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Abstract We propose alternative methods for performing
FE-based computational fracture: a mixed mode extrinsic
cohesive law and crack evolution by edge rotations and
nodal reposition. Extrinsic plastic cohesive laws combined
with the discrete version of equilibrium form a nonlinear
complementarity problem. The complementarity conditions
are smoothed with the Chen-Mangasarian replacement func-
tions which naturally turn the cohesive forces into Lagrange
multipliers. Results can be made as close as desired to the
pristine strict complementarity case, at the cost of con-
vergence radius. The smoothed problem is equivalent to a
mixed formulation (with displacements and cohesive forces
as unknowns). In terms of geometry, our recently proposed
edge-based crack algorithm is adopted. Linear control is
adopted to determine the displacement/load parameter. Clas-
sical benchmarks in computational fracture as well as newly
proposed tests are used in assessment with accurate results.
In this sense, the proposed solution has algorithmic and accu-
racy advantages, at a slight penalty in the computational cost.
The Sutton crack path criterion is employed in a preliminary
path determination stage.
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1 Introduction

Two key topics are currently of interest in computational
fracture with finite elements: the prediction and implemen-
tation of the crack path geometry and the cohesive law rep-
resentation. For use with finite elements, crack propagation
algorithms have been developed in the past two decades with
varying degrees of accuracy and generality. Existing tech-
niques can be classified as discrete or continuum-based (and
are often a combinations of these):

• Full and localized rezoning and remeshing approaches [5,
11,16,24,49], variants of local displacement [30,33,36,
37,41–43] (or, in alternative, strain [2,40]) enrichments,
clique overlaps [28], edges repositioning or edge-based
fracture with R-adaptivity [35];

• Element erosion [48], smeared band procedures [39],
viscous-regularized techniques [27], gradient and non-
local continua [46];

• Phase-field models based on decoupled optimization
(equilibrium/crack evolution) with sensitivity analysis
[18].

For finite strain simulations, each one has particular
advantages and shortcomings, most well documented.
Notwithstanding, numerical experimentation is still essen-
tial for obtaining definitive conclusions. Specifically, the
extended finite element method (XFEM) by Belytschko and
co-workers [12,15,37] was used previously but still poses
challenges for large amplitude displacements (this is partic-
ularly important for quasi-adiabatic shear bands). Densifica-
tion of the Jacobian matrix occurs due to pile-up of degrees-
of-freedom for nodes contributing to multiple cracks. If nc

cracks are present in elements in the support of a given node,
this has (1 + nc)nSD degrees of freedom where nSD is the
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Fig. 1 Edge-based crack propagation algorithm in three steps. h is the plate thickness

number of original degrees-of-freedom per node; this pro-
duces a fill-in in the sparse Jacobian contrasting with remesh-
ing that retains sparsity along the analysis. The adaptation
of classical contact and cohesive techniques to deal with
enriched elements is difficult. It is worth noting that large
amplitude displacements are managed (see, e.g. [32]) by
XFEM if neither contact nor cohesive forces are present. Dif-
ficulties in XFEM are often mitigated at the cost of intricate
coding. As a consequence of these difficulties, typically ide-
alized examples are displayed. Features are then added, such
as crack face friction, coupled heat transfer, etc. From the
enumerated options, it is often pointed out that local remesh-
ing techniques lead to ill-formed elements (in particular blade
and dagger-shaped triangles) which compromise the solution
accuracy. These ill-formed elements motivate, besides other
aspects, the use of full remeshing. Recently, we proposed a
new methodology to attenuate this problem (cf. [5]). In the
present work, we further simplify the solution by moving

Fig. 2 Effect of tol in the satisfaction of complementarity

edges so that they align with the predicted crack path. Its
shell version found considerable success [9]. In this sense,
the new proposal extends the idea of edge-based propaga-
tion established by Xie et al. [51]. In the present proposal,
a quality indicator is used and fully finite-strain propagation
is analyzed. Furthermore, consistent quasi-brittle fracture is
considered and not only linear elastic fracture mechanics or,
in the case of Xie and Gerstle [50], standard cohesive mod-
eling.

Initially rigid cohesive laws with elastic unloading are
cumbersome to implement and usually require a trust-region
method (cf. [8]) to be employed for obtaining convergence. In
addition, there is no clear underlying Mathematical support
for the problem, in contrast with the plastic unloading cohe-
sive case, which can be obtained by transforming the fric-
tional contact problem. This has one advantage: if unloading
is plastic or it does not occur, a problem similar to frictional
contact can be solved and a cohesive-zone model is obtained.

The work is organized as follows: Sect. 2 presents the
principle of virtual power for cracked bodies with cohe-
sive regions, Sect. 3 shows the virtual crack closure tech-
nique for determination of energy release rate, the cohesive
discretization and both the initiation and propagation algo-
rithms. Section 4 presents six examples of fracture where
comparisons with experimental results and alternative tech-
niques are made. Finally, Sect. 5 reports the main conclusions

2 Principle of virtual power for cracked bodies with
cohesive regions

Brittle and quasi-brittle fracture are differentiated by the
geometry of the regions where energy dissipation occurs:
in brittle fracture energy is dissipated in a crack edge or tip

123



Comput Mech (2013) 52:931–947 933

and in quasi-brittle fracture energy is dissipated in a surface
(typically identified as the cohesive surface). Since this cohe-
sive surface must be formed as a consequence of a continuum
condition, a continuous time path must be ensured. No energy
release should occur by the single creation of cohesive sur-
faces, but rather by decohesion. We take a direct approach for
dealing with equilibrium problems with cracks (both brittle
and quasi-brittle). The formulation is based on the following
approach:

• Explicitly including external loads and imposed veloci-
ties as well as the Lagrange multiplier for the brittle case.

• Including the cohesive zone �c where the velocity jump
is identified as [[u̇]]. Note that part or whole of �c may be
unknown without consequences in the energy balance.

• Using a load parameter Q for proportional loading and a
velocity parameter q̇ for proportional imposed velocity:

∫

�

σ : ε̇d� =
∫

�

Qb� · u̇d� +
∫

�t

Q t� · u̇d�t (1)

+
∫

�u

q̇ tu · u�d�u +
∫

�c

t ([[u]]) · [[u̇]]d�c

where σ is the Cauchy stress tensor, ε̇ is the strain rate, b� is
the nominal body force, t� is the imposed surface load, tu is
the reactive surface traction and t is the cohesive traction. The
unknown field is the displacement u and u� is the nominal
imposed displacement. Equation (1) has two interpretations:
equivalence between internal and external power and, if the
time derivative of displacement is interpreted as the virtual
velocity, it is a form of the principle of virtual power with the
required ∀u̇ in the space of test functions. The subset of �c

where [[u]] �= 0 is denoted �ca (the active cohesive zone).
Energy is released by increasing of both the size of �ca and
growth of [[u]]. For strictly closed cracks, [[u]] · t = 0 on
�c, implying that t is a Lagrange multiplier (we now can use
the notation tλ) and the Eq. (1) is adapted to read:

∫

�

σ : ε̇d�

︸ ︷︷ ︸
Ẇ

=
∫

�

Qb� ·u̇d�+
∫

�t

Q t� · u̇d�t +
∫

�u

q̇ t · u�d�u

︸ ︷︷ ︸
Ḟ

+
∫

�c

(
tλ · [[u̇]]+ ṫλ · [[u]]) d�c

︸ ︷︷ ︸
Ṡ

(2)

Fig. 3 1D model of the extrinsic cohesive law for mode-I. Effect of tol in the cohesive behavior
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where tλ is now an independent field at the crack faces,
the Lagrange multiplier field conjugate to the constraint
[[u]] = 0. Interpreting (1) and (2) as, respectively, the penal-
ized and the Lagrange-multiplier versions of a constrained
problem permits a unified treatment of brittle and quasi-
brittle fracture. In (2) the energy is released by the increase of
size of �ca ⊂ �c, whereas in (1) energy is released by growth
of �ca . We use s for the area of surface �ca . The strain work
is calculated as:

W =
T∫

0

Ẇ dt (3)

A classical switch of the derivatives from time t to area s
results in:

dS

ds
= dW

ds
− dF

ds
(4)

where S = ∫ t
0 Ṡdτ, W = ∫ t

0 Ẇ dτ and F = ∫ t
0 Ḟdτ where

Ṡ, Ẇ and Ḟ are defined in Eq. (2), t is the time variable and
τ is an integration variable. Standard arguments result in the
following definition for the strain energy release, J :

J = −dS

ds
= d (F − W )

ds
(5)

For elasto-plastic materials, we must acknowledge that
part of the energy released from the crack advance was
already dissipated by the plastic deformation process and
therefore must be subtracted from the fracture energy:

J = JR − Wp ⇒ crack growth (6)

where JR is the LEFM fracture energy (or critical energy
release rate) for the considered material and geometry. In
(6), Wp is the plastic deformation work, given as:

Wp =
T∫

0

σ : ε̇ pdt (7)

where ε̇ p is the plastic strain rate. Finite element tech-
nology makes use of standard constant-strain triangles and
isoparametric quadrilaterals, as well as our shell elements
(cf. [7,10]).

3 Specific techniques for modeling crack growth

3.1 Virtual crack closure and crack advance

The determination of stress intensity factors can be per-
formed by a variety of well-known methods all of which
calculate the same configurational derivative (cf. [19]). The
most established method is the contour J−integral. We have
used contour integrals with success [49]. However, there are
some shortcomings of J−integrals for multiple cracks and

Fig. 4 1D model of the extrinsic cohesive law for mode-II. Effect of
tol in the cohesive behavior

Fig. 5 Node-to-node cohesive element for finite displacements

the support function requires a user-defined radius. An alter-
native is the virtual crack closure technique (VCCT) created
by Rybicki and Kanninen [44] and extensively reported by
Krueger [31]. Furthermore, since it is based on the crack
tip opening displacement (CTOD), it is known to have high
predictive capabilities for large strain plasticity [34,47]. A
short summary of the application of Krueger’s approach is
given here. Using a local frame corresponding to the classi-

123



Comput Mech (2013) 52:931–947 935

Fig. 6 Crack initiation based on edge rotation: 4 steps

Fig. 7 Verification test: relevant data for both tests. 2,129 nodes and 3,934 triangles are used

cal fracture mode decomposition (the mode frame), we can
determine the transformation matrix whose rows are three
orthogonal directions corresponding to each mode relative
displacement:

T mode =
⎡
⎢⎣

êT
I

êT
I I

êT
I I I

⎤
⎥⎦ (8)

where

êI I I = n (9)

with n being the normal unit vector, which in 2D is {0, 0, 1}T .
In addition,

e�
I I =

[
x0 −

(
x1 + x2

2

)]
(10)

eI I = (I − n ⊗ n) e�
I I (11)

123



936 Comput Mech (2013) 52:931–947

(a)

(b)

Fig. 8 Verification test: mode I and mode II results

Fig. 9 Mode II mesh sensitivity analysis

and êI is given by

êI = êI I I × êI I (12)

The classical notation for unit vectors using the Euclidian
norm is adopted:

•̂ = •
‖ • ‖2

(13)

The relative displacement for the mode frame is given by:
⎧⎨
⎩

uI

u I I

u I I I

⎫⎬
⎭ = T mode (u2 − u1) (14)

and the internal forces at the tip are obtained by assembling
elements above the predicted crack segment:
⎧⎨
⎩

f +
I

f +
I I

f +
I I I

⎫⎬
⎭ = T mode f +

0i (15)

where f +
0i are the internal forces assembled from elements

identified as + in Fig. 1 at the tip node (0).
Predicted fracture energies follow the classical derivation

by Krueger (s identified in Fig. 1):

JI = 1

2�s
f +
I u I (16)

JI I = 1

2�s
f +
I I u I I (17)

JI I I = 1

2�s
f +
I I I u I I I (18)

The condition for crack advance in brittle cases results from
the energy sum corresponding to (6):

JI + JI I + JI I I = JR (19)

The crack path orientation follows our previous approach
([5]). For shells, the crack path has only components along
êI and êI I and the Ma-Sutton criterion [34,47] is adopted to
predict it:

p = ê1 sin(θc) + ê2 cos(θc) (20)

where the angle θc is obtained as:

θc =
{ −36.5π

180 arctan(2.2α), |α| < αc

57.3π
180 cos(α) α

|α| |α| ≥ αc

(21)

α = arctan
(

uI I
u I

)
. For the cohesive fracture modeling, it is

important to note that crack path is still determined by this
analysis prior to the cohesive stage. For crack propagation,
Fig. 1 illustrates the three main steps. In the first step a mea-
sure of the resulting triangle quality is used to compare the
choices:

Q	 = 4
√

3A	
l2
1 + l2

2 + l2
3

(22)

where A	 is the area of the triangle and l1, l2 and l3 are the
edge lengths of the triangle. This value is obtained by “trial”
rotations of corresponding edges. In the second step the edge
is rotated and history is mapped (a requirement for elasto-
plastic analysis, for example). Finally, in the third step the
tip node is duplicated.
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Fig. 10 Relevant data for the mixed-mode bending test as described by Camanho and Dávila. Also shown are the three cases of bending,
β = 1

4 , β = 1 and β = 4

Fig. 11 Mixed-mode bending test: comparison with experimental
results

3.2 Extrinsic traction separation law

The cohesive law is described by three complementarity con-
ditions, one for the normal interaction and two for the tangen-
tial interaction. The normal interaction is a modification of

the normal contact conditions, written for the normal stressσ :

K�un − 〈
K�un + σ�

〉 = 0 (23)

σ = σ� + �σ (24)

�un = [[un]] − κ (25)

where K is a constant with units [F L−3] necessary for the
unit consistency of (23). The stress difference �σ is given by:

�σ = ft exp

(
− ft

JR1
[[un]]

)
(26)

with ft being the cohesive tensile stress and JR1 the fracture
energy in mode I. The term �un is the difference between the
normal displacement jump [[un]] and the kinematic variable
κ which is given as the maximum value of [[un]] attained up
to the current instant:

κ = max
history

[[un]] (27)

The stress term σ� is the contact stress in the absence of
cohesive law (given by the difference �σ ). The step function
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Fig. 12 Bittencourt’s drilled
plate: geometry, boundary
conditions and material
properties. Geometry
parameters a and b vary
according to the specimen.
Results shown for specimens
#1 and #2

(a)

(b)
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(a)

(b)

Fig. 13 CMOD/load results for the two specimens

< • > in (25), using the Macaulay brackets is defined as:

< • >:= • + | • |
2

• ∈ R (28)

For mode II, a related complementarity formulation is given
by:

φi− < φi − K gi >= 0

(a)

(b)

Fig. 14 Displacement/load results for the two specimens

where φi = �τ +(−1)iτ and g1 = s and g2 = s−[[ut ]]. τ is
the effective shear stress, �τ is the cohesive tangential stress
and s is the tangential displacement shift. The tangential dis-
placement jump [[ut ]] is not affected by a history variable as
was the case of the normal. The tangential cohesive law is
given by:

Fig. 15 Specimen #1: cohesive
tails for JR = 1, 5, 10, 30
N/mm. Similar tails are obtained
for specimen #2
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Fig. 16 Crack path comparison
with the results by Bittencourt
et al. [16]

�τ = gt exp

(
− g2

t

4J 2
R2

[[ut ]]2

)
(29)

where JR2 is the fracture energy in mode II and gt = β ft is
the maximum tangential stress. The reader can note that, if the
Coulomb dry friction is considered, the cohesive tangential
stress is then given by the following law:

�τ = μσ (30)

where μ is the friction coefficient. Regularization of the step
function makes use of the Chen-Mangasarian replacement
function (cf. [22,23]) which is written as < x >∼= S(x) with

< x >∼= S(x) = x + 1

α
log

[
1 + exp (−αx)

]
(31)

with α = log(2)/tol. The effect of tol in the comple-
mentarity satisfaction is shown in Fig. 2. Obviously, tol is
the vertical distance, represented in that Figure, between the
origin and the “corner” point of the curve. For 3D problems,
cone-complementarity must employed if a similar smoothing
approach is to be used, as discussed for friction by Kanno et
al. [29]. The mode-I model is represented in 1D in Fig. 3 as
a spring/cohesive element in series. The effect of tol in the
Force/Displacement law is also shown in Fig. 3. Analogously,
mode-II model is represented in 1D in Fig. 4. The cohe-
sive traction t is obtained using the transformation matrix
T mode as:

t = T mode

⎧⎨
⎩

σ

τ

0

⎫⎬
⎭ (32)

Remarks:

• The Chen-Mangasarian approach introduces one addi-
tional degree-of-freedom in each exterior node for the
normal force and two additional degrees-of-freedom for
the tangential force and shift.

• The smoothing technique does not transform the problem
into a barrier or penalty problem. It is akin to the second-
order Lagrange multiplier approach for inequalities [38],
but of course resulting in a fully differentiable (substitute)
problem with additional degrees-of-freedom.

• All examples are solved with tol = 1 × 10−3 ft .
• K is determined as:

K = E

5 × 10−3lc
(33)

where E is the arithmetic-averaged elasticity modulus
and lc is the average edge size in the mesh.

Fig. 17 Schlangen’s SEN test: geometry, boundary conditions and
material properties
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Fig. 18 Schlangen’s SEN test:
Deformed meshes for the three
cases are shown, with
5616, 10014 and 22498
elements. Crack path (10,014
elements) compared with DSDA
[25] (yellow) and the
experimental results by
Schlangen [45]

(a)

(b)

(c)

(d)

3.3 Cohesive discretization

The representation of the finite-displacement cohesive ele-
ment makes use of a simple node/node arrangement as

depicted in Fig. 5. This approach is simpler than the
node/edge method and it is sufficient for our purposes here
where only moderate displacements are present. In addition,
the surface Patch test is satisfied. We consider all external
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Fig. 19 Schlangen’s SEN test: load-CMSD results: comparison with
the experimental results by Schlangen [45] and the DSDA technique
[25]. The effect of step-size (�C M SD) in the results is also shown

edges (i.e. with only one underlying solid element) as candi-
dates.

3.4 Crack initiation

For completeness, we show the crack initiation algorithm.
Crack initiation occurs by satisfaction of a criterion at the
continuum level. For damage-based constitutive laws, the
damage or void fraction value are typically used. When strain
softening is prone to occur, loss of strong ellipticity is also an
acceptable criterion (cf. [10]). For many engineering materi-
als, the only available information is the fracture strain, which
depends on the tensile specimen geometry. Geometrically,

we maintain the edge-based approach as illustrated by Fig. 6.
The steps are: first find the most critical element in terms of
initiation criterion and the direction. Second, finds the edge
with the minimum angle with respect to the predicted direc-
tion and rotates it. Third, aligns the edges that best extend
the initiation edge and rotates them. Fourth, duplicates both
tip nodes so that a three-edge crack appears.

This geometrical approach is very simple to implement
and fits the subsequent propagation algorithm. Since no ele-
ment subdivision occurs, the well known spurious element
slicing is avoided. As a shortcoming, often there is some local
mesh distortion, in particular with quadrilaterals.

3.5 Constraint-based solution control

For the determination of the load (or displacement) factor Q
introduced in Sect. 2 either the energy release rate or the stress
is constrained. An indirect form of achieving this is to control
the CMOD (crack mouth opening displacement) or CMSD
(crack mouth shear displacement). A complete discussion
of the solution constraint is given in Moës and Belytschko
[36] and an analogous procedure was described by Areias
et al. [5]. If a load factor Q is included as an unknown, the
system must be enlarged by appending the control constraint
sc(u) = 0:

r(Q, u) = 0 (34)

sc(u) = 0 (35)

where r(Q, u) is the discrete equilibrium residual and sc(u)

is the crack constraint. For proportional loading and we can
write r(Q, u) as:

r(Q, u) = Qe − i(u) (36)

with, following classical notation, e is the total load vector
and i is the internal force vector. Generalizations of (36) are
straightforward but for the present applications appear unnec-
essary. The solution by Newton-Raphson iteration results in:

[
K (Q, u) −e(Q, u)

l(u) 0

]{
uv

Q

}
= −

{
i(u)

sc(u)

}
(37)

where uv is the iterative correction to the displacement u
and the load factor. In (37), the quantities l and K are the
following derivatives:

l(u) = dsc

du
(38)

K (Q, u) = ∂ i(Q, u)

∂u
(39)

Defining ui = K−1 i and ue = K−1e , and subsequently
si = l · ui , se = l · ue we finally obtain:
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Fig. 20 Gravity dam geometry
and relevant data. Crack path
comparison with the results
from Barpi and Valente [14]

Fig. 21 Gravity dam CMOD/load results. A comparison with the
results reported by Barpi and Valente is shown

Q = si − sc

se
(40)

uv = Que − ui (41)

which provides the overall solution process for the con-
strained equilibrium. Of course, this procedure corresponds
to an exact linearization if l is calculated in closed-form.

4 Computational fracture examples

Six sets of bi-dimensional fracture problems are solved.
Assessment makes use of comparisons with experiments
found in the literature and with alternative formulations.
Step-size and mesh-size effects are also inspected. SIMPLAS
software [3] is used.

4.1 Verification test

A demanding finite-strain numerical test for the cohesive
law in mode I and mode II contexts is established. The
initial “debonding” effect for small energies was found to
be problematic in regularized, or intrinsic, cohesive laws,
but is solved without difficulties by our complementarity

approach. This applies to both mode I and mode II tests.
Geometry, boundary conditions and elastic properties are
presented in Fig. 7. Artificially large peak stresses are used
with the purpose of inspecting the finite strain behavior in
terms of convergence and overall robustness. Results for
modes I and II are shown in Fig. 8 as functions of JR1

and JR2. Note that low values of JR do not pose difficul-
ties. Inspection of Fig. 8a, b allows the conclusion that this
approach is able to capture sharp softening. For mode II and
JR2 = 20 × 106 Nm−1 a mesh convergence study is per-
formed: meshes with 172, 563, 1202, 2129 and 4769 nodes
are compared in Fig. 8. Other cases are omitted since the
conclusion is not altered: the present approach is very mesh-
size insensitive. This result stems from careful coding and a
complementarity-based approach (see also Fig. 9).

4.2 Mixed-mode bending test

We use a simple mixed mode numerical experiment to assess
the robustness of the proposed smoothed complementar-
ity approach for large values of displacement and cohesive
forces. We consider the mixed-mode bending (MMB) test
as discussed by Camanho and Dá vila (cf. [20,21]). These
Authors have experimental data so that a comparison is made
here. An AS4/PEEK composite is used in the test. Relevant
data for this anisotropic test is shown in Fig. 10. Results are
relatively close to the experiments, as depicted in Fig. 11.
For conciseness, we refer to the work of Camanho [20,21]
for further details concerning this problem. We note that,
contrary to that work, the lever is here explicitly represented.
In addition, no effort was made in “tuning” our methodology
for composites.

4.3 Bittencourt’s drilled plate (mode I)

We use the problem by Bittencourt et al. [16] who performed
experimental and numerical studies of curvilinear crack
propagation. Specimens are built of Polymethylmethacrylate
(PMMA) and for this material, the inclusion of finite strains
is important. The relevant geometry, material properties and
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Fig. 22 Gravity dam. Principal
stress contour plots and cohesive
tails (×100 magnified)

boundary conditions are shown in Fig. 12 for two specimens
that differ in the linear dimensions a and b. In the paper by
Bittencourt et al. [16], the Erdogan and Sih [26] fracture cri-
terion was used, with stress intensity factors calculated with
the domain-integral (see also [36] for a detailed discussion of
this approach) and quarter-point elements. A recursive spa-
tial decomposition method was introduced to perform the
mesh subdivision. In the present approach, only specimen #1
required smaller elements when the coarser mesh was used
(which was also a conclusion of Bittencourt et al.) in the crack
turning region near the second hole. The presence of the three
holes affects the stress field making the crack trajectory very
sensitive to the position and size of the existent notch. Good
agreement was observed between predicted and experimental
crack paths (see Fig. 16). The crack mouth opening displace-
ment (CMOD) is used to control the solution and capture
the snap-backs. Load-CMOD results are shown in Fig. 13
for both specimens and load-deflection results are shown in
Fig. 14, showing the well-known snap-backs. Smooth results

are obtained and we reach small fracture energies without
convergence problems. For the four distinct values of the
fracture energy the cohesive stresses are shown in Fig. 15.

4.4 Single edge notched beam

Now we analyze the single edge notched (SEN) beam intro-
duced by Schlangen (cf. [45]). A description of this prob-
lem, with material properties and boundary conditions is
presented in Fig. 17. Besides the classical analysis, we also
inspect unloading and reloading behavior with the present
plastic cohesive law. Three uniform triangular meshes with
different densities are adopted. The arc-length method (see
Sect. 3.5) is used, with monotonically increasing CMSD
(crack mouth sliding displacement). The crack path repro-
duces closely the experimental envelope, as can be observed
in Fig. 18; even near the support the experimental obser-
vations are accurately reproduced. A comparison with the
experimental results and the DSDA method [1,4], along with
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Fig. 23 Four-point bending of a concrete beam: geometry, boundary conditions, multipoint constraints (�u B = �u A) and material properties.
Also shown is the final deformed mesh ×50 magnified with the attached cohesive stress vectors

Fig. 24 Four-point bending of
a concrete beam: crack paths
compared with the envelope of
experimental results by Bocca et
al. [17]

a study of mesh and step size influence is effected. As can be
observed in Fig. 19, after the peak load is reached, the numer-
ical results are more brittle than the experimental results.
According to [2], this is due to the fact that an isotropic
mode-I traction-jump law is used. The effect of the CMSD
increments in the results is shown in the same Figure. The
results are immune to the step-size up to very large CMSD
increments (1 × 10−3).

4.5 Gravity dam scale model

This problem is one of the scale model dam problems solved
(and tested) by Barpi and Valente (cf. [14]). We use a 150 mm
pre-crack in a model dam with the scale 1 : 40 as described

in that reference (note that there is also a specimen with
a 300 mm pre-crack). A hydrostatic load is applied to the
left face of the dam and self-weight is considered (this is
replaced by a set of forces in the original work). Figure 20
presents the geometry, dimensions, loading and properties
defining this problem. Also shown is a comparison with both
experimental and numerical crack trajectories reported by
Barpi and Valente. Two meshes are used (composed solely of
triangles) containing 3,904 nodes and 8,707 nodes. The latter
has a better agreement with the experimental crack path, as
can be observed in Fig. 20. We also show the CMOD/load
results compared with the ones reported by Barpi and Valente
(Fig. 21). Cohesive tails and principal normal stresses are
shown for the two meshes in Fig. 22.
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(a)

(b)

Fig. 25 Load-displacement results, compared with the results of Bocca
et al. [17] and the cracking particle method of Rabczuk and Belytschko
[43] (for the case b = 200 mm) with their 68,000 particle analysis

4.6 Cohesive crack growth in a four-point bending concrete
beam

The four-point bending concrete beam problem consists of
a bi-notched concrete beam subjected to two point loads. It
was presented by Bocca et al. [17] and numerically tested
by several authors. The effect of size is apparent since
two specimens with different dimensions are tested. In the
original work [17], the experimental setting is described in
detail, being here omitted. From the set of specimens stud-
ied by Bocca et al. we only make use of the specimens with
c/b = 0.8, b = 50 and b = 200 mm, since these have
useful experimental data. We are concerned with the crack
paths that were reported in [17]. Using the well-known crack-
ing particle method, Rabczuk and Belytschko [43] obtained
excellent results for the crack path prediction, although the
load in the load-displacement diagram was somewhat higher
than the experimental one. In addition, with the particle meth-
ods, there is the problem of selecting the support dimension
in the crack region. We here use a single uniform mesh, with
11,599 nodes and 22,656 triangular elements. All relevant
data is shown in Fig. 23. For anti-symmetry reasons, we

force the same mouth horizontal displacement at the edge
of notches A and B: �u B = �u A. We obtain good agree-
ment with the experimental crack paths, as shown in Fig.
24. The relatively wide spread of experimental crack paths is
typical and results from the use of 6 specimens of reference
[17]. Experimentally, some residual crack evolution in the
opposite direction of the final path was observed and we also
obtained that effect. Load-displacement results are shown in
Fig. 25 where a comparison with the measurements of Bocca
et al. [17] and the cracking particle method of Rabczuk and
Belytschko [43] is made.

5 Conclusions

The simple algorithm of edge rotation for computational frac-
ture combined with the extrinsic cohesive law provide an
advantageous alternative to the tip remeshing algorithm pro-
posed by the Authors (cf. [5–7,11,13]) and it is more conve-
nient than enrichment techniques. Crack paths are more reg-
ular, Newton-Raphson convergence is better and less mesh
distortion occurs. We found that both for brittle and quasi-
brittle, classical benchmarks perform at least as well as alter-
native techniques. Recent enrichment techniques also show
remarkable accuracy, but are more limiting for large ampli-
tude displacements and the application to elasto-plastic prob-
lems is not clear. A subsequent manuscript is in preparation,
applying the present algorithm to full 3D computational frac-
ture.
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