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Abstract A new plasticity model with a yield criterion that
depends on the second and third invariants of the stress devi-
ator is proposed. The model is intended to bridge the gap
between von Mises’ and Tresca’s yield criteria. An associa-
tive flow rule is employed. The proposed model contains one
new non-dimensional key material parameter, that quantifies
the relative difference in yield strength between uniaxial ten-
sion and pure shear. The yield surface is smooth and convex.
Material strain hardening can be ascertained by a standard
uniaxial tensile test, whereas the new material parameter can
be determined by a test in pure shear. A fully implicit back-
ward Euler method is developed and presented for the inte-
gration of stresses with a tangent operator consistent with
the stress updating scheme. The stress updating method uti-
lizes a spectral decomposition of the deviatoric stress tensor,
which leads to a stable and robust updating scheme for a yield
surface that exhibits strong and rapidly changing curvature
in the synoptic plane. The proposed constitutive theory is
implemented in a finite element program, and the influence
of the new material parameter is demonstrated in two numer-
ical examples.
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1 Introduction

Polycrystalline materials can often be taken to be isotropic at
the meso- and macroscopic levels, and plastic yield criteria
for ductile polycrystalline materials are, in general, formu-
lated in terms of three invariants of the (macroscopic) stress
state. The principal stresses, σ1, σ2, and σ3, constitute such
a set of invariants. An infinite number of invariants may be
constructed on the basis of the principal stresses. Three such
invariants, commonly used in plasticity theory, are I1, J2

and J3, where I1 is the trace of the stress tensor, and J2 and
J3 are the two non-trivial invariants of the deviatoric stress
tensor.

The von Mises [1] and Tresca [2] yield criteria are widely
used in computational plasticity, and these models are, in
many cases, well suited for modelling plastic yielding of
ductile, polycrystalline metals [3]. In the von Mises model,
it is assumed that plastic yielding only depends on J2,
whereas the Tresca model includes a dependence on J3. The
Drucker-Prager [4] and Coulomb-Mohr [5,6] criteria—often
employed to model polymers, rock and soil [7–10]—include
a dependence on I1 as well, and may therefore be seen as
extensions of the von Mises and Tresca criteria, respectively.

Plastic deformation of ductile metals is mainly governed
by shear stresses, and this is the reason for the success of
the von Mises model. However, it has been recognized in
both experimental investigations and theoretical examina-
tions, that the plastic yield behaviour of metals may depend
not only on J2, but also on I1 (e.g., [11–16]) as well as on
J3 (e.g., [17–25]). In the present study, we focus on metals
whose yielding behaviour may be considered to be indepen-
dent of I1, but shows a dependence on J3. Yield functions
for such materials may be formulated either in terms of the
invariants J2 and J3 or in terms of the differences between the
principal stresses, i.e. σ1 − σ2, σ1 − σ3, and σ3 − σ2, since
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these differences are independent of I1. One early J2,J3-
based yield criterion was proposed by Drucker [26], i.e.

f = J 3
2 − a J 2

3 − b = 0, (1)

where a and b are material constants. Other closely related
models have followed, e.g. Hosford and Allen [27], Cazacu
and Barlat [28], Brünig et al. [29], and Hu and Wang [30],
where one or several J3-dependent terms are added to the
yield criterion. An early model based on a principal stress
formulation is the Hershey–Hosford model [31,32], in which
the yield surface is given by

f =|σ1−σ2|n+|σ2−σ3|n+|σ3−σ1|n−2σ n
0 =0, (2)

where σ0 is the yield stress in uniaxial tension. Hence, for
n = 2, the von Mises criterion is restored, and for n →∞,
the Tresca criterion is approached.

Other models with a similar type of behaviour exist. One
example is the model proposed by Zhu and Leis [33,34], in
which an average shear stress is introduced as the weighted
average of the maximum shear stress (Tresca) and the effec-
tive von Mises shear stress. Other examples include the
models proposed by Racherla and Bassani [35], Bai and
Wierzbicki [36], and Gao et al. [37], who introduce new
equivalent stress entities that depend not only on the von
Mises stress (i.e. J2), but also on J3 (and I1).

In the present paper, we propose a new J2- and J3-
dependent yield function for ductile metals that is able to
model yield behaviour between the Tresca surface and the
von Mises surface and that is well suited for numerical imple-
mentation into a finite element framework. The domain in
stress space between the Tresca and von Mises yield surfaces
is parametrized by a material parameter μ and a J3-dependent
invariant introduced by Nahshon and Hutchinson [38]. In the
numerical implementation, we use a spectral decomposition
of the stress tensor, which greatly facilitates the stress updat-
ing procedure. Hence, in Sect. 2, the new plasticity model is
presented, and in Sect. 3, we describe its numerical imple-
mentation. In Sect. 4, we provide some numerical examples
in the form of simulations of tensile testing of two different
test specimens. Finally, the results are discussed and put in
some perspective in Sect. 5.

2 A new J2- and J3-dependent yield criterion

2.1 Preliminaries

The strain tensor ε is defined as

ε = sym

(
∂u
∂x

)
, (3)

where u and x are the displacement and position vectors,
respectively. The strain tensor may be additively decomposed

according to

ε = εp + εe, (4)

where εp and εe denote the plastic and elastic strain tensors,
respectively. The Cauchy stress tensor is denoted by σ , and
is obtained as

σ = D : εe = D : (ε − εp), (5)

where D is the stiffness tensor (Hooke’s law on tensor form).
The deviatoric stress tensor, s, is defined as s = σ− I1I/3,

where I1 = σ : I is the first invariant of the stress tensor, and
I is the identity tensor. The invariants of the stress deviator s
are defined as

J1 = s : I ≡ 0, J2 = 1

2
(s · s) : I, J3 = dets. (6)

When a dependence on J3 is to be incorporated into
the yield criterion, it is convenient to introduce modified
J3-dependent invariants. Hence, the Lode parameter, L , is
defined as

L = 2σ2 − σ1 − σ3

σ1 − σ3
, −1 ≤ L ≤ 1. (7)

Furthermore, the Haigh-Westergaard coordinates ρ and ϑ

may be used to characterise the stress state in the synoptic
plane (see Fig. 2), where

ρ = √
2J2, cos 3ϑ = 27J3

2σ 3
e
= ξ, −1 ≤ ξ ≤ 1, (8)

where σe = √3J2 is the equivalent von Mises stress. The
invariants ξ and L relate according to

ξ = L(L2 − 9)

(3+ L2)3/2 . (9)

An additional J3-dependent invariant was introduced by
Nahshon and Hutchinson [38]:

ω = 1− ξ2 = sin2 3ϑ, 0 ≤ ω ≤ 1. (10)

2.2 Yield criterion

We propose a yield function on the form

f (σ ) = σe − σy(ε
p
e )h(ω),

h(ω) = 1− μω

(
1+ ω

1/p
0

ω1/p + ω
1/p
0

)p

, (11)

where σy(ε
p
e ) is the yield stress in uniaxial tension, ε

p
e is

the equivalent plastic strain, and μ, ω0 and p are material
constants. The function h(ω) fulfills 1−μ ≤ h(ω) ≤ 1, and
the functional form of the second term in the expression for
h is illustrated in Fig. 1. The resulting yield function f is
illustrated in Fig. 2 for different values of μ. For μ = 0, the
yield behaviour simplifies to standard von Mises plasticity.
For a suitable choice of model parameters, the yield function
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Fig. 1 Function adopted for modelling the influence of ξ on the yield
behaviour (ω0 = 0.18 and p = 4)

Fig. 2 Yield surfaces for μ = 0, 0.06, and 0.12345 (p = 4 and ω0 =
0.18)

in Eq. (11) approaches the Tresca yield criterion (μ→ 1−√
3/2 ≈ 0.1340). The influence of the third stress invariant

is accounted for by ω = 1−ξ2, where ξ takes on the values 1
in uniaxial tension, 0 in pure shear, and -1 in biaxial tension.

The proposed yield function f is smooth, i.e. the curva-
ture is continuous, and for a suitable choice of the model
parameters μ, ω0 and p, it will also be convex.

2.3 Flow rule

The plastic flow potential is denoted by g = g(σ ), and an
associated flow rule is adopted such that g ≡ f . The plastic
strain increment tensor, ε̇p, is given by

ε̇p = λ̇
∂ f

∂σ
= λ̇M, (12)

M = n − 3γ m, (13)

n = 3s
2σe

, m = 2n · n − I− ξn, (14)

where λ̇ is the plastic multiplier, h′ = dh/dξ , and γ = h′/h.
Note that the inclusion of J3 in the yield criterion introduces
a quadratic dependency on s in the flow rule. However, the
tensors ε̇p, s, M, n, and m all share the same set of principal
directions, Ni (i = 1, 2, 3), such that

ε̇p =
3∑

i=1

ε̇
p
i Ni ⊗ Ni , s =

3∑
i=1

si Ni ⊗ Ni ,

n =
3∑

i=1

ni Ni ⊗ Ni , m =
3∑

i=1

mi Ni ⊗ Ni , (15)

where (•)i (i = 1, 2, 3) denotes principal values and direc-
tions of the tensors. The principal values are related according
to

ε̇
p
i = λ̇Mi = λ̇ (ni−3γ mi ) , mi = 2n2

i −1−ξni . (16)

The principal values of n may in turn be expressed as

n1 = cos ϑ,

n2 = cos(ϑ − 2π/3), (17)

n3 = cos(ϑ + 2π/3),

where ϑ is the angle defined in the synoptic plane, as illus-
trated in Fig. 2.

2.4 Equivalent plastic strain

The yield stress, σy = σy(ε
p
e ), is a function of the equivalent

plastic strain, ε
p
e , which is taken to be the plastic work con-

jugate of the von Mises stress, σe. The plastic work rate per
unit volume, ẇp, is defined as

ẇp = σeε̇
p
e = σ : ε̇p = λ̇s : (n − 3γ m) = . . . = σeλ̇, (18)

i.e. ε̇
p
e ≡ λ̇. In the following sections, ε

p
e and λ will be used

interchangeably.
Just like in standard J2-plasticity, the plastic multiplier

λ̇ is identical to the increment in equivalent plastic strain,
ε̇

p
e . Furthermore, by double-contracting ε̇p with itself, the

increment in equivalent plastic strain can also be related to
the increments of the plastic strain components, i.e.

ε̇
p
e =

√
2

3
ε̇p : ε̇p

√
1+ 9γ 2ω

. (19)

The double-contraction of M with itself yields M :M = n :
n + 9γ 2m : m = 3(1 + 9γ 2ω)/2, because the cross-terms
n : m vanish (n and m are orthogonal). Thus, with regard
to the definition of the equivalent plastic strain, the present
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(a) (b)

Fig. 3 a Convexity limits for different parameter combinations; b maximum value of μ versus exponent p

theory deviates from standard J2-theory, since the square-
root expression in the denominator of Eq. (19) would be
unity in standard J2-theory. However, for the special stress
states of axisymmetry (ω = 0) and shearing (ω = 1), the
denominator simplifies to unity. This is of relevance to the
experimental determination of the hardening function and the
parameter μ, which will be further elaborated on in Sect. 5.

2.5 Convexity and smoothness of yield function

Figure 2 displays the synoptic plane, in which the radial
coordinate ρ = √s : s and the angular coordinate ϑ =
1/3 · arccos ξ may be defined. The curvature of the yield
function in the synoptic plane, κ(ϑ), may be expressed as

κ(ϑ) =
ρ2 + 2

(
dρ

dϑ

)2

− ρ
d2ρ

dϑ2(
ρ2 +

(
dρ

dϑ

)2
)3/2 . (20)

Convexity of f implies that κ ≥ 0 for all ϑ , whereas smooth-
ness of f requires that κ is finite for all ϑ .

In the synoptic plane, see Fig. 2, the yield surfaces may be
expressed as a function ρ(ϑ), where ρ = √2/3σe. Provided
that cos 3ϑ = ξ , the yield function given in Eq. (11) may be
expressed as

ρ(ϑ) =
√

2

3
σyh(ξ). (21)

Thus, we have

h = 1− μω

(
1+ ω

1/p
0

ω1/p + ω
1/p
0

)p

,

dh

dϑ
= −3μ

(
1+ ω

1/p
0

)p
ω

1/p
0(

ω1/p + ω
1/p
0

)p+1 sin 6ϑ, (22)

d2h

dϑ2 = 9μ

(
1+ ω

1/p
0

)p
ω

1/p
0(

ω1/p + ω
1/p
0

)p+1

·
[

p + 1

p

ω1/p

ω1/p + ω
1/p
0

4(1− ω)+ 2(2ω − 1)

]
.

The curvature function κ(ϑ) may now be evaluated by sub-
stituting the expressions in Eq. (22) into Eq’s. (21) and (20).
The curvature will be positive and the yield function convex
for certain combinations of the parameters μ, ω0, and p. The
admissible domains for ω0 and p are shown in Fig. 3a for sev-
eral levels of μ, where it can be observed that the domain that
allows for μ ≥ 0.12 is rather limited in p − ω0 space. The
dashed line defines the value of ω0 that—for a given value of
p—enables the highest value of μ (while still maintaining a
convex yield surface). The associated values of μ, denoted
μmax, are plotted versus p in Fig. 3b, where the Tresca limit
is included as a reference. The Tresca limit is slightly out of
reach of the present model.

The black dot in Fig. 3a represents the point p = 4 and
ω0 = 0.18, which will furnish a convex yield surface pro-
vided that μ ≤ 0.12345. This parameter combination will
be further explored in this study, and in Fig. 4, a curva-
ture plot for this set is shown. For the sake of clarity, the
entity ln(1+√3/2σyκ(ϑ))/ ln 2 is plotted, where σyκ(ϑ) is
a dimensionless entity.

It is clear from Fig. 2 that the curvature of the present yield
function will exhibit peaks when ϑ approaches multiples of
π/3. Hence, κ(ϑ) increases dramatically in the vicinity of
these angles. However, the curvature remains finite, and for
multiples of π/3, it can be shown that the curvature takes on
the value

lim

ϑ→kπ/3

√
3

2
σyκ(ϑ) = 1+ 18μ

1+ p

p

(1+ ω
1/p
0 )p

ω0
, (23)
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Fig. 4 Curvature of the yield function for μ = 0 (blue line), μ = 0.06
(green line), and μ = 0.12345 (red line). In all cases, p = 4 and
ω0 = 0.18 have been applied. (Color figure online)

where k is an integer. For example, for the most Tresca-like
curve (μ = 0.12345), we get ln(1+√3/2σyκ)/ ln 2→ 6.55
as ϑ → kπ/3.

3 Numerical implementation

3.1 Prerequisites

In this section, the components of a numerical implementa-
tion of the proposed plasticity model are derived. Hence, we
assume that at time step tn , all field variables and internal
variables are known, and the updated variables at time tn+1

are to be computed. Hence, for a given updated strain tensor
εn+1, the updated stress tensor σ n+1, the updated equivalent
plastic strain ε

p,n+1
e (or λn+1), and the algorithmic stiffness

tensor Dn+1
alg = ∂σ n+1/∂εn+1—all entities associated with a

backward Euler scheme—are to be computed.
In the following derivation, we assume the existence of

a Cartesian coordinate system with basis vectors ei (i =
1, 2, 3), such that second order tensors may be expressed as

(•) = (•)i j · ei ⊗ e j , (24)

where (•)i j denotes the matrix components of the second
order tensor in question. First and higher order tensors are
represented in analogous ways. Hence, the stiffness tensor
associated with Hooke’s law may be expressed on component
form as

Di jkl = 2G

(
Ii jkl − 1

3
δi jδkl

)
+ K δi jδkl , (25)

where

Ii jkl = 1

2

(
δikδ jl + δilδ jk

)
, (26)

δi j is Kronecker’s delta function, and G and K are the shear
and bulk moduli, respectively.

3.2 Integration of stresses

The flow rule adopted is

ε̇
p
i j = λ̇Mi j = λ̇

(
ni j − 3γ mi j

)
, (27)

where

ni j = 3si j

2σe
, mi j = 2niknk j − δi j − ξni j . (28)

Stresses are integrated according to

σ n+1
i j = σ n

i j +
∫ n+1

n
Di jkldεe

kl = σ n
i j + Di jkl�εe

kl

= σ n
i j + Di jkl(�εkl −�ε

p,

kl )

≈ σ ∗i j − 2G�λMn+1
i j , (29)

where (•)n and (•)n+1 denote entities at times tn and tn+1,
respectively, �εe

i j , �εi j = εn+1
i j − εn

i j , and �ε
p
i j are the

elastic, total, and plastic strain increments, respectively, σ ∗i j is

the trial stress (elastic predictor), and �λ = λn+1−λn . In the
following, the index (•)n+1 is understood unless otherwise
indicated.

Equtaion (29) may be recast into

σ ∗i j = σi j + 2G�λMi j . (30)

The hydrostatic stress is defined as σh = σkk/3. Since Mi j

is purely deviatoric (Mii = 0), it follows that the hydrostatic
components of σ ∗i j and σi j are identical, i.e. σ ∗h = σh, which
implies that

s∗i j = σ ∗i j − σ ∗h δi j = si j + 2G�λMi j . (31)

As discussed previously, si j and Mi j share the same set of
principal directions Ni , and the equations in Eq. (31) may
therefore be reduced to three equations for the principal val-
ues, i.e.

s∗i = si + 2G�λMi , i = 1, 2, 3. (32)

The principal values s∗i and the principal directions Ni may
be computed from the known tensor s∗i j . Furthermore, si may
be expressed as

si = 2σe

3
ni = 2σy(ε

p
e )h(ω)

3
ni (ϑ), i = 1, 2, 3, (33)

where ξ = cos 3ϑ and ω = 1−ξ2 = sin2 3ϑ . Since Eq. (31)
is purely deviatoric, there are, in fact, only two independent
relations in Eq. (32), and the equation for i = 3 may therefore
be ignored. Hence, based on the two relations for i = 1
and 2 in Eq. (32), we define a residual vector function q =
q(ϑ,�λ) according to
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q(ϑ,�λ) =
[

2σyhn1 + 6G�λM1 − 3s∗1
2σyhn2 + 6G�λM2 − 3s∗2

]
= 0, (34)

where σy is evaluated for the updated value of ε
p
e = λ =

λn +�λ, i.e. σy = σy(λ
n +�λ). Expressions for n1(ϑ) and

n2(ϑ) were provided in Eq. (17), and M1(ϑ) and M2(ϑ) may
be expressed as

M1(ϑ) = cos ϑ − 3γ sin 3ϑ sin ϑ, (35)

M2(ϑ) = cos(ϑ − 2π/3)− 3γ sin 3ϑ sin(ϑ − 2π/3).

(36)

The functions in Eq. (34) are strongly non-linear and they
need to be solved for ϑ and �λ using an iterative solution
procedure. The eigenvalues s∗i are sorted such that s∗1 ≥ s∗2 ≥
s∗3 holds, which implies that the true solution for ϑ (i.e. the
solution that fulfills the physical requirement �λ > 0) is to
be found in the interval ϑ ∈ [0, π/3].

Once ϑ and �λ have been determined on the basis of
Eq. (34), the principal values si may be computed by use of
Eq. (33). The eigenvectors Ni were computed from s∗i j , and

the components of the updated stress deviator tensor sn+1
i j

may then be established by use of Eq. (15)2. The updated
stress tensor is then computed as σ n+1

i j = sn+1
i j + σ ∗h δi j .

3.3 Algorithmic tangent stiffness

To establish the stiffness tensor, we start by differentiating
Eq. (29), yielding

dσi j = Di jkldεkl − 2G[d(�λ)Mi j +�λdMi j ]. (37)

Hence, in order to attain a relation between dσi j and dεi j , we
need to express d(�λ) and dMi j in terms of dσi j and dεi j .
As before, the index (•)n+1 is understood but left out for the
sake of clarity.

If Eq. (30) is double-contracted with ni j , �λ may be
expressed as

�λ = (σ ∗i j − σi j )ni j

3G
. (38)

We note that dσ ∗i j = Di jkldεkl and ni j Di jkl = 2Gnkl , and
differentiation of Eq. (38) leads to

d(�λ) = 2

3
ni j dεi j − 1

3G
ni j dσi j + 2�λ

3
Mi j dni j . (39)

The differential of ni j is

dni j = d

(
3si j

2σe

)
= 3

2σe
dsi j − 3si j

2σ 2
e

dσe

= 3

2σe

∂si j

∂σkl
dσkl

−3si j

2σ 2
e

(
Hd(�λ)h + σyh′ ∂ξ

∂σi j
dσi j

)

= 1

2σe

(
3Ii jkl − δi jδkl − 6γ ni j mkl

)
dσkl

− H

σy
ni j d(�λ) = Pi jkldσkl − H

σy
ni j d(�λ), (40)

where H = dσy/dε
p
e = dσy/d(�λ). Substitution of the

expression for d(�λ) in Eq. (39) into Eq. (40) yields
(

Ii jkl+ 2H�λ

3σy
ni j Mkl

)
︸ ︷︷ ︸

Λi jkl

dnkl

=
(

Pi jkl+ H

3Gσy
ni j nkl

)
︸ ︷︷ ︸

R∗i jkl

dσkl− 2H

3σy
ni j nkl

︸ ︷︷ ︸
Q∗i jkl

dεkl , (41)

from which we deduce

dni j = Λ−1
i jmn

(
R∗mnkldσkl − Q∗mnkldεkl

)
= Ri jkldσkl − Qi jkldεkl . (42)

This expression may now be substituted back into Eq. (39),
yielding

d(�λ) = . . . =
(

2

3
ni j − 2�λ

3
Mkl Qkli j

)
dεi j

+
(

2�λ

3
Mkl Rkli j − 1

3G
ni j

)
dσi j

= Yi j dεi j + Vi j dσi j . (43)

Next we consider the differential of Mi j :

dMi j = dni j − 3dγ mi j − 3γ dmi j , (44)

where dni j is given in Eq. (42), and the additional differen-
tials are

dγ =
(

h′′

h
− γ 2

)
∂ξ

∂σi j
dσi j

=
(

h′′

h
− γ 2

)
3

σe
mi j dσi j = Bi j dσi j , (45)

dmi j =
(
δikn jl + δiln jk + δ jlnik + δ jknil − ξ Ii jkl

)
dnkl

− 3

σe
ni j mkldσkl = Si jkldnkl −Wi jkldσkl . (46)

Substitution of the expressions in Eqs. (45), (46), and (42)
into Eq. (44) yields

dMi j =
(
Ii jkl − 3γ Si jkl

)
dnkl

+ (
3γ Wi jkl − 3mi j Bkl

)
dσkl

= Ui jkldnkl + Xi jkldσkl

= (
Ui jmn Rmnkl + Xi jkl

)
dσkl

−Ui jmn Qmnkldεkl

= Ti jkldσkl − Ai jkldεkl . (47)
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Substitution of the expressions for d(�λ) and dMi j in
Eqs. (43) and (47), respectively, into Eq. (37) yields

dσi j =
(
Di jkl − 2G Mi j Ykl + 2G�λAi jkl

)
︸ ︷︷ ︸

Zi jkl

dεkl

−2G
(
Mi j Vkl +�λTi jkl

)
dσkl , (48)

⇒ (
Ii jkl + 2G Mi j Vkl + 2G�λTi jkl

)
︸ ︷︷ ︸

Fi jkl

dσkl

= Zi jkldεkl , (49)

⇒ dσi j = F−1
i jmn Zmnkldεkl = Dalg

i jkldεkl , (50)

where Dalg
i jkl are the components of the algorithmic stiffness

tensor.

3.4 Computational schemes

When integrating the stress state, the most challenging part
is to solve the non-linear functions in Eq. (34) for the two
unknowns ϑ and �λ. It should be noted that it is, in gen-
eral, not possible to solve Eq. (34) directly by use of, for
example, the Newton-Raphson method, unless the initial
guess is relatively close to the correct solution. Hence, a
robust solution procedure is established in the following
way: First, the hardening function is linearised such that
σy(λ

n +�λ) ≈ σ n
y + H�λ, where H = dσy/d(�λ)|�λ=0.

After this approximation, �λ can be eliminated, and the two
functions in Eq. (34) can be recast into a single function of ϑ :

qϑ(ϑ) = (2hn2σ
n
y − 3s∗2 )(2hn1 H + 6G M1)

−(2hn1σ
n
y − 3s∗1 )(2hn2 H + 6G M2) = 0. (51)

Equation (51) is evaluated for discrete values of ϑ in
the interval [0, π/3]. Somewhere in the interval [0, π/3] the
function qϑ(ϑ) changes sign, and two bounds, ϑmin and ϑmax,
may therefore be established, between which the solution ϑ∗,
that fulfills Eq. (51), is to be found. The value ϑ∗ is bracketed
until ϑ∗ has been determined with an uncertainty of 0.01 rad.
(This bracketing implies that qϑ(ϑ) is evaluated for a value
ϑav, located between ϑmin and ϑmax. The bounds are then
updated such that ϑmin ← ϑav or ϑmax ← ϑav, depending
on the sign of qϑ(ϑav). For a more comprehensive descrip-
tion of such bracketing methods, see e.g. Press et al. [39].)
This preliminary estimate ϑ∗ is inserted into Eq. (34), and
an error function is defined as

qλ(�λ) =
√

q2
1 (ϑ = ϑ∗,�λ)+ q2

2 (ϑ = ϑ∗,�λ). (52)

Equation (52) is minimised with respect to �λ, again using a
simple bracketing technique. The value �λ∗ that minimises
Eq. (52) is bracketed until the uncertainty in �λ∗ is 0.0001.
The preliminary estimates {ϑ∗,�λ∗} are, in general, close
to the true solution. These estimates are therefore used as the
initial guess in a standard Newton-Raphson algorithm, and

Table 1 Computational scheme for integration of stresses

– Compute trial stress state:

σ ∗i j = Di jkl�εkl , σ
∗
h = σ ∗i i /3, s∗i j = σ ∗i j − σ ∗h δi j

– Compute eigenvalues an d eigenvectors (s∗i , Ni ) of s∗i j

– Solve qϑ (ϑ) = 0⇒ ϑ∗

– Minimise qλ(ϑ = ϑ∗,�λ)⇒ �λ∗

– Refine solution of q(ϑ,�λ) = 0 by NR algorithm

– Compute updated principal deviator stresses: si = 2σyhni /3

– Compute updated stress deviator: sn+1
i j =∑3

k=1 sk · (Nk)i ⊗ (Nk) j

– Compute updated stress components: σ n+1
i j = sn+1

i j + σ ∗h δi j

– Update internal state variable: λn+1 = λn +�λ

Eq. (34) may then be solved for ϑ and �λ with the desired
degree of accuracy.

The computational scheme used for updating stresses is
summarised in Table 1.

The stress components are stored on vector form such that
σ n+1 = [σ11 σ22 σ33 σ12 σ13 σ23]T. In a similar way, the
strain vector is defined as

εn+1 = [ε11 ε22 ε33 2ε12 2ε13 2ε23]T.

An efficient numerical implementation of the material
model also requires that the algorithmic stiffness matrix,

D
n+1
alg = ∂σ n+1/∂εn+1, is established. The expressions for

computing the algorithmic stiffness tensor Dalg
i jkl were derived

in the previous subsection. The tensors Bi j , Pi jkl , R∗i jkl ,
Q∗i jkl , Λi jkl , Si jkl , Wi jkl , Ui jkl , Xi jkl are straight-forward to
compute. The evaluation of Bi j requires some special atten-
tion, though. As ϑ approaches multiples of π/3, h′′ goes
towards infinity, whereas mi j goes towards zero. The product,
h′′mi j , however, approaches zero. Consequently, this compu-
tational step needs special treatment in the implementation.

The computation of the tensors Ri jkl and Qi jkl requires
the inversion of the tensor Λi jkl . For this reason, the tensor
components (that include several doublets due to symmetry)
of a tensor Li jkl are stored in a 6× 6 matrix L according to

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

L1111 L1122 L1133 βL1112 βL1113 βL1123

L2211 L2222 L2233 βL2212 βL2213 βL2223

L3311 L3322 L3333 βL3312 βL3313 βL3323

L1211 L1222 L1233 βL1212 βL1213 βL1223

L1311 L1322 L1333 βL1312 βL1313 βL1323

L2311 L2322 L2333 βL2312 βL2313 βL2323

⎤
⎥⎥⎥⎥⎥⎥⎦

, (53)

where the factor β takes on the value 1 if the matrix L is
associated with the strain differential dεn+1 and 2 otherwise.
Hence, matrices Λ, R

∗
, and Q

∗
are constructed from the

components of tensors Λi jkl , R∗i jkl , and Q∗i jkl , respectively.

The 6 × 6 matrix Λ is straight-forward to invert, and the

matrices R = Λ
−1

R
∗

and Q = Λ
−1

R
∗

may therefore be
computed. From the matrices R and Q, the tensors Ri jkl
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and Qi jkl may then be constructed by reversing the process
illustrated in Eq. (53).

Once Ri jkl and Qi jkl have been established, it is again
straight-forward to compute the remaining tensors Ti jkl ,
Ai jkl , Yi j , Vi j , Fi jkl , and Zi jkl . The components of the tensors
Fi jkl and Zi jkl are stored in the matrices F and Z, respec-
tively, in accordance with Eq. (53), and the algorithmic stiff-

ness matrix is then computed as D
n+1
alg = ∂σ n+1/∂εn+1 =

F
−1

Z.

4 Numerical examples

4.1 Prerequisites

The plasticity model described in the previous sections
was implemented in the commercial finite element code
Abaqus. In Abaqus, an updated Lagrangian framework is
used to solve finite strain plasticity problems. This frame-
work employs a co-rotational formulation for the rate consti-
tutive hypoelastic-plastic equations to account for rotation of
principal axes of deformation. For details about the precise
implementation, the reader is referred to the Abaqus manual
[40]. Hence, even though the present model is formulated for
the infinitesimal strains, when implemented in Abaqus, full
account of finite strains is taken. At this junction, we would
also like to point out that the current small strain formula-
tion can be extended to finite strain by use of a multiplicative
split of the deformation gradient into a plastic and elastic part
assuming a hyperelasto-plastic material response as outlined
in [41]. Moreover, an interesting discussion on finite element
formulations for finite strains is given in [42].

In the present section, two numerical examples are pro-
vided to assess the influence of the invariant J3 on the plastic
yield behaviour under different loading conditions. The two
geometries analysed are two types of test specimens.

The material analysed is a cold-rolled dual-phase steel
(Docol 600DL) that has been tested experimentally by, for
example Gruben et al. [43,44] and also in the laboratory at
the department of the present authors (unpublished data).
The plastic response of this material in uniaxial tension can
be modelled by the hardening function

σy = σ0

[
σs

σ0
−

(
σs

σ0
−1

)
exp

(
−ε

p
e

εs

)] (
1+ ε

p
e

ε0

)N

, (54)

where the material parameters take on the values σ0 =
380 MPa, σs/σ0 = 1.21, N = 0.117, and εs = 0.0206. The
elastic response is given by Young’s modulus E = 200 GPa
and Poisson’s ratio ν = 0.3, and ε0 = σ0/E = 0.0019. The
hardening function is illustrated in Fig. 5.

The parameters in the h-function are set to p = 4 andω0 =
0.18, which appears to be a versatile choice. Furthermore, we

Fig. 5 Hardening function representative of the cold-rolled dual-phase
steel Docol 600DL (σ0 = 380 MPa, σs/σ0 = 1.21, N = 0.117, ε0 =
0.0019, εs = 0.0206)

Fig. 6 Geometry of plane strain tension specimen (thickness: 2 mm)

make use of results obtained by Hosford [32], who analysed
the yield behaviour in fcc and bcc polycrystalline metals by
use of a self consistent model for crystal slip. Hosford found
that an exponent in the range 6 to 10 (depending on lattice and
hardening) in the yield criterion given by Eq. (2) captures the
behaviour in these polycrystals fairly well. This translates to
a μ value in the range 0.03 to 0.07. Here, μ = 0.06 is taken as
a representative value, which together with the limit values
0 and 0.12345 will be used in the numerical examples.

4.2 Plane strain tension specimen

The first load case to be simulated is the stretching of a plane
strain tension specimen, the geometry of which is shown in
Fig. 6. The specimen is loaded by a prescribed displacement
�, causing a tensile force P , as indicated in Fig. 6.

Due to symmetry, an eighth of the specimen was dis-
cretised using 4800 quadratic hexahedral hybrid elements,
and the stretching was analysed in Abaqus. The resulting
load-displacement curves were extracted and are displayed
in Fig. 7.

As can be seen from Fig. 7, the three curves are identi-
cal in the initial elastic regime. Then as the specimens start
to deform plastically, the force response of the specimens
decrease with increasing μ.
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Fig. 7 Predicted load-displacement curves for a plane strain tension
specimen for μ = 0 (blue), 0.06 (green), and 0.12345 (red). (Color
figure online)

In Fig. 8, the distributions of the invariants ξ and T =
σh/σe (stress triaxiality) at the peak load are displayed. It is
clear from Fig. 8a, that this specimen is not able to produce
a strict plain strain state at the centre of the specimen, i.e.
a state with ξ = 0 and T = 1/

√
3 ≈ 0.577. For the von

Mises material (μ = 0), there is a minor part of the cross-
sectional area where ξ approaches 0.5, but most of the cross-
section is still in a state of uniaxial tension. For the Tresca
case (μ = 0.12345), the whole cross-section is virtually in
a state of uniaxial tension, i.e. ξ is about 1. It may be noted,
however, that a small distance from the central cross-section
there is a strip of material that appears to be more or less in
a state of plain strain, i.e. ξ ≈ 0. In Fig. 8b, it may be noted
that there is a significant gradient in the stress triaxiality. It is
clear, that as the material approaches a Tresca material (i.e. μ
increases), the gradient is weakened, and the triaxiality peak
at the centre of the specimen decreases.

The constraint imposed by the geometry on the normal
plastic strain component in the X2-direction would promote
a state of plane strain. However, for a near Tresca material
with an associated flow rule subjected to an overall state of
uniaxial tension, a very small deviation from the prevailing

Fig. 9 Geometry of plane strain specimen

axisymmetric stress state is needed in order to satisfy a plane
strain constraint.

4.3 Plane strain specimen

The second geometry to be considered is a plane strain spec-
imen, illustrated in Fig. 9. The specimen is again loaded by
a prescribed displacement �, causing a tensile force P , as
indicated in Fig. 9. Again an eighth of the specimen was mod-
elled and discretised using 5432 quadratic hexahedral hybrid
elements, and the same three values of μ were considered.
The resulting load-displacement curves were extracted and
are displayed in Fig. 10.

As can be seen from Fig. 10, the three curves are again
identical in the initial elastic regime. Then as the specimens
start to deform plastically, the force response of the speci-
mens decrease with increasing μ.

In Fig. 11, the distributions of the invariants ξ and T =
σh/σe at the peak load are displayed. According to Fig. 11a,
this specimen is actually able to produce a plain strain state
fairly well at the centre of the specimen. For the von Mises
material (μ = 0), about half of the cross-sectional area is
in a state of plain strain, and as the edge is approached, the
cross-section approaches a state of uniaxial tension. Even

(a) (b)

Fig. 8 Distribution of stress fields in the PST specimen at maximum force level in tensile test: a ξ and b T = σh/σe
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Fig. 10 Predicted load-displacement curves for a plane strain speci-
men for μ = 0 (blue), 0.06 (green), and 0.12345 (red). (Color figure
online)

for the intermediate case (μ = 0.06), the plain strain state
is accomplished fairly well, whereas for the Tresca case
(μ = 0.12345), the whole cross-section is again in a state that
is close to uniaxial tension. When it comes to the stress triax-
iality in Fig. 11b, there is again a significant gradient in the
stress triaxiality, which decreases as the material approaches
a Tresca material (i.e. μ increases).

5 Discussion

It has long been recognised, that the yield behaviour of some
ductile metals show a dependence on the third stress invariant
J3 [17–24], and several yield functions have been proposed
to account for this behaviour (e.g., [26–28,30–37]). In the
present work, we propose a new J2- and J3-dependent yield
function that we also believe is suitable for numerical imple-
mentation into a finite element framework. The proposed
yield function deviates from the non-quadratic function by
Hershey–Hosford in Eq. (2) in some decisive ways. Using a
quadratic yield function (von Mises) with a constant curva-
ture as a reference, strong deviations in curvature of the pro-
posed yield function first occur at the axisymmetric stress
states. By contrast, in the Hershey-Hosford yield function,

strong curvature deviations first arise at the shearing stress
states. This difference will affect the possibility for localiza-
tion of plastic flow as that is sensitive to the curvature of the
yield surface.

Implementation of standard J2-plasticity is relatively
straight-forward (see e.g. Simo and Hughes [45]). However,
the inclusion of a dependence on J3 in the yield criterion
and the use of an associated flow rule lead to some chal-
lenges when it comes to the numerical implementation. When
applying Tresca-like yield criteria, the corners that appear
in the yield surface must be dealt with. Such non-smooth
yield functions can be treated numerically (Koiter [46] and
Mandel [47,48]), but smooth functions are preferable. The
present model is able to account for a Tresca-like behav-
iour, while still retaining rounded corners that do not cause
any significant numerical problems. A second challenge is
that in the expressions for the stress updating, a term s · s
appears together with s-dependent terms, implying that the
evolution law for the stress components are not indepen-
dent. Hence, in general a non-linear equation system, i.e.
Eq. (31), with five unknowns needs to be solved. (In gen-
eral, symmetric tensors have six independent components,
but since the trace of the stress deviator is zero, this tensor
only has five independent components). In principle, this can
be done (this is the path taken by Gao et al. [37]), but this
is a relatively unstable and time-consuming way. Hence, in
the present formulation, we make use of the fact that the sys-
tem in Eq. (31) may be reduced to an equation system for
the eigenvalues of the stress deviator, which eventually leads
to an equation system with only two unknowns, i.e. ϑ (the
Haigh-Westergaard angular coordinate) and �λ (the incre-
ment in equivalent plastic strain). This reduced non-linear
equation system is solved using an iterative procedure, and
the numerical scheme adopted appears to be very stable from
a numerical point of view.

The plastic hardening function σy(ε
p
e ) is defined as a func-

tion of the equivalent plastic strain, εp
e . The relation between

the increment in equivalent plastic strain and the increments
of the components of the plastic strain tensor in the present
work differs somewhat from what is common in standard
J2-plasticity, see Eq. (19). The difference stems from the

(a) (b)

Fig. 11 Distribution of stress fields in the PS specimen at maximum force level in tensile test: (a) ξ and (b) T = σh/σe
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fact that in the present theory, the stress deviator, s, and the
plastic strain increments, ε̇p, are not co-axial (as in standard
J2-theory). Hence, not all plastic strains will produce plastic
work. (The tensor m is orthogonal to s, and therefore the part
of the plastic strain increments associated with m does not
contribute to the plastic work.) One way to proceed would be
to retain the standard definition of the equivalent plastic strain
– i.e. allow all plastic strains to contribute to strain hardening
– and accept that ε̇

p
e would not (in general) be the work con-

jugate of σe (i.e. ε̇p
e would differ from λ̇). The approach opted

for here, however, is to assume that strain hardening only is
produced by that fraction of the plastic strains that produces
plastic work. In this case, ε̇p

e is still the work conjugate of σe,
and ε̇

p
e is defined according to Eq. (19). Note, however, that in

all the three special cases of uniaxial tension, biaxial tension,
and pure shear, the equivalent plastic strain increment in the
present theory coincides with the increment in standard J2-
theory, since in all of these three cases, either γ or ω vanishes,
see Eq. (19). Furthermore, if the plastic potential had been
chosen as g = σe, as in standard J2-theory, the plastic strain
increments would be co-axial with the stress deviator, but the
flow rule would have been non-associative. Here, however,
we choose to formulate the flow rule in accordance with the
principle of maximum plastic work [49–51], which requires
an associative flow rule.

From a material testing perspective, the primary new mate-
rial parameter to determine is μ. A standard uniaxial test on
a (axisymmetric) tensile specimen enables the determination
of the hardening function σy(ε

p
e ), i.e. σy(ε

p
e ) = σ(εp), where

σ(εp) denotes the stress vs. plastic strain data from the uniax-
ial test. In addition to this, a test in pure shear on a thin-walled
tube specimen [37,52] would be a sensible choice, in which
case a relation (1−μ)σy(ε

p
e ) = √3τ(γ p) is expected, where

τ(γ p) denotes the shear stress vs. plastic shear data from the
shear test. (In a pure shear test, the relation ε

p
e = γ p/

√
3

holds.) The parameter μ could then be determined by direct
comparison of test results from the two different types of
specimen.

For sheet metals, however, only planar types of specimen
are, in practice, available. For this reason, different types of
plane strain test geometries were investigated in the numer-
ical examples. It is of special interest to see if their load
responses can be used to determine the material parameter
μ in a simple manner. Thus, the proposed plasticity model
was implemented in Abaqus and applied in simulations of
two test specimens. It is clear from the load-displacement
curves (see Figs. 7, 10) that a J3-dependence in the yield
function has a significant impact on the predicted load levels.
The relative difference in predicted load for the two spec-
imens is displayed in Fig. 12. The μ levels applied (0.06
and 0.12345) are indicated in Fig. 12 as horizontal dashed
lines. It can be observed, that the impact of μ on the pre-
dicted load is strongest for the plane strain (PS) specimen

Fig. 12 Relative difference in predicted load during testing for plane
strain tension (PST) and plane strain (PS) specimens; results for μ =
0.06 (green lines) and μ = 0.12345 (red lines). The symbols ‘�’ indi-
cate the point where the maximum load appears in each simulation.
(Color figure online)

and weaker for the plane strain tension (PST) specimen. It
should be noted, though, that the extent of the curves along
the abscissa depends on specimen dimension, and therefore
the curves are not fully comparable. The marked increase in
relative difference seen at the end of each curve is associ-
ated with the diffuse necking modes that start to develop in
the post peak force regime, see Figs. 7 and 10. This indicates
that an increase in the material parameter μ, promotes an ear-
lier onset of localization in plastic deformation. It has been
recognized for some time, that ductile failure in some materi-
als not only depends strongly on stress triaxiality, but also on
the deviatoric stress state, e.g. quantified in terms of L (the
Lode parameter), ξ or ω [38,53–56]. Localization of plastic
flow often acts as a precursor of ductile failure. Therefore, for
materials with a yield behaviour in between the von Mises
and Tresca surfaces, we surmise that it may be of importance
to correctly account for the plastic flow behaviour if ductile
failure is to be modelled accurately.
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