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Abstract In this paper we present a collection of fluid–
structure interaction (FSI) computational techniques that
enable realistic simulation of pulsatile Ventricular Assist
Devices (VADs). The simulations involve dynamic interac-
tion of air, blood, and a thin membrane separating the two
fluids. The computational challenges addressed in this work
include large, buckling motions of the membrane, the need
for periodic remeshing of the fluid mechanics domain, and
the necessity to employ tightly coupled FSI solution strate-
gies due to the very strong added mass effect present in the
problem. FSI simulation of a pulsatile VAD at realistic oper-
ating conditions is presented for the first time. The FSI meth-
ods prove to be robust, and may be employed in the assess-
ment of current, and the development of future, pulsatile VAD
designs.

Keywords Pulsatile VAD · Fluid–structure interaction ·
Isogeometric analysis · Biomechanics · Finite elements ·
Blood flow · Rotation-free shells

1 Introduction

Ventricular Assist Devices (VADs) are devices which pro-
vide mechanical circulatory support to a single ventricle of
the heart [33,4]. They are used primarily as a bridge to trans-
plant, extending the life of the patient until a compatible
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donor can be found. Two device types are available: pulsatile
displacement pump designs, and a continuous flow impeller
designs. Devices now available to the pediatric community
include only pulsatile designs, and the we therefore choose
to focus on pulsatile VADs in this work. The pediatric popu-
lation suffers from increased risk of thromboembolic events
(i.e., blood clots) while using VADs, and thrombo-embolic
events may occur in up to 40 % [5] of cases. This has made
these devices too risky for long-term use, and reliable only
as a short-term bridge to transplant. However, in children,
particularly those with congenital heart defects or cardiomy-
opathy, it may be of particular importance to develop a long-
term reliable device. Pediatric patients in heart failure due to
dilated cardiomyopathies have shown recovery of the native
heart tissue when a VAD is used in a bridge to recovery sce-
nario. This is an effect that has not been observed in the adult
population [23].

A pulsatile VAD provides mechanical support to a single
ventricle of the heart. A patient may receive two VADs if sup-
port is required for both ventricles, depending on the underly-
ing disease state. The design of the device is as follows: Two
domed chambers are separated by a flexible polyurethane
membrane. One chamber is an air compartment, which is
driven pneumatically. The other is a blood chamber, which
delivers blood from the right atrium/left ventricle to the pul-
monary arteries/aorta, for a Right/Left heart VAD, respec-
tively [4]. The flow in the air chamber moves the thin mem-
brane, which causes displacement in the blood chamber and
drives the blood through the device.

The low survival rates of VADs may be alleviated if one
had a better understanding of how specific flow features in
the blood chamber are linked to the formation of blood clots.
For this, as a first step, one needs the ability to accurately pre-
dict the blood flow itself inside the device. The latter is not
possible without fluid–structure interaction (FSI) modeling
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that involves the interaction of air, blood, and a thin mem-
brane separating the two fluids. For the modeling to be real-
istic, the relatively complex geometry of the VAD, the large,
time-dependent motions of the membrane, and the actual
pump operating conditions (i.e., flow rates and pressures)
must be taken into account. In this work we present compu-
tational FSI methods in which these effects are incorporated,
and which may be used for high-fidelity VAD design. While
there is extensive literature on patient specific modeling for
pediatric applications with and without FSI [52,31,53], very
little has been done to date for numerical simulation of pul-
satile VADs. In [30] an idealized VAD design was analyzed
with a linearly elastic shell model for the membrane and
non-physiological outlet boundary conditions, and in [50]
VAD simulations were performed using imposed membrane
motion rather than true FSI. We stress that membrane motion
in a VAD is expected to be critical to the device’s perfor-
mance, and thus accurate prediction of the time-dependent
membrane response is crucial to the simulation and design of
the device. To the best of the authors’ knowledge this is the
first 3D, full-scale, high-fidelity FSI modeling of pulsatile
VADs.

The paper is outlined as follows. In Sect. 2, we present the
computational methods employed to simulate the VAD–FSI
problem. A rotation-free isogeometric Kirchhoff–Love shell
formulation is used to model the thin membrane in com-
bination with a moving-domain ALE–VMS finite element
formulation for the blood and air flow. The FSI solution strat-
egy involves strong coupling, which is accomplished using
a combination of sparse-matrix-based and matrix-free tech-
niques. Strong coupling is essential for convergence of the
coupled FSI equation system for this application. In Sect. 3
we provide a detailed description of the VAD problem setup
and present a numerical simulation of the device. In the
course of the simulation we periodically remesh the fluid
mechanics domain to maintain good quality of the finite ele-
ment discretization. The simulation predicts physiologically
realistic blood flow features and membrane deformation pat-
terns. In Sect. 4 we draw conclusions and present future
research directions.

2 Numerical methods for VAD–FSI

In this section we briefly discuss the fluid and structural
mechanics formulations used in this work, namely ALE–
VMS and Isogeometric Analysis (IGA), respectively. We
mostly summarize the main features of these methods and
provide references where the reader may find the mathemat-
ical details of these techniques. One of the main computa-
tional challenges of this work is robust FSI coupling, which
we present in some detail in this section

2.1 ALE–VMS fluid mechanics formulation

Standard Galerkin methods are not a sufficiently robust
technology for advection-dominated flows. For this rea-
son, stabilized methods [22,43,87,39,78,85,86,80,42,88,
37] were designed to circumvent this shortcoming of the
Galerkin technique. Stabilized methods, which are essen-
tially residual-based modifications of the Galerkin method,
exhibit uniform stability and convergence behavior across
the full range of advective and diffusive phenomena.

The basic theory of variational multiscale (VMS) meth-
ods was developed in [38], wherein stabilized methods were
first identified as multiscale methods. Relationship between
stabilized methods and subgrid scale modeling was also iden-
tified in [38], and now presents an important research direc-
tion [41]. Recently, in [7], the authors proposed a residual-
based turbulence modeling and computational framework
that is based on the VMS theory, named RBVMS. This tech-
nique performs well on both laminar and turbulent flows, for
a wide range of Reynolds numbers.

The extension of the RBVMS framework to the moving-
domain case, where the motion of the fluid mechanics domain
is handled using the Arbitrary Lagrangian–Eulerian (ALE)
formulation [40], was named ALE–VMS in [69,14]. The
ALE–VMS formulation discretized with linear tetrahedral
FEM is used in this work to compute the fluid mechanics
part of the VAD problem.

An important additional feature of the ALE–VMS method-
ology is weak enforcement of essential boundary condi-
tions. Weakly enforced essential boundary conditions were
introduced in [15] in order to improve solution accuracy on
meshes with insufficient boundary-layer resolution [16,17,
6,34]. Although the weak BCs are now routinely used for
wind-turbine aerodynamics [13,35,36] and ship hydrody-
namics [2,1,3], we do not use them in this work. However, we
feel that they will likely be beneficial in cardiovascular blood
flow and FSI computations in that they may further improve
boundary-layer accuracy and produce more accurate wall
quantities such as wall shear stress or oscillating shear index,
which are critically important in numerous cardiovascular
applications [65,68,99,100,71–73,10,96,74,70,69,52].

2.2 Rotation-free isogeometric thin shell formulation

The circular membrane separating the blood and air cham-
bers of the device is a very thin structure. The membrane
stress-free reference configuration is not flat, but convex.
As the membrane undergoes large cyclic deformation, it is
almost always in a state of compression, which leads to local
buckling and wrinkling. As a result, it is desirable to rep-
resent the membrane or thin shell with numerical technol-
ogy that is efficient and capable of representing the underly-
ing complex structural dynamics without posing significant
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challenges associated with robustness of the structural
mechanics computations and large local deformations of the
fluid mechanics domain boundary.

Low-order, bi-linear quadrilateral finite elements, which
are widely used and are considered standard shell element
technology, exhibit several shortcomings: (1) These elements
require the use of displacement and rotation degrees of free-
dom to describe shell kinematics; (2) One needs a fine mesh
to represent shell geometries with high local curvature, and
to simultaneously achieve the desired solution accuracy; (3)
Ad-hoc element technology is necessary to overcome mem-
brane and shear locking; (4) In the case of implicit time inte-
gration employed in this work, the presence of rotational
degrees of freedom doubles the size of the solution and
right-hand-side residual arrays, quadruples the size of the
left-hand-side matrix, and results in an order-of-magnitude
increase in linear solver time.

Isogeometric shell analysis was recently proposed in [20]
to address the shortcomings of standard shell technology
listed above. It was found that higher-order continuity
(C1 and above) of the IGA basis functions significantly
improved the per-degree-of-freedom accuracy and robust-
ness of thin shell discretizations as compared to the FEM.
Furthermore, the increased continuity of the IGA discretiza-
tions enabled the use of shell kinematics without rota-
tional degrees of freedom [49,19,21], leading to further
computational cost savings. The isogeometric rotation-free
Kirchhoff–Love shell formulation for structures composed of
multiple structural patches, called the bending strip method,
was developed in [48], which enabled the application of the
rotation-free IGA technology to real-life structures, such as
wind turbine rotors (see [12,11,36]). Besides significant sav-
ings in computational time, the rotation-free shell discretiza-
tion makes FSI coupling simpler than the discretization with
rotational degrees-of-freedom. Finally, the smooth structural
motion computed with IGA gives a smooth fluid mechanics
mesh at the fluid–structure boundary, which adds accuracy
and robustness to the fluid mechanics computation.

Non-uniform rational B-splines (NURBS) [61] are
employed in this work to discretize the structural mechan-
ics equations of the membrane separating the blood and air
chambers. T-splines [8,28], a relative newcomer to IGA cur-
rently receiving significant attention, are also well suited
for the proposed structural modeling approach. For related
rotation-free shell formulations the reader is also referred
to [26,25,27,60,59,57].

2.3 FSI coupling

In order to take advantage of the benefits of IGA for structural
mechanics, and to leverage the existing advanced automatic
mesh generation tools for the FEM, we choose to couple low-
order FEM for the fluid and IGA for structural mechanics.

As a result, the FSI coupling assumes a nonmatching fluid–
structure interface discretization. Nonmatching interface dis-
cretizations in FSI problems necessitate the use of interpo-
lation or projection of kinematic and traction data between
the nonmatching surface meshes (see, e.g., [32,88,92,95,71,
97,98,73,74,96,69,13,76,18], where [76] is more compre-
hensive than [74]). A computational procedure, which can
simultaneously handle the data transfer for IGA and FEM
discretizations, was proposed in [13]. The procedure also
includes a robust approach in identifying “closest points”
for arbitrary shaped surfaces. While such interface projec-
tions are rather straightforward for loosely-coupled FSI algo-
rithms, they require special techniques (such as developed
in [88,89,93,95,71,72,75,76,18] as well as this paper) for
strongly-coupled methods that are monolithic-like and that
are necessary for the present application.

A full discretization of the FSI formulation leads to cou-
pled, nonlinear equation systems that need to be solved at
every time step.The equation systems can be written as fol-
lows:

N1 (d1, d2, d3) = 0, (1)

N2 (d1, d2, d3) = 0, (2)

N3 (d1, d2, d3) = 0. (3)

Here N1, N2, and N3 are the discrete residual functions, and
d1, d2, and d3 are the vectors of nodal (or control-point in the
case of IGA) unknowns, corresponding to the fluid mechan-
ics, structural mechanics, and mesh problems,

In the block-iterative coupling [82,84,56,47,90,91,94,
81,88,18], the fluid, structure, and mesh systems are treated
as separate blocks, and the nonlinear iterations are carried out
sequentially. First, the fluid block is solved, then the struc-
ture, and then the mesh. In solving a given block of equations
the most current values of the other blocks of unknowns are
used. The sequence of solves is repeated until all the equation
systems are solved to an a priori set tolerance. This strategy is
the easiest to implement, and it performs very well in applica-
tions where the structure is heavy relative to the surrounding
fluid.

In the present application, the membrane separating the
blood and air chambers of the VAD is extremely thin, and
its mass is significantly smaller than the mass of the sur-
rounding fluid that is displaced as a result if the membrane
motion. Because of the relatively low structural mass, block-
iterative FSI is not an appropriate technique for this appli-
cation. Instead, we employ the quasi-direct coupling tech-
nique [90,91,94,88,18], where the fluid+structure and mesh
systems are treated as two separate blocks, and the non-
linear iterations are carried out one block at a time until
all the equation systems are solved to an a priori set toler-
ance. In an iteration step, given the solution at i , the solution
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i + 1 is obtained by solving the following two blocks of
equations:
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The above systems of linear equations are solved using a
GMRES technique [63], requiring the computation of matrix-
vector products. In this work the matrix-vector products
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sparse-matrix-based approach, where the tangent matrices
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where ε1 and ε2 are relatively small real numbers. This mixed
analytical/numerical, matrix-based/vector-based approach
was proposed for coupled problems in general in [79], and
for FSI problems specifically in [88], where the numerical,
vector-based computation is applied to the computation with

the ∂N1
∂d3

∣
∣
∣
i

block.

We feel the proposed approach is well suited for cases
that require a relatively larger number of GMRES iterations
(O(100)) for good overall nonlinear convergence. This is
because the sparse matrices are formed once every non-
linear iteration (or, possibly, once every time step to fur-
ther decrease the computational cost), making the associated
computational cost independent of the number of GMRES
iterations employed. Although matrix-vector products given
by Eqs. (10) and (11) need to be performed once per GMRES
iteration, the FEM assembly takes place over a narrow band
of fluid elements near the fluid–structure interface, which
is a lot less expensive than assembling the discrete residu-
als over the entire fluid mechanics domain. For a compre-
hensive exposition of sparse-matrix-based and matrix-free
approaches see [18].

Fig. 1 The computational domain, with the blood domain in red, and
the air domain in blue. The inlet and outlet face of the blood chamber
are labeled 1 and 2, respectively. The air-side inlet/outlet face is labeled
3. (Color figure online)

3 VAD simulation

3.1 Problem setup

Geometry For the initial study, we use a generic VAD device
as our computational domain. Geometric parameters, such as
width, height, and angles of the entrance/exit arms are consis-
tent with current designs, and are meant to be a generic rep-
resentation of current commercially available devices. The
chosen design for the initial study has a width of 7.7 cm,
and an apex to apex height of 4.5 cm. The incline angle
between the arms and the main blood chamber is 30◦, with
one assigned exclusively as the inlet, and the other as an out-
let. The outlet faces are 1.5 cm in diameter. The air chamber
has one small inlet/outlet port of diameter 0.8 cm. These are
labeled in Fig. 1.

A stroke volume of 73 mL was chosen for this device,
which yields an ejection fraction of 68 %. A beat frequency
of 80 bpm is used, for a pump output of 5.8 L/min. This initial
study uses a VAD that is too large to be considered a pediatric
model, but all data is within an acceptable physiologic range
for adult models.

Boundary conditions Each pump cycle may be broken up
into two components: the fill stage and the ejection stage.
We impose the fill period of 0.45 s, and the ejection period
of 0.3 s, and we also enforce that each stage must fill or eject
the same volume, 73 mL. For simplicity, the flow is assumed
to behave sinusoidally during each stage. We can therefore
impose the air chamber inflow flow rate q at a given time t
as

q =
{

qe sin
1
2
( t

0.3π
)

if t < 0.3

q f sin
1
2
( t−0.3

0.45 π
)

otherwise
, (12)
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where qe and q f are constants equal to the peak flow rate of
each stage. The constants may be obtained from the equations
∫ 0.3

0
qe sin

1
2

(
t

0.3
π

)

dt = 73, (13)

and
∫ 0.75

0.3
q f sin

1
2

(
t − 0.3

0.45
π

)

dt = −73, (14)

and are equal to qe = 319.02 cc/s and q f = −212.68 cc/s.
On the blood side, we alternate boundary conditions at

the inlet/outlet between a Neumann condition and a Dirich-
let condition as necessary since we do not directly compute
the valve motion in the simulation. At the outlet, for exam-
ple, we have two conditions. If we are in the fill stage, then
we impose a zero-velocity (i.e., no flow) boundary condi-
tion. During the ejection, however, we impose a resistance
boundary condition

p = Cr q + p0,

where q is the volumetric flow rate on the outlet face, Cr

is a prescribed resistance value, p0 is the distal pressure,
and p is the pressure at the outlet face. For the simulation
we choose p0 to be 65 mmHg, which enforces a minimum
pressure of 65 mmHg during the expel. The resistance value
is set to Cr = 183 g/(s cm4), which gives a maximum systolic
pressure of 108 mmHg. The inlet face uses the same boundary
conditions, but, obviously, with opposite phase.

The structural membrane is simply supported around the
circumference.

Remark Note that, because the incompressible flow assump-
tion is employed for both blood and air, the flow rate into the
air chamber must equal to the flow rate out of the blood
chamber, and vice versa. As a result, by controlling the total
volume of the air going in and out of the air chamber, we
automatically control the total volume of the blood flowing in
and out of the blood chamber. The proposed quasi-direct FSI
coupling guarantees that at every nonlinear iteration this bal-
ance holds. Loosely-coupled FSI approaches, besides being
unsuitable for this problem due to the strong added mass
effect, cannot guarantee this balance unless special proce-
dures are devised to enforce it (see, e.g., [51]).

Blood, air, and membrane properties Both air and blood are
treated as incompressible, Newtonian fluids. The blood den-
sity and dynamic viscosity are set to 1 g/cm3 and 0.04 poise,
respectively. The air density and dynamic viscosity are set to
1.205 × 10−3 g/cm3 and 2 × 10−4 poise, respectively. Given
the VAD geometry, fluid properties, and flow rates employed,
the peak Reynolds number is about 10,000 in the blood cham-
ber, and 7,000 in the air chamber. These values are based on
the inlet/outlet branch diameters and flow speeds. Note that

the VAD blood chamber Reynolds number, which is higher
than that in the large blood vessels of the human cardiovascu-
lar system (e.g., the thoracic aorta), is in the turbulent range.

The membrane is a flexible thin sheet, commonly made of
polyurethane. We use membrane material properties consis-
tent with those of the Penn State VAD, the LionHeart [29].
The LionHeart membrane has a thickness of 0.38 mm, den-
sity of 1.1 g/cm3, and Young’s modulus of 550 MPa [29].
In our simulation, we use a thinner membrane of 0.25 mm,
which is reflective of the smaller device used for the pedi-
atric population, as was provided in a private communication
from the authors of [62]. The membrane initial configuration
is obtained by taking a circular disc, which is exactly repre-
sented using a single NURBS patch with four corner singular-
ities, and displacing the interior control points in the direction
normal to the plane of the disc toward the air chamber. The
initial shape of the membrane is assumed to be sinusoidal,
and the control-point displacement d is given by the equation

d = 1.52 cos
( r

3.85

π

2

)

, (15)

where r is the radial distance of the control point from the
center of the disc.

Meshing, mesh moving, and remeshing The blood and air
chamber volumes in the reference configuration are meshed
using MeshSim automatic mesh generator (Symmetrix Inc.,
Clifton Park, NY). The number of elements in the air chamber
is 238,322 and in the blood chamber is 497,160. The mem-
brane is discretized using 1,024 C1-continuous quadratic
NURBS elements. The simulations are run for two time
cycles of 0.75 s each, with a time step size of 1.0 ms.
Generalized-α time integration is used for the coupled FSI
equation system (see [24,44,9]).

As the computation proceeds, the fluid mechanics mesh is
moved using equations of elastostatics with Jacobian-based
stiffening [83,77,45,18], which better preserves the mesh
quality in the simulations than the no-stiffening approach
and delays the necessity to remesh. However, due to very
large motions of the membrane the mesh eventually becomes
highly deformed and a remesh is necessary to preserve the
quality of the fluid mechanics discretization. The necessity
to remesh is quantified in terms of the change in the element
volume as measured by the ratio of the Jacobian determinants
of the elements in the current step and the step immediately
after the previous remesh. For this simulation, remeshing is
performed once the ratio of 72 % for compression or 170 %
for expansion is achieved.

During the remesh the surface meshes of the blood and
air chamber, including those at the fluid–structure interface,
are preserved, and a new tetrahedral mesh is generated on
the interior of both subdomains. The solution data at the
current step, which includes fluid velocity, acceleration, and
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Fig. 2 Flow speed (cm/s) in the deformed blood chamber configuration
at t = 0.15 s

pressure, as well as mesh velocity and displacement, is trans-
ferred to the new mesh by means of a nodal interpolation pro-
cedure that involves the computation of the inverse mapping.
To efficiently locate the element in the old mesh contain-
ing the nodal point of interest, we use a “point in a polygon”
method [58]. Once the data is transferred to the new mesh, the
FSI computation continues. No special procedures for trans-
ferring the pressure data (e.g., pressure clipping [46,88,74])
are employed.

3.2 Simulation Results

The VAD simulation was carried out in a parallel computing
environment at the San Diego Supercomputing Center [67].
The simulation was run for two time cycles. All the data
presented is gathered from the second time cycle. The time
t = 0 in all figures refers to the beginning of the second
cycle.

Figures 2, 3, and 4 show snapshots of the computed blood
flow speed and membrane deformation. The simulation cap-
tures a very complex membrane motion, with many folds,
clearly seen in Figs. 3 and 4. The deformed membrane surface
is notably smooth, with no sharp kinks on the mesh edges,
which is due to the underlying smoothness of the NURBS
discretization. This buckling motion is smoother than is typ-
ically attained using more traditional methods. Since the
structural kinematics is used to drive the fluid mechanics
mesh deformation, the smoother buckling motion ensures
that the fluid mechanics mesh at the fluid–structure interface
remains smooth.

During the fill stage, the inlet jet impinges on the chamber
wall, and flows along the wall creating a strong vortex. The
vortex is destroyed early in the eject phase, as seen in Fig. 5.
This strong vortex is a chief source of the wall shear stress
and flow stagnation in the center of the device, and may play

Fig. 3 Top view of the membrane deformed configuration at t =
0.15 s. Despite the complex deformation pattern, the wrinkles on the
membrane surface are smooth

an important role in thrombus formation. Strong rotating flow
during filling was also observed experimentally in [62] and
will be of interest in the future validation efforts.

Figures 6 and 7 show the time history of volume-averaged
pressure and flow speed. The pressure drop across the mem-
brane is small relative to the mean pressure, which is not
surprising as it takes little effort to move the membrane. The
peak average flow speed in the blood chamber during the
fill stage is nearly 20 % greater than during the eject stage.
Although the eject stage imposes a flow rate 50 % higher than
the fill stage, the corresponding peak average flow speed is
lower. This is in large part due to the rotational flow seen in
Fig. 5, which is present only during the fill stage.

4 Conclusions and future work

This paper addressed several computational challenges
involved in the FSI modeling of pulsatile VADs. These
include large, buckling motions of the membrane, the need
for periodic remeshing of the fluid mechanics domain, and the
necessity to employ tightly coupled FSI solution strategies
due to the very strong added mass effect present in the prob-
lem. Structural modeling of the membrane makes use of IGA,
which has several accuracy and robustness benefits associ-
ated with the smoothness of the underlying discretization.
The strong FSI coupling is efficiently implemented using
a combination of matrix-free and sparse-matrix-based tech-
niques. The simulations captured the essential blood flow
features and structural deformations observed clinically and
experimentally in pulsatile VADs. This is the first 3D, full-
scale, high-fidelity FSI modeling of pulsatile VADs.

The computational FSI tools developed here provide a
foundation for the study of the fluid and structural mechanics
inside pulsatile VADs, with clinically relevant implications.
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Fig. 4 The membrane deformed configuration at time a t = 0 s,
b t = 0.15 s, c t = 0.3 s, and d t = 0.525 s

Fig. 5 Blood flow speed (cm/s) at 0.5 cm above the plane separating
the blood and air chambers. In-plane vectors shown during (a) expel
stage (t = 0.14 s) and (b) fill stage (t = 0.665 s)

We intend to use such simulations in the future to investigate
design improvements that will mitigate risk of thrombosis,
especially for pediatric populations. Methodically explor-
ing a parameterized design space using computational FSI
combined with modern optimization techniques and uncer-
tainty quantification [54,55,64,66,103] may lead to novel
designs that will improve patient outcomes. Thrombus for-
mation involves a complex interplay between hemodynamics
and blood chemistry, presenting significant modeling chal-
lenges [101,102]. Future work could incorporate reduced
order models of blood chemistry to capture the key features
of this process.
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Fig. 6 Time history of the volume-averaged pressure in the blood and
air chambers

Fig. 7 Time history of the volume-averaged flow speed in the blood
chamber

A strong validation effort is also planned. Particle Image
Velocimetry data is available for the Penn State device [62],
which we intend to simulate in the future.
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