, and coning, respectively. The symbols uB

and uS represent the breathing and swinging for the clus-
ter, uP is the payload velocity, and uA is the aerodynamic
contributor to that. Figures 17, 18, 19 and 20 show the
individual-parachute contributions to the payload descent
speed.

To further analyze the results, Figs. 21, 22, 23 and 24
show the individual-parachute contributions to the drag. Fig-
ures 25, 26, 27 and 28 show the payload and canopy-centroid
descent speeds.

4 Concluding remarks

In this paper we focused on FSI computation of clusters
of ringsail spacecraft parachutes with modified geometric
porosity. The modification, intended to increase the aero-
dynamic performance, consists of increasing the geometric
porosity beyond the rings and sails with hundreds of ring

Fig. 23 Individual-parachute contributions to drag for 3-MP with PAC

gaps and sail slits by creating windows with removal of pan-
els and wider gaps with removal of sails. This creates com-
putational challenges beyond those created by the lightness
of the canopy structure compared to the air masses involved
in parachute dynamics, geometric complexities of hundreds
of gaps and slits, and the contact between the parachutes
of the cluster or intra-canopy contact between the structural
surfaces of a parachute. This is because the flow through the
windows and wider gaps cannot be accurately modeled with
the HMGP and needs to be actually resolved. All these com-
putational challenges needed to be addressed simultaneously
in FSI modeling reported in the paper. This is accomplished
with the SSTFSI technique, which serves as the core numer-
ical technology, and a number of special FSI techniques. The
special techniques include the newest version of the HMGP,
which deals with the hundreds of gaps and slits, conservative
version of the SENCT technique, which serves as a contact
algorithm, and intra-canopy contact algorithms. In addition,
we use two special techniques developed recently, one to
remove the nonphysical spinning component of the parachute
motion, and the other one to restore the mesh integrity lost
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Fig. 24 Individual-parachute contributions to drag for 3-MP with PTE

Fig. 25 Payload and canopy-centroid descent speeds for 2-MP with
PAC

during the mesh motion, but without resorting to remeshing.
We presented results for 2- and 3-parachute clusters with two
different payload models.

Fig. 26 Payload and canopy-centroid descent speeds for 2-MP with
PTE

Fig. 27 Payload and canopy-centroid descent speeds for 3-MP with
PAC

Fig. 28 Payload and canopy-centroid descent speeds for 3-MP with
PTE
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