
Comput Mech (2013) 52:1113–1124
DOI 10.1007/s00466-013-0866-3

ORIGINAL PAPER

Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian
methods for fluid-structure interaction computations

Thomas Wick

Received: 18 January 2013 / Accepted: 22 April 2013 / Published online: 8 May 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract We present a specific application of the
fluid-solid interface-tracking/interface-capturing technique
(FSITICT) for solving fluid-structure interaction. Specif-
ically, in the FSITICT, we choose as interface-tracking
technique the arbitrary Lagrangian–Eulerian method and as
interface-capturing technique the fully Eulerian approach,
leading to the Eulerian-arbitrary Lagrangian–Eulerian
(EALE) technique. Using this approach, the domain is par-
titioned into two sub-domains in which the different meth-
ods are used for the numerical solution. The discretization is
based on a monolithic solver in which finite differences are
used for temporal integration and a Galerkin finite element
method for spatial discretization. The nonlinear problem is
treated with Newton’s method. The method combines advan-
tages of both sub-frameworks, which is demonstrated with
the help of some benchmarks.
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1 Introduction

For computing fully nonstationary fluid-structure interac-
tions, we propose a specific realization of the fluid-solid
interface-tracking/interface-capturing technique (FSITICT)
[1], which itself is the fluid-structure interaction (FSI) version
of the mixed interface-tracking/interface-capturing tech-
nique (MITICT) [2]. These methods are used for the numer-
ical solution of multiphysics problems in non-overlapping
domains. Specifically, the computational domain is parti-
tioned into two (but fixed) sub-domains. In one domain
using an interface-tracking method and in the other one an
interface-capturing method. Using FSITICT in this study,
we employ specifically as interface-tracking approach the
arbitrary Lagrangian–Eulerian (ALE) method [3–6] and as
interface-capturing method the fully Eulerian (E) approach
[7,8] that is based on a level-set like initial point set. This
specific choice in the FSITICT leads to the Eulerian-arbitrary
Lagrangian–Eulerian (EALE) framework, first introduced in
[9] for solving steady-state FSI and computational struc-
ture mechanics (CSM). To the best of our knowledge, we
have not seen in the literature any application of (such as
the EALE method) or test computations with the FSITICT.
Consequently, we are going to explore important aspects and
results in this study.

As previously mentioned, a coupling of interface-tracking
and interface-capturing methods has previously been pro-
posed for the coupling of fluid flows given by different
methods [10,1]. The MITICT method was originally intro-
duced to compute fluid-object interactions with multiple
fluids. It was successfully tested in [11,12] by computing
numerical tests for a collapse of a cylindrical water col-
umn and interaction of a fluid with an oscillating cylin-
der. In those studies, the DSD/SST formulation (see, e.g.,
[13–17]) is used as interface-tracking method. Adding an
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additional advection equation to the DSD/SST formula-
tion for the time-evolution of the interface can be handled
with an interface-capturing method such as the enhanced-
discretization interface-capturing technique (EDICT) [18,
19] or the edge-tracked interface locator technique (ETILT)
[2,1].

Turning back to the present work, a typical application
of the EALE approach are heart valve simulations, which is
quite often of interest [20–25]. Here, the leaflets (classified
as a first structure immersed in blood flow) might meet at
the tips. In fact an Eulerian description of elasticity allows
for (very) large deformations and contact. Both issues have
to be considered when performing valve simulations. On the
other hand, the elastic walls of the aorta (described as second
elastic structure) are typically located on boundary parts of
the computational domain for which the ALE method as a
mesh-moving approach is preferable.

The numerical solution of the EALE method is obtained
with a monolithic solution algorithm in which each sub-
framework is treated with a monolithic solution algorithm
itself; for monolithic ALE, we refer the reader in particular
to Hron [26,27], Huebner et al. [28], Bazilevs et al. [29], and
to the book [30]. Moreover, quasi-direct and direct coupling
methods allowing non-matching grids at the interface have
been proposed in [31,32]. Specifically, these methods reduce
to a standard monolithic scheme if the grids are matching. For
monolithic Eulerian (for which a lot of work has been done in
recent years), we mention the following studies performed by
Dunne, Richter, and Wick [7,33–35]. Apart from monolithic
formulations, other recent studies on fully Eulerian formula-
tions are known [36–40].

The reason to test a monolithic solver is motivated by
the fact that we need an algorithm of strong coupling type
for future applications in computational medicine because
therein, fluid and structure densities are of the same order
and thus the added-mass effect becomes important [41]. It
has been shown that a monolithic solver should be preferred
in such cases [42]. This is in fact the main reason to formulate
both fluid in structure in the same coordinates. Since we like
to avoid any transformation in the fluid (keeping it in Eulerian
coordinates), we need to reformulate the elastic structure also
in the same system. In fact, a structure description in the same
dimension as the fluid is a key difference to other studies.

The numerical discretization can be done independently
for each sub-framework and therefore, standard algorithms
can be applied. In detail, the temporal discretization is based
on finite differences and spatial discretization is done using
a standard Galerkin finite element approach in which pure
hyperbolic terms are stabilized by some diffusion. The solu-
tion of the nonlinear system can be achieved with a Newton
method, which is very attractive because it provides robust
and rapid convergence. The Jacobian matrix is derived by
exact linearization which is demonstrated for our settings

in [43,44,35]. Because the development of iterative linear
solvers is difficult for fully coupled problems, specifically
for fluid-structure interaction in fully Eulerian coordinates,
we restrict ourselves to use a direct solver (UMFPACK [45]).

The organization of the article is as follows. We begin by
introducing notation, transformation rules between Eulerian
and Lagrangian coordinates and finally, the governing equa-
tions in their natural coordinate systems. In the third Sec-
tion, the EALE setting for computing fully nonstationary
fluid-structure interaction is given. Next, in Sect. 4, a brief
account on the discretization is provided to the reader. Finally,
some numerical tests are used to substantiate our theoretical
findings. The framework is validated with comparison to the
steady-state framework [9] and by studies to spatial and tem-
poral mesh convergence. The examples are computed with
an extension of our ALE solver [46] that is build upon the
software library deal. II [47].

2 Notation, transformations, and equations

In this section, we explain the idea of the EALE approach
and the (possible) partitioning of the computational domain
in Fig. 1. Afterwards, more notation, transformation rules
between Lagrangian and Eulerian coordinates and finally,
the governing equations in their natural coordinates are intro-
duced.

2.1 Notation

Let � ⊂ R
2 be a polygonal domain. This domain is split

into two non-overlapping subdomains� f (t) and�s(t)with
a common interface�i (t). The outer boundaries a denoted by
∂� f (t) and ∂�s(t), respectively. In the initial configuration
at time step t = 0, the structure is located in �s(0); the
same holds for the fluid. Throughout this study, we indicate
with ‘f’ and ‘s’ suffixes, fluid- and structure-related terms,
respectively.

Fig. 1 Prototypical configuration for the coupling of ALE coordinates
with fully Eulerian coordinates
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The initial (or later reference) domains are denoted by
̂� f and ̂�s , respectively. Furthermore, we denote the outer
boundary by ∂̂� = ̂� = ̂�D ∪̂�N where ̂�D and ̂�N denote
Dirichlet and Neumann boundaries, respectively. For the con-
venience of the reader and when we expect no confusion, we
omit the explicit time-dependence and we use � := �(t)
to indicate time-dependent domains. If necessary, we distin-
guish the Eulerian and the ALE domain for fluid flows via
� f,E and ̂� f,A. In a similar way we distinguish the structural
domains. It holds,

̂� := �E ∪ ̂�A = � f,E ∪�s,E ∪ ̂� f,A ∪ ̂�s,A.

The Eulerian and the ALE domain will be coupled on the
common fluid interfacê�i,EALE = ∂� f,E ∩∂̂� f,A. The other
interfaces are denoted by ̂�i,A = ∂̂� f,A ∩ ∂̂�s,A and �i,E =
∂� f,E ∩ ∂�s,E .

We adopt standard notation for the usual Lebesgue and
Sobolev spaces [48,49]. Let X ⊂ R

d , d = 2, 3 be a time-
independent domain. For instance, we later use X := � f or
X := �s . Specifically, we define H1

0 (X) = {u ∈ H1(X) :
u = 0 on �D ⊂ ∂X}. We use frequently the short notation

VX := H1(X), V 0
X := H1

0 (X), (1)

L X := L2(X), L0
X := L2(X)/R. (2)

Specifically, we introduce the trial and the test space of the
velocity variables in the fluid domain,

V 0
f,v := {v f ∈ H1

0 (� f ) : v f = vs on �i }. (3)

Moreover, we introduce the trial and the test spaces for the
moving-mesh displacement in the fluid domain,

V 0
f,u := {u f ∈ H1

0 (� f ) : u f = us on �i }, (4)

V 0
f,u,�i

:= {ψ f ∈ H1
0 (� f ) : ψ f = 0 on �i }. (5)

Analogously, we define the respecting ‘hat’ spaces for the
ALE coordinates by defining the spaces on ̂X := ̂� f or
̂X := ̂�s . Finally, the time interval is denoted by IT := [0, T ]
with the end-time value T .

2.2 Transformation rules

Let us briefly recapitulate the necessary ingredients to
transform variables, vectors, and tensors from Eulerian to
Lagrangian systems and vice versa. The ALE mapping is
defined in terms of the fluid mesh displacement û f such that

Â(x̂, t) : ̂� f × IT → � f , with Â(x̂, t) = x̂+û(x̂, t).

(6)

It is specified through the deformation gradient and its deter-
minant

̂F := ̂∇Â = Î + ̂∇û, Ĵ := det(̂F). (7)

Furthermore, function values in Eulerian and Lagrangian
coordinates are identified by

u(x) =: û(x̂), with x = Â(x̂, t). (8)

The mesh velocity is defined by ∂tÂ. Next, we define the
inverse transformation required for the fully Eulerian frame-
work, which is, however, only required in the structure
domain �s :

A(x, t) : �s × IT → ̂�s, with A(x, t) = x − us(x, t).

(9)

Simple calculation yields [7]:

A(Â(x̂, t), t) = x̂ . (10)

Spatial differentiation of (10) brings us

(I − ∇us) ( Î + ̂∇ûs)
︸ ︷︷ ︸

=̂Fs

= Î , (11)

where I and Î denote the identity matrices. The follow-
ing relations between the ALE deformation gradient and its
Eulerian counterpart can be inferred from the previous cal-
culations:

̂Fs = ( Î + ̂∇ûs) = (I − ∇us)
−1 =: F−1

s , (12)

Ĵs = det(̂Fs) = det(F−1
s ) =: J−1

s . (13)

Summarizing, we obtain the deformation gradient and its
determinant in Eulerian coordinates:

Fs = (I − ∇us), Js := det(Fs). (14)

Remark 1 In the same way, we define F f and J f in the fluid
part.

Remark 2 In the following, we use the short hand notation F
and J because it is clear from the context whether we work
with Fs and Js or F f and J f , respectively.

With the help of these relations, we recapitulate the Green-
Lagrange tensors in both coordinate systems:

E := 1

2

(

F−T F−1 − I
)

, ̂E := 1

2

(

̂FT
̂F − Î

)

. (15)

With the previously definitions, we recall the constitutive
stress tensors in the respective frameworks:

σ f :=σ f (v f , p f )=−p f I +2ρ f ν f

(

∇v f +∇vT
f

)

, (16)

σ̂ f := σ̂ f (v̂ f , p̂ f )=− p̂ f Î +2ρ̂ f ν f

(

̂∇v̂ f ̂F−1+̂F−T
̂∇v̂T

f

)

,

(17)

with the velocity v f , the pressure p f , the density ρ f , and the
(kinematic) viscosity ν f and their respective ‘hat’ coordi-
nates for the definition in the ALE framework. For elastic
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structures, we use the laws based on the Saint Venant-
Kirchhoff (STVK) material:

σs := σs(us) = J F−1(λs(trE)I + 2μs E)F−T , (18)

σ̂s := σ̂s(ûs) = Ĵ−1
̂F(λs(tr̂E) Î + 2μs ̂E)̂FT , (19)

in which the material is characterized by the Lamé coeffi-
cients λs and μs .

It remains to recall the concept of time-derivatives in both
frameworks. As before, let x = x(x̂, t), where x̂ denotes the
initial position of the point x . The velocity v is defined as the
total time derivative of the point’s position:

v(x, t) = dt x(x̂, t). (20)

In Lagrangian coordinates, the total time derivative of a func-
tion û(x̂, t) := u(x(x̂, t), t) is determined by

dt û(x̂, t) = ∂t û(x̂, t)+ ∇̂û(x̂, t)dt x̂ = ∂t û(x̂, t), (21)

or short

dt û = ∂t û, (22)

because dt x̂ = 0 in the Lagrangian system. In contrast, the
total time derivative of a function u(x, t) in the Eulerian
framework reads:

dt u(x, t) = ∂t u(x, t)+ ∇u(x, t)dt x

= ∂t u(x, t)+ ∇u(x, t)v(x, t) (23)

= ∂t u(x, t)+ v(x, t) · ∇u(x, t).

Or short:

dt u = ∂t u + v · ∇u. (24)

The convection term v · ∇u denotes the key difference
between time derivatives in both frameworks and plays an
important role when formulating the governing elasticity
equations in Eulerian coordinates.

2.3 Governing equations in their natural coordinates

We start by recalling the fluid flows modeled by the Navier-
Stokes equations [2] in a suitable domain and some initial
and boundary conditions:

Problem 1 Find fluid’s velocity v f and fluid’s pressure p f

such that

ρ f ∂tv f + ρ f v f · ∇v f − divσ f = 0,

divv f = 0, (25)

in which σ f = −p f I + ρ f ν f (∇v f + ∇vT
f ) denotes fluid’s

Cauchy stress tensor and finally, ρ f and ν f the density and
viscosity, respectively.

The second order in time hyperbolic equations for mod-
eling elastic structures in some suitable domain with initial
and boundary conditions read [50]:

Problem 2 Find structure’s displacement ûs such that:

ρ̂sd2
t ûs − ̂div( Ĵ σ̂s ̂F−T ) = 0, (26)

or equivalently find ûs and the velocity v̂s :

ρ̂sdt v̂s − ̂div( Ĵ σ̂s ̂F−T ) = 0, (27)

dt ûs − v̂s = 0, (28)

in which the constitutive tensor reads Ĵ σ̂s ̂F−T := ̂F̂
s =
̂F(λs(tr̂E) Î + 2μs ̂E).

Both systems are completed with boundary conditions that
are later specified.

Remark 3 Formulating Eq. 27 in Eulerian coordinates chan-
ges its type to a pure hyperbolic model, which requires
numerical stabilization for discretization. Details are found
in [35].

Finally, we introduce the initial point set (IPS) [7] for
the fully Eulerian framework. This equation is defined on
the continuous level (like a level-set function) and is used
(after discretization) to map each structure point to its initial
position:

Problem 3 Find u such that

∂t u − w + (w · ∇)u = 0, (29)

The initial and boundary conditions are given by

u(x, 0) = 0, x ∈ �E ,

u(x, t) = 0, x ∈ ∂�E , t ∈ IT .

Then, the value of u is transported with the velocity w to its
initial position at time zero.

Remark 4 (Difference of the IPS-function and a level-set-
function) Using the IPS-function, the position of the interface
is determined by structural mechanics. In contrast, a level-
set-function is given by the local fluid velocity normal to the
interface.

The EALE approach is now based on the following steps:

– Formulate a coupled problem in ALE coordinates in the
domain ̂�A, i.e., reformulate the flow equations in a fixed
arbitrary reference configuration and keep the structure
deformations in Lagrangian coordinates.

– Formulate a coupled problem in fully Eulerian coordi-
nates in the domain �E , i.e., keep the fluid equations in
the Eulerian system and reformulate structural deforma-
tions in Eulerian coordinates.

– Formulate the both previous frameworks into one single
variational monolithically-coupled formulation.

In the remainder of this study, a framework for computing
nonstationary processes is presented. This is a key extension
to another study [9] in which steady-state processes are taken
into consideration. In fact, nonstationary processes require
careful consideration of numerical issues that shall be dis-
cussed in the next two sections.
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3 The EALE method for fully nonstationary processes

To organize a fully monolithically-coupled formulation, the
computational domain ̂� is split into an ALE subdomain and
an Eulerian subdomain, i.e., ̂� = ̂�A ∪ �E as explained in
Sect. 2.1.

Using partial integration to derive a weak setting, and
transformation to a reference configuration, a common set-
ting for fluid flows and structural deformations is obtained.
For computations with moderate velocities, the effect of con-
vection can be neglected as explained in [9]. This is a simpli-
fication of crucial importance. In fact, fluid flows with high
velocities (but still laminar), the choice w := v f leads to
smear-off effects which are well-known in the level-set com-
munity. Since we are interested in a consistent variational
formulation without performing a sub-time step procedure
for reinitialization [51], we extend v f harmonically [7,35].
Specifically,

w = vs in �s,E ∪ �i,E , (30)

�w = 0 in � f,E . (31)

With the help of this additional equation, we propose the
following EALE framework for computing fully nonstation-
ary processes:

Problem 4 (Variational fluid-structure interaction in
EALE coordinates with an additional velocity) Find the
following variables:

– Velocities {v f , v̂ f , vs, v̂s} ∈ {vD
f + V 0

f,v} × {v̂D
f + V̂ 0

f,v̂}
× {vD

s + V 0
s,v} × L̂s with v f (0) = v0

f , v̂ f (0) = v̂0
f ,

vs(0) = v0
s and v̂s(0) = v̂0

s ,
– Additional velocities {w f , ws} ∈ {wD

f + V 0
f,w}× {wD

s +
V 0

s,w} with w f (0) = w0
f and ws(0) = w0

s ,

– Displacements {u f , û f , us, ûs} ∈ {u D
f + V 0

f,u} × {û D
f +

V̂ 0
f,û} × {u D

s + V 0
s,u} × {û D

s + V̂ 0
s,û} with u f (0) =

u0
f , û f (0) = û0

f , us(0) = u0
s and ûs(0) = û0

s ,

– Pressures {p f , p̂ f } ∈ L0
f × L̂0

f ,

such that for t ∈ IT and αw > 0 holds:

(χ f ρ f ∂tv f , ψ
v
f )+(χ f ρ f (v f · ∇)v f , ψ

v
f )

+(χ f σ f ,∇ψvf )−〈χ f g f n f , ψ
v
f 〉−(χ f ρ f f f , ψ

v
f )

= 0 ∀ψvf ∈ V 0
f,v, (32)

(χ̂ f Ĵ ρ̂ f ∂t v̂ f , ψ̂
v
f )+χ̂ f (ρ̂ f Ĵ (̂F−1(v̂ f −∂t Â) · ̂∇)v̂ f ), ψ̂

v
f )

+(χ̂ f Ĵ σ̂ f ̂F−T ,̂∇ψ̂vf )−〈χ̂ f ĝ f n̂ f , ψ̂
v
f 〉−(χ̂ f ρ̂ f Ĵ f̂ f , ψ̂

v
f )

= 0 ∀ψ̂vf ∈ V̂ 0
f,v̂ , (33)

(χs Jρs∂tvs, ψ
v
s )+(χs Jρs(vs · ∇)vs, ψ

v
s )

+(χsσs,∇ψvs )−(χs Jρs fs, ψ
v
s )

= 0 ∀ψvs ∈ V 0
s , (34)

(χ̂s ρ̂s∂t v̂s, ψ̂
v
s )+(χ̂s Ĵ σ̂s ̂F−T ,̂∇ψ̂vs )−(χ̂s ρ̂s f̂s, ψ̂

v
s )

= 0 ∀ψ̂vs ∈ V̂ 0
s , (35)

χ f ρ f (∂t u f +(w f · ∇)u f −w f , ψ
u
f )=0 ∀ψu

f ∈ V 0
f , (36)

(χ̂ f σ̂mesh,̂∇ψ̂u
f )=0 ∀ψ̂u

f ∈ V̂ 0
f,û,̂�i,A

, (37)

χsρs(∂t us +(ws · ∇)us −ws, ψ
u
s )=0 ∀ψu

s ∈ V 0
s , (38)

χ̂s ρ̂s(∂t ûs −v̂s, ψ̂
u
s )=0 ∀ψ̂u

s ∈ L̂s, (39)

χ f (αw∇w f ,∇ψwf )=0 ∀ψwf ∈ V 0
f , (40)

−
χs(vs −ws, ψ

w
s )=0 ∀ψws ∈ Ls, (41)

−
(χ f div v f , ψ

p
f )=0 ∀ψ p

f ∈ L0
f , (42)

(χ̂ f ̂div ( Ĵ ̂F−1v̂ f ), ψ̂
p
f )=0 ∀ψ̂ p

f ∈ L̂0
f , (43)

Let us understand the meaning of all the twelve equations
in Problem 4, which is divided into seven parts. In part I,
Eqs. (32) and (33) are the Navier-Stokes equations described
in Eulerian coordinates and in the ALE framework. Then, in
part II and IV, the first order system presented in Problem
2 is used. Consequently, the first equations (Eulerian and
secondly in Lagrangian coordinates) are given here in part
II. We notice in the Eulerian structure that we deal with an
additional (nonstandard) convection term in Eq. (34) due to
the transformation from the Lagrangian system. In the third
part, we find transformations related to the fluid problems.
Here, the first Eq. (36) comes from the IPS whereas the sec-
ond Eq. (37) is the well-known moving-mesh PDE for ALE
problems. Next, in part IV, the second equations of the elas-
ticity system are given (therefore, related to part II). The next
two parts V and VI, Eqs. (40) and (41), define the additional
velocity variable w, which is only required in the Eulerian
domain. Finally, the incompressibility condition of the fluid
is expressed in part VII.

In Problem 4, the characteristic functions in ̂� f,A and
̂�s,A are defined as

χ̂ f :=
{

1, x̂ ∈ ̂� f,A,

0, x̂ ∈ ̂�s,A ∪ ̂�i,A,
and χ̂s :=1−χ̂ f . (44)

Specifically, the cells that belong to the ALE domain are
simply marked in the fixed reference configuration because
it is clear where the fluid and the structure are located thanks
to the interface-tracking character of ALE. However, in the
Eulerian domain it is a bit more complicated to identify the
structure. Here, the characteristic functions in� f and�s are
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defined as

χ f :=
{

1, x − u ∈ ̂� f,E ,

0, x − u ∈ ̂�s,E ∪ ̂�i,E ,
and χs = 1 − χ f .

(45)

Details are provided elsewhere [35].

Remark 5 (Mesh motion model of ALE) In the EALE
method, the mesh motion model σ̂mesh of the ALE sub-
framework is based on a linear elastic mesh motion (e.g.,
[52–56]) model because we aim to model moderate deflec-
tions with the help of the ALE coordinates; thus we expect
no fluid mesh distortion in the ALE domain.

Remark 6 (Coupling conditions for fluid-structure interac-
tion) As always in variational monolithically-coupled FSI,
the coupling conditions are hidden in the test spaces and
their implicit definition. Specifically, they read on the FSI-
interface in strong form

v f = vs and σ f (v, p)n f = F
s(u)ns . (46)

Remark 7 (Coupling conditions for coupling ALE with
Eulerian) The coupling conditions to couple the ALE frame-
work with the fully Eulerian framework on the EALE-
interface are given by

û f,A = u f,E = 0, (47)

∂nû f,A = ∂nu f,E = 0, (48)

σ̂ f,An̂ f,A = σ f,E n f,E . (49)

A deeper discussion is provided in [9].

Remark 8 (Mass conservation) We shall give a brief account
to mass conservation because this is a well-known difficulty
and often asked when using interface-capturing techniques.
This is strongly-related to the signed distance function prop-
erty, which needs to remain valid for long-time computations.
For numerical validations, we refer the reader to [33,35].

Remark 9 (Signed distance function property) Even though
reinitialization is not necessary in our framework, it is
often being asked. In fact, although the interface-capturing-
function is initialized as a signed distance function, it is
not for sure it remains so. However, it many situations it
is preferable to have a signed distance function throughout
the numerical simulation. The reasons are that velocity exten-
sion methods can be employed successfully, a possibly given
thickness of the interface remains valid, and finally, that the
level-set function behaves well near the interface [57]. To
ensure the signed-distance property, the interface-capturing-
function needs to be reinitialized. For various methods and
explication, we refer the reader to the level-set literature. For
explicit usage of reinitialization in terms of fully Eulerian
fluid-structure interaction, we refer to [37].

3.1 Discretization

In the proposed method, each sub-system is discretized with
standard tools. A deeper discussion for our specific fully
Eulerian and ALE codes is provided in [35] and [43,44].

We briefly summarize the basic steps in the following. The
discretization of the continuous Problem 4 is based on the
Rothe method; i.e., the equations are first discretized in time
via a one-step-θ scheme. In particular, the backward Euler
scheme and the shifted Crank-Nicolson scheme [58] can be
represented as such schemes. Afterwards a Galerkin finite
element scheme is used for spatial discretization. Specifi-
cally, the computational domain is triangulated into quadri-
laterals. In the Eulerian sub-framework, seven solution vari-
ables need to be discretized:

v f , vs, w f , ws, u f , us ∈ Qc
2, p f ∈ Pdc

1 .

In the ALE sub-framework, the problem requires discretiza-
tion of five solution variables:

v̂ f , v̂s, û f , ûs ∈ Qc
2, p̂ f ∈ Pdc

1 .

The definitions of the finite element spaces can be found
in the standard literature [59,60]. In particular, the Qc

2/Pdc
1

element used for the fluid part is inf-sup stable and locally
mass conserving. Consequently, no pressure stabilization à
la PSPG [14] is necessary.

The nonlinear fully-discretized system is solved in each
time step by Newton’s method in which the Jacobian matrix
is computed using analytical expressions [61,43,35]. For
a deeper discussion on the numerics how to solve our
monolithically-coupled fluid-structure interaction problems,
we refer the reader to [43,35]. Moreover, the pure hyperbolic
terms in the Eulerian structure are stabilized by adding some
diffusion as presented in [35]. A more advanced technique
such as a streamline upwind Petrov-Galerkin (SUPG) [62] is
planned as future task. Finally, the specific quadrature rules
in cells which are intersected by the interface is detailed in
[35]. Furthermore, we refer to Belytschko et al. [63], who
give quite useful remarks on numerical integration. In fact,
we use a comparable algorithm for numerical integration as
proposed by Moes at al. [64].

4 Numerical tests: an elastic beam in a fluid flow with
elastic outer walls

The EALE framework 4 is validated with the help of modified
FSI benchmark configurations which are based on sugges-
tions by Hron and Turek [30,65]. Two settings in a laminar
flow regime with different inflow velocity profiles are pre-
sented. The first example leads to a steady-state with a low
Reynolds number and it is compared to results obtained by
using the steady-state formulation presented elsewhere [9].
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Fig. 2 Flow around cylinder with elastic beam and outer elastic walls
with circle-center C = (0.2, 0.2) and radius r = 0.05. Specifically, the
Eulerian framework is employed in the ‘non-hat’ domains whereas the
‘hat’ regions are described in ALE coordinates

In the second example, a challenging nonstationary test case
is considered. For each of the both test cases, two different
values of μwall = 5 × 105 and 5, 000 × 105 kgm−1s−2 are
utilized in which the elastic walls move significantly for the
first choice μwall = 5 × 105 kgm−1s−2.

Configuration
The computational domain has length L = 1.15 m and total
height H = 0.61 m (with a channel width for the fluid
H f = 0.41 m). The circle center is positioned at C = (0.2,
0.2 m) with radius r = 0.05 m. The elastic beam has length
l = 0.35 m and height h = 0.02 m. The right lower end is posi-
tioned at (0.6, 0.19 m), and the left end is attached to the
circle. At the top and the bottom, elastic structures are sup-
plemented as displayed in Fig. 2. Specifically, the Eulerian
framework is employed in the ‘non-hat’ domains whereas
the ‘hat’ regions are described in ALE coordinates. Conse-
quently, the advantages of both methods are combined: mod-
eling large deflections inside the domain with the Eulerian
approach and movement of elastic walls thanks to the ALE
method.

Boundary conditions
The velocity and the displacements are kept free on the top
and bottom boundary Γwall to allow them to move. On the
left boundary parts Γin and ̂�in , the displacements are fixed
by homogenous Dirichlet conditions and a Dirichlet inflow
velocity profile is prescribed on Γin . The velocity is zero
on ̂�in . On the right boundary (outflow boundary Γout and
̂�out ), the displacements are fixed and the velocity is kept
free (do-nothing condition). This choice leads in particular
to pressure normalization [66].

Inflow profile
A parabolic inflow velocity profile is given on Γin by

v f (0, y) = 1.5Ū
4y(H f − y)

H2
f

, Ū = 0.2
︸︷︷︸

mod. FSI 1

, 1.0 ms−1
︸ ︷︷ ︸

mod. FSI 2

.

For the non-steady tests one should start with a smooth
increase of the velocity profile in time. We use

v f (t; 0, y) =
{

v f (0, y)
1−cos( π2 t)

2 if t < 2.0s
v f (0, y) otherwise.

Parameters
We choose for our computation the following parameters
in the Eulerian framework in �E . For the fluid we use
� f,E = 103 kg m−3, ν f,E = 10−3 m2 s−1. The elastic struc-
ture (STVK material) is characterized by �s,E = 103 kg m−3

(for the first test case) or �s,E = 104 kg m−3 (for the second
test case), νs,E = 0.4, μs,E = 5×105 kg m−1 s−2. The value
of the thickness parameter for the interface in the Eulerian
approach is chosen as 10−12 (thus a sharp interface is used).
For a more detailed explication, we refer the reader to [35].

In the ALE framework in ̂�A, we choose � f,A =
103 kg m−3, νf,A = 10−3 m2 s−1. The elastic structure
(STVK material) is characterized by�s,A = 103 kg m−3, νs,A

= 0.4. The Lamé coefficient μs,A takes two different values
to observe different movements of the outer elastic walls:
μwall = 5 × 105 and 5,000 × 105 kgm−1 s−2.

Quantities of interest and their evaluation

(1) x- and y-deflection of the beam at A(t) (with A(0) =
(0.6, 0.2)).

(2) x- and y-deflection of the wall at B(t) (with B(0) =
(0.2, 0.51)).

(3) The forces exerted by the fluid on the whole body, i.e.,
drag force FD and lift force FL on the rigid cylinder and
the elastic beam. They form a closed path in which the
forces can be computed with the help of line integration.
For the Eulerian part, we use

(FD, FL) =
∫

cylinder, f,E

σ f · n f ds

+
∫

cylinder,s,E

σs · ns ds, (50)

in which ‘cylinder,s,E’ denotes the circle path where the
beam is attached at the cylinder.

For the modified FSI 2 test, we display the mean value
and the amplitude.

4.1 Discussion of results: modified FSI 1 benchmark

For this test, the implicit Euler time-stepping scheme is used
with k = 0.01 s and T = 30 s (total time). In addition, we com-
pare the results to the standard FSI 1 simulation, without any
additional elastic boundaries (configuration and parameters
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Table 1 Results for FSI 1 in EALE coordinates with elastic walls with
μwall = 5.0 × 105

Level DoF ubeam
y uwall

y FD

0 5445 111.70 9.30 10.10

1 20988 4.70 13.24 10.10

2 82368 6.39 13.06 10.29

Ref [9] 82368 7.04 12.94 9.66

ALE 57904 8.19 – 15.33

The values for ubeam
y and uwall

y are scaled by 10−4. In last row, the results
of the standard FSI 1 benchmark computed with the ALE method and
linear-elastic moving-mesh method are given

Table 2 Results for FSI 1 in EALE coordinates with elastic walls with
μwall = 5.0 × 108

Level DoF ubeam
y uwall

y FD

0 5445 111.36 0.0895 10.02

1 20988 4.51 0.0134 10.29

2 82368 6.40 0.0130 10.44

Ref [9] 82368 7.15 0.0129 9.82

ALE 57904 8.19 – 15.33

The values for ubeam
y and uwall

y are scaled by 10−4. In last row, the results
of the standard FSI 1 benchmark computed with the ALE method and
linear-elastic moving-mesh method are given

taken from [65]), conducted with help of the code (using a
linear-elastic mesh-moving model) presented in [46].

Comparing the results, we first notice that the findings
on level 0 (the coarsest mesh) should be interpreted care-
fully because the Eulerian method needs a fine mesh to work
with sufficient accuracy. Therefore, the ubeam

y -values differ
quite significantly from the findings on level 1 and 2. All val-
ues on level 2 (the finest mesh) show good agreement with
the reference findings as displayed in the Tables 1 and 2.
Finally, comparing the modified FSI 1 results to the standard
benchmark (last row in both tables), we see the influence by
adding the additional elastic boundaries. The smoother the
elastic boundary, the smaller the deformation of the beam.
In the limit μwall = ∞ (which corresponds to the origi-
nal FSI 1 benchmark without boundaries), we observe the
highest beam deformation. This is reasonable because the
beam-deflection is induced in the non-symmetry of the con-
figuration. However, the smoother the elastic boundary, less
force acts on the beam.

4.2 Discussion of results: modified FSI 2 benchmark test

The only two changes to the previous test case is a higher
structure density ρs,E = 104 kg m−3 and a higher inflow
profile Ū = 1.0 ms−1. This numerical example is challeng-
ing because without any elastic structures the flow regime
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Fig. 3 Modified FSI 2 test on the finest mesh: Comparison of the
deflection at A(t) versus time for μwall = 5.0 × 105 (top) and
μwall = 5.0 × 108 (bottom)
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Fig. 4 Modified FSI 2 test on the finest mesh: comparison of the deflec-
tion at B(t)versus time forμwall = 5.0×105 (top) andμwall = 5.0×108

(bottom). Using a very stiff wall as shown at right, the deflection of B(t)
consists mainly of noise around zero displacement. Remark: The verti-
cal axis are in different scales in order to detect the noise in the figure
at the bottom

would yield a steady-state solution since the Reynolds num-
ber is too low. Thus, the development of dynamic behav-
ior is only due to the interaction of fluid and elastic beam.
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Table 3 Results for the modified FSI 2 benchmark with outer elastic
structures and μwall = 5.0 × 105

Dof k[10−3] ubeam
x (A) ubeam

y (A) uwall
x (A) uwall

y (A)

20988 5 −4.92 ± 4.86 −4.33 ± 44.42 −8.23 +4.1

82368 5 −8.63 ± 8.10 −3.28 ± 59.23 −8.30 +4.2

20988 2.5 −4.89 ± 4.82 −4.57 ± 43.75 −7.87 +3.9

82368 2.5 −7.69 ± 7.11 −4.01 ± 60.01 −7.87 +4.0

20988 1.25 −4.83 ± 4.74 −4.68 ± 43.32 −7.50 +3.8

82368 1.25 −7.22 ± 6.64 −4.34 ± 60.38 −7.50 +3.8

The mean value and amplitude are given for ubeam
x (10−3 m),

ubeam
y (10−3 m). Moreover, the maximal deflections uwall

x (10−6 m),

uwall
y (10−5 m) at the point B(t) is displayed. The frequencies f1(s−1)

and f2(s−1) of ubeam
x and ubeam

y vary in a range of 3.49–3.88 and 1.86–
1.88, respectively. After the pick displacements around time step t =1 s,
the walls show regular oscillations, where the wall x-displacements vary
with an amplitude of 1.25 × 10−3 and the wall y-displacements vary
with an amplitude of 3.09 × 10−3

Table 4 Results for the modified FSI 2 benchmark with outer elastic
structures and μwall = 5.0 × 108

Dof k[10−3] ubeam
x (A) ubeam

y (A)

20988 5 −4.53 ± 4.41 −2.72 ± 44.52

82368 5 −7.46 ± 6.92 −3.34 ± 57.98

20988 2.5 −4.52 ± 4.45 −2.93 ± 44.31

82368 2.5 −6.89 ± 6.50 −1.89 ± 55.70

20988 1.25 −4.31 ± 4.23 −4.48 ± 44.24

82368 1.25 −6.86 ± 6.42 −1.92 ± 55.20

The mean value and amplitude are given for two quantities of inter-
est: ux (10−3 m), uy(10−3 m). The frequencies f1 (s−1) and f2 (s−1)

of ubeam
x and ubeam

y vary in a range of 3.87–4.02 and 1.85–1.88, respec-
tively.

A careful resolution of the interface-force-balance is there-
fore necessary in each time step (well known as strong cou-
pling).

We compare again two settings in which the Lamé coef-
ficient of the outer ALE structure is varied. First, a smooth
structure using μs,AL E = 5.0 × 105 kg m−1 s−2 is inves-
tigated, leading to significant movement of the outer walls.
Second, the structure stiffness is increased toμs,AL E = 5.0×
108 kg m−1 s−2 such that the boundaries are almost rigid. The
second-order shifted Crank-Nicolson scheme using different
sizes of time steps is employed in this test case. In compar-
ison to the standard Crank-Nicolson scheme, it can be used
for long-term computations as theoretically proven by Ran-
nacher [58]. Specifically, numerical comparisons for fluid-
structure interaction have been undertaken by Wick [67].

The mean value of the drag varies in a range of 137–157
and its amplitude 90–127. The mean of the lift varies in a
range of 19–38 and its amplitude 89–147.

Fig. 5 Modified FSI 2 test with smooth elastic walls in the physical
domain usingμwall = 5.0×105 (smooth elastic boundaries). The elastic
beam modeled in Eulerian coordinates is displayed in black. The outer
elastic walls modeled in ALE coordinates are displayed in grey. The
fluid is represented by the x-velocity profile with highest velocity in red.
Different time steps t = 3.89, 3.985, 4.1, 4.225 s from top to bottom
are displayed
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Fig. 6 Modified FSI 2 test with smooth elastic walls in the physical
domain using μwall = 5.0 × 105 (smooth elastic boundaries). Focus on
the elastic beam (in red), which is allowed to intersect mesh cells. Two
time steps t = 3.89, 4.225 are displayed

In particular, the test case with a smooth wall, substanti-
ates the performance of our proposed method for fully non-
stationary fluid-structure interaction. The pick values of wall
movement are provided in Fig. 4 and Table 3.

In contrast to a smooth wall, we omit the wall displace-
ments for the stiff case because only noise (as expected)
around zero is observed as shown in Fig. 3. Comparing the
results in Table 3 and 4, we observe that the stiffness of the
wall has negligible influence on the displacements of the elas-
tic beam. Furthermore, we identify comparable values for the
drag and lift forces–the details for the second test case are

Fig. 7 Modified FSI 2 test with stiff elastic walls in the physical domain
using μwall = 5.0 × 108 (very stiff elastic boundaries). The elastic
beam modeled in Eulerian coordinates is displayed in black. The outer
elastic walls modeled in ALE coordinates are displayed in grey. The
fluid is represented by the x-velocity profile with highest velocity in
red. Different time steps t = 3.72, 3.835, 3.975, 4.125 s from top left
to bottom right are displayed
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omitted for the convenience of the reader. Moreover, the val-
ues for the stiff wall are already known from computations
without elastic walls [35]. Moreover, we monitor time con-
vergence as shown in Tables 3 and 4. However, it can be
inferred from our results on two different mesh levels that
spatial discretization has much more influence on the maxi-
mal amplitudes. Future studies should focus on computations
on very fine meshes to identify the maximal amplitudes for
this test case. (Despite this missing study, we nevertheless
believe that our method is validated because a spatial mesh
convergence study was made in Example 4.1). The dynamics
are illustrated in the Figs. 5, 6, and 7 with a zoom-in on the
intersecting elastic beam in Fig. 6.

5 Conclusions

In this study, the EALE method as a specific realization of
the FSITICT (the FSI version of the MITICT) approach has
been validated for fluid-structure computations. As shown,
this method provides the possibility to couple deformations
of elasticity described in different coordinates. The perfor-
mance was demonstrated by some benchmark tests. In future
studies, it is planned to apply the framework to problems in
computational medicine.
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