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Abstract An investigation of fatigue crack growth of inter-
facial cracks in bi-layered materials using the extended finite
element method is presented. The bi-material consists of two
layers of dissimilar materials. The bottom layer is made of
aluminium alloy while the upper one is made of functionally
graded material (FGM). The FGM layer consists of 100 %
aluminium alloy on the left side and 100 % ceramic (alu-
mina) on the right side. The gradation in material property
of the FGM layer is assumed to be exponential from the
alloy side to the ceramic side. The domain based interac-
tion integral approach is extended to obtain the stress inten-
sity factors for an interfacial crack under thermo-mechanical
load. The edge and centre cracks are taken at the interface
of bi-layered material. The fatigue life of the interface crack
plate is obtained using the Paris law of fatigue crack growth
under cyclic mode-I, mixed-mode and thermal loads. This
study reveals that the crack propagates into the FGM layer
under all types of loads.

Keywords Bi-layered FGM · Interface crack ·
Extended finite element method ·
Fatigue crack propagation

1 Introduction

Dissimilar or layered materials such as ceramic-metal and
composite-metal have been widely used in engineering

S. Bhattacharya · I. V. Singh (B) · B. K. Mishra
Department of Mechanical and Industrial Engineering, IIT,
Roorkee, India
e-mail: ivsingh@gmail.com

T. Q. Bui
Department of Civil Engineering, University of Siegen,
Siegen, Germany

applications for the purpose of increasing the strength and
reducing the weight simultaneously. The structural perfor-
mance of layered material depends on the mechanical prop-
erties and the fracture behavior of the interface. Unlike the
behavior of homogeneous materials, abrupt change in mate-
rial properties at the interface is the primary source of fail-
ure in layered materials. Flaws or defects in the material like
micro-cracks or pores can complicate the modeling of layered
materials. These features should be taken into account for the
appropriate modeling of the structure/component. The frac-
ture failure of a component is always preceded by multi-site
cracks. The crack tip stress fields of all such cracks interact
with one another, and this interaction results in the forma-
tion of one dominant crack which leads to the final failure of
the component. Hence, accurate evaluation of stress inten-
sity factors is essential for the prediction of failure and crack
growth rate in these components.

In recent years, functionally graded materials (FGMs) are
used as an alternative material to the conventional homoge-
neous coatings. FGMs are composite materials in which the
composition or microstructure or both are locally varied so
that specified variation of the local material properties can
be achieved. FGMs are found to be quite attractive for the
application in variety of thermal shielding problems includ-
ing high temperature chambers, furnace liners, gas turbines,
micro-electronics and space structures. The design of com-
ponents involving FGMs and guarding them against fracture
failure becomes an important issue. The fatigue and frac-
ture characterization of such materials require the solution of
certain standard crack problems. The crack problems solved
over the past few decades in nonhomogeneous materials pro-
vide some valuable knowledge for the fracture mechanics
research on FGMs, and reveal the considerable developments
in exploring the fracture behavior of bi-layered materials.
Sukumar et al. [22] developed a partition of unity enrichment
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technique for bi-material interface cracks. They added a dis-
continuous function and near-tip asymptotic displacement
functions in the finite element approximation obtained from
the displacement fields for an interfacial crack. Liu et al.
[8] improved the extended finite element method (XFEM) to
directly evaluate mixed-mode stress intensity factors with-
out extra post-processing for homogeneous materials as well
as for bi-materials. Rethore et al. [18] demonstrated that
the enrichment functions in XFEM can give more accurate
and stable numerical scheme for crack growth simulations,
and also [19] presented a time partition of the unity scheme
based on Newmark method for the simulation of dynamic
crack propagation. Walters et al. [23] used the FEM to com-
pute the mixed-mode stress intensity factors for cracks in
3-D FGMs. Nagai et al. [12] developed a finite element
based numerical approach to evaluate the SIFs of a 3-D
interface crack between dissimilar anisotropic materials. Qin
et al. [15] calculated the mixed-mode stress intensity fac-
tors of a 3-D interfacial crack in bi-material under shear
loading using hypersingular integral equation method. Zhu
et al. [26] used hypersingular intergro-differential equation
method for solving the 3-D interface crack in fully coupled
electromagnetothermoelastic anisotropic multiphase com-
posites under extended electromagnetothermoelastic cou-
pled loads. Yu et al. [24] investigated the interface crack
between two nonhomogeneous materials. They developed
a new interaction energy integral for obtaining mixed mode
stress intensity factors of an interface crack between two
nonhomogeneous materials with continuous or discontin-
uous properties. They also used this approach [25] to
evaluate the SIFs for 3-D curved cracks in nonhomoge-
neous materials. Pant et al. [13] implemented the element
free Galerkin method (EFGM) for the stress analysis of
structures having cracks at the interface of two dissimilar
materials. They modeled the material discontinuity at the
interface using a jump function and jump parameter that gov-
erns its strength. Menshykov et al. [9] solved the 3-D dynamic
problems of elastic bi-materials with cracks located at the
bonding interface under harmonic loading. Guo et al. [5]
analyzed a plane crack problem of nonhomogeneous materi-
als with interfaces subjected to static thermal loading. They
developed a modified interaction energy integral method
to obtain the mixed-mode thermal stress intensity factors.
Pathak et al. [14] simulated bi-material interfacial cracks
using EFGM and XFEM under mode-I and mixed-mode
loading conditions. From the literature, it can be inferred
that the fatigue behaviour of such problems has not been
investigated to date. Moreover, the thermal and mixed-mode
fatigue problems have not been explored as well. Therefore,
in this work, the fatigue life of bi-material interfacial cracks
is estimated by the XFEM under mode-I, mixed-mode and
thermal fatigue loads. The crack growth is modeled using

level sets. A major crack is incorporated at the edge as well
as at the centre of the domain at the interface of bi-materials.
Cyclic mode-I, mixed-mode and thermal loads are applied
and the number of cycles to failure with crack extension
under each type of loading is estimated using Paris equation.
In addition, crack propagation paths are also presented to
depict the nature of fatigue behaviour under various types of
loading.

XFEM formulation for an interfacial crack is presented in
Sect. 2. Section 3 depicts a detailed methodology of SIF cal-
culation based on interaction integral approach. The fatigue
crack growth phenomenon in the bi-layered plate is explained
in Sect. 4. Section 5 describes the physics of the FGM along
with its relevant properties. Section 6 describes the problem
description, results and discussions whereas Sect. 7 present
the conclusions derived from the present study.

2 XFEM formulation for FGM

XFEM is a partition of unity (PU) enriched finite element
method. PU is quite useful for obtaining the solutions of the
problems with prominent non-smooth characteristics in the
small parts of the computational domain like discontinuities
and singularities. In XFEM, a crack is modeled by enrich-
ment functions so a regular mesh can be used for modeling
the crack and crack growth without altering the initial mesh.
It also eliminates the need of singular or Barsoum elements
for capturing the singularity at the crack tip (as required in
the standard FEM). In XFEM, standard FEM approximation
is enriched by crack tip functions derived from the displace-
ment solution of a linear elastic crack. In this method, the
mesh remains independent of crack location so there is no
issue like tracking the time history of points as required in
standard FEM. Moreover, a higher degree of accuracy can
be achieved with the less number of data points. A detailed
XFEM formulation for the FGM is provided in “Appen-
dix A”.

3 Computation of stress intensity factors for FGM

The domain based interaction integral approach has been
widely used for calculating the stress intensity factors for
homogeneous, bi-material and functionally graded materi-
als under thermal and mechanical loads [1,5,7,16]. In the
present study, an interaction integral approach is extended
to calculate the stress intensity factors for bi-layered FGMs
under thermal and mechanical loads. The interaction integral
M12 can be defined as
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where superscript a represents the auxiliary state, superscript
m denotes the mechanical component, q is a weight function
which is one at the inner path �1, zero at the outer path �2,
and arbitrary elsewhere, and γ is the coefficient of thermal
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In case of aluminum alloy (homogeneous material), Stip
i jkl =

Si jkl(x). Thus, Eq. (2) reduces to
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For bi-material interfacial cracks, the auxiliary fields [24,25]
used in Eq. (1) can be written as
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with i = 1, 2 and m̃ = 1, 2 (4)

where m̃ = 1 indicates material m1 or FGM1, m̃ = 2
indicates material m2 or FGM2 and Roman superscript I
and II on the function f̃ indicate mode-I and mode-II.
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In above equations, φ̃, κ ti p and δ̃ can be obtained as
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The stresses and strains are evaluated as
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Thus, the numerical evaluation of interaction integral enables
us to compute the mixed-mode SIFs. For bi-layered prob-
lems, the SIFs are calculated from the interaction integral as
Yu et al. [24,25]:
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A detailed derivation of the interaction integral M12is
given in “Appendix B”.

4 Fatigue crack growth

In the present work, Paris law is used to find the rate of crack
growth. For an applied thermo-mechanical load, the SIFs
corresponding to the maximum and the minimum load can
be evaluated using the approach outlined in the last section.
At each crack tip, the local direction of crack growth θc is
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determined on the basis of maximum principal stress theory
[21]. The crack is assumed to grow in a direction perpen-
dicular to the maximum principal stress. According to this
criterion, the equivalent mode-I SIF and crack growth direc-
tion are given as
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Equation (9) gives two values of θc. One of these values cor-
responds to maximum and the other corresponds to a mini-
mum. θc corresponding to the maximum equivalent SIF can
be found as
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The values of θc and �K I eq obtained using Eqs. (9) and (10)
will pertain to one of the materials of the bi-layer. For the
other material, the maximum �K I eq will be equal to �K I

only and the corresponding angle will be θ = 0. In this way,
�K I eq and the possible crack propagation direction may be
found for both the materials. In the present work, �K I eq in
both the materials is compared against their respective local
fracture toughness to decide the material in which the crack
growth will take place. Thus, ratios R1 and R2 are defined as
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(
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)
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)
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where m1 and m2 signify material-1 and material-2 of the
bi-layer. If R1 > R2 then the crack propagates in the first
material along θ = θc otherwise it propagates in the other
material along the interface (θ = 0).

For stable crack propagation, the generalized Paris’ law is
given as

da

d N
= C(x)

(
�K I eq

)m(x) (12)

where C(x) and m(x) are the functions of the location.
In the numerical implementation, a value of crack growth

�a is assumed and the corresponding number of cycles �N
is calculated from Eq. (12). When more than one crack tip
is present, �a for the most dominant crack tip is assumed,
corresponding �N is calculated and then the crack growth
at the other crack tips are calculated corresponding to this
known value of �N . Finally, when the maximum value of
K I eq for any crack tip becomes more than the local value of
the fracture toughness K I C then the simulation is stopped.
At this point, the total number of cycles elapsed is the fatigue
life of the FGM.

5 Variation in the properties of FGM

In the present work, the results have been presented for a
bi-layered plate consisting of FGM in the upper half and
aluminium alloy in the lower half as shown in Fig. 1a, b. The
FGM layer is composed of aluminum alloy and alumina.
The volume fraction of alumina is varied in x-direction to
obtain the gradation in material property. It is assumed that
the FGM has the properties of the aluminum alloy at x = 0
and ceramic (alumina) at x = L . The crack is taken along
the interface of bi-layered material. The material properties
of the aluminum alloy and alumina are tabulated in Table 1.
The variation of the elastic modulus for FGM is modeled as

E(x) = Ealloyeαx where α is given as

α = 1

L
ln
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Eceramic
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)
(13)

Further, it is assumed that the local elastic modulus of the
FGM can be obtained by applying the rule of mixture with the
local volume fraction of alumina. Then, the volume fractions
of ceramic and aluminum alloy in the FGM are obtained as
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The Poisson’s ratio [6] and coefficient of thermal expansion
for the FGM may be obtained as
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The fracture toughness of the FGM can be expressed as a func-
tion of the volume fraction of the ceramic [17]
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Paris law parameters are assumed to have exponential varia-
tion as given below

C(x) = Calloyeϑx , where, ϑ = 1

L
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(18a)

m(x) = malloyeςx , where, ς = 1
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(18b)
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Fig. 1 a Left edge crack under mixed mode loading. b Right edge
crack under mixed mode loading. c Edge crack extension with number
of cycles under pure mode-I loading. d Crack path for left edge crack
under pure mode-I loading. e Crack path for right edge crack under
pure mode-I loading. f Edge crack extension with number of cycles
under mixed-mode loading (shear load towards right). g Crack path for
left edge crack under mixed mode loading (shear load towards right).

h Crack path for right edge crack under mixed-mode loading (shear
load towards right). i Edge crack extension with number of cycles under
mixed mode loading (shear load towards left). j Crack path for left edge
crack under mixed model loading (shear load towards left). k Crack
path for right edge crack under mixed loading (shear load towards left).
l SIFs variation under pure mode-I loading for E2/E1 = 2, 10 and 100
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Fig. 1 continued

Table 1 Material properties of aluminum alloy and alumina [3,20]

Material propertiesa,b,c,d Aluminum alloy Alumina

Elastic modulus E (GPa) 70 300

Poisson’s ratio, ν 0.33 0.21

Coefficient of thermal expansion γ (
◦
C) 25 × 10−6 8.2 × 10−6

Fracture toughness K I C (MPa
√

m) 29 3.5

Paris law parameter C in m/cycle(MPa
√

m)−m 10−12 2.8 × 10−10

Paris law parameter, m(x) 3 10

a http://www.efunda.com/materials/alloys/aluminum/properties.cfm. Accessed on 27/08/2011@ 7.06 PM.
b http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6. Accessed on 04/09/2011 @7.00 PM.
c http://accuratus.com/alumox.html. Accessed on 27/08/2011 @ 7.08 PM.
d http://www.coorstek.com/resources/8510-1042_Ceramic_Material_Properties.pdf. Accessed on 27/08/2011@7.15 PM.
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6 Problem description, results and discussions

A bi-layered plate is composed of FGM in the upper por-
tion and aluminum alloy in the lower portion. The FGM
layer consists of aluminum alloy on the left side and ceramic
(alumina) on the right side. Two interface crack problems
are considered i.e., an edge crack and an embedded central
crack. Nine noded quadrilateral elements are used for the
purpose of analysis with a regular mesh size of 107 nodes
in x-direction and 215 nodes in y-direction. A plane strain
condition is assumed in all the simulations. The bi-layered
plate is subjected to mode-I, mixed-mode and thermal loads.
In case of mode-I mechanical load, the applied fatigue load
is equal to �σ = 70 MPa whereas for mixed mode loading,
an additional fatigue shear load of �τ = 10 MPa is applied
at the top edge of the plate. In case of thermal loading, a tem-
perature difference of �T = 23.86 ◦C is applied to generate
an equivalent mechanical load. The dimension of the domain
L = 100 mm and D = 200 mm with an initial crack length
of a = 20 mm is chosen for the simulation.

6.1 Interfacial edge crack in a finite bi-layered plate

Figure 1a, b show an interfacial edge crack in a bi-layered
material on the left and the right edges respectively along with
the boundary conditions. A cyclic mode-I load (�τ = 0) is
applied at the top edge of the plates as shown in Fig. 1a, b.
The plots of the number of cycles with the crack extension
are presented in Fig. 1c. In this case, it is observed that the
number of cycles to failure is found to be 18,742 and 10,855
for the left and right edge cracks respectively. The crack paths
for this case are presented in Fig. 1d, e. From the plots of the
crack paths, it is found that the crack penetrates into the upper
FGM layer, and further propagates into FGM parallel to the
interface for both the left and the right edge cracks.

Similarly, now the plates of bi-layered materials are sub-
jected to mixed-mode loading as shown in Fig. 1a, b. The
plots of the number of cycles with the crack extension are
shown in Fig. 1f. From the results presented in Fig. 1f, it
is observed that the fatigue failure life for the left and right
edge crack problems is found to be 9,852 and 8,799 cycles
respectively. The crack paths for the left and the right edge
cracks are shown in Fig. 1g, h respectively. It is noticed that
the crack propagates in the FGM for both left and right edge
cracks. But the deviation in crack paths is found more as
compared to mode-I loading.

Next, the bi-layered plates, shown in Fig. 1a, b, are further
subjected to the mixed-mode load but the shear load (�τ)

direction is reversed now i.e., it is acting towards left. For
this type of loading, the fatigue failure cycles with crack
extension are presented in Fig. 1i for the left and right edge
cracks. These simulations show that the failure cycles are
found to be 12,054 and 7,254 for the left and right edge

cracks respectively. The crack paths for the left and right
edge cracks are presented in Fig. 1j, k respectively. From
these crack paths, it is found that both cracks enter into the
FGM, and keep propagating into FGM only. Similar to the
previous mixed-mode load, the deviation in crack path is
found more as compared to mode-I load.

To validate the results obtained by XFEM, an edge crack
is taken at the interface of bi-layered plate (both layers
composed of two homogeneous materials) as shown in
Fig. 1a. The bi-layered plate is subjected to mode-I load
of σ = 100 MPa with τ = 0. The value of E1 is taken
as 70 MPa while the values of ν1 and ν2 are kept equal to
0.3. A plane stress condition is assumed for these simula-
tions. Although, these results are obtained using a structured
mesh but these results remain nearly the same for unstruc-
tured mesh also. The normalized values of SIF are obtained
for different values of a/W ratio, and are plotted in Fig. 1l
for E2/E1 = 2, 10 and 100. The results obtained by XFEM
are compared with those available in literature [10]. These
results show that the values of normalized SIF are found quite
close to the reference values. From the results presented in
these figures, it is also observed that with the increase in crack
length, KI increases while KII decreases.

Now consider an edge crack lying on the left and the right
edges of the plate is subjected to thermal load as shown in
Fig. 2a, b. The numbers of fatigue cycles against crack exten-
sion are presented in Fig. 2c. These simulations show that
the fatigue cycles for the left and right edge cracks are found
to be 18,975 and 12,727 respectively. The crack paths for
the left and the right edge cracks are shown in Fig. 2d, e
respectively. From the crack paths, it is noticed that the crack
propagates into FGM along a straight path parallel to the
bi-layered interface. The deviation in crack path is found
even less as compared to mode-I load.

The above simulations illustrate that the life of the inter-
facial edge crack plate is found maximum for thermal load
whereas the life of the bi-layered plate is found minimum
for mixed mode mechanical load. In addition to this, the
crack propagates into FGM parallel to the bi-layered inter-
face under cyclic thermal and mode-I mechanical load. In
case of mixed mode loading, the crack penetrates into the
FGM to a greater extent. This is quite obvious as the FGM
is weak in fracture as compared to the aluminium alloy. Alu-
minium alloy possesses high uniform fracture toughness as
compared to FGM. Also, the life of the FGM depends on the
direction of the shear load in case of mixed-mode loading.

6.2 Interfacial central crack in a finite bi-layered plate

Consider a central crack in a finite bi-layered material plate as
depicted in Fig. 3a. The upper layer consists of an FGM and
the lower one is made of aluminum alloy. A mode-I cyclic
load is applied at the top edge of the plate. The computed
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Fig. 2 a Left edge crack under thermal loading. b Right edge crack under thermal loading. c Edge crack extension with number of cycles under
thermal loading. d Crack path for the left edge crack under thermal loading. e Crack path for right edge crack under thermal loading

results of the number of failure cycles with crack extension
are presented in Fig. 3b. In this case, it is observed that the
number of cycles to failure is found to be 23,115. Figure 3c
shows the crack path under mode-I load. From the crack
path, it is found that both crack tips propagate into FGM,
and follow a straight path with minor deviation.

Next, a cyclic mixed-mode load is applied at the top edge
of the plate as shown in Fig. 3a. In case when the shear
load is acting towards the right, the fatigue cycles with crack
extension are plotted in Fig. 3 whereas when the direction
of shear load is reversed (acting towards left), the fatigue
cycles with crack extension are shown in Fig. 3e. From these
plots, the cycles to failure are found to be 18,992 and 13,052
cycles for the cases when the shear load is acting towards
right and left respectively. The crack tip paths are shown
in Fig. 3f for the case when shear load is acting towards
right whereas the crack tip paths are shown in Fig. 3g for
the case when shear load is acting towards left. From the
plots of the crack tip paths, it is found that the both crack
tips enter into upper FGM layer and keep on propagating
into the FGM layer only. Moreover, it is observed that the

crack deviates to a significant extent under mixed mode
loading.

Similarly, the plate with central crack is analysed under
the cyclic thermal load as shown in Fig. 4a. In this case, the
fatigue cycles with crack extension are presented in Fig. 4b.
This figure shows that the fatigue failure life of the plate
is found to be 30,172. The crack tip paths for this case are
shown in Fig. 4c. From the crack tip paths, it is found that
the central crack propagates into FGM, and follows nearly a
straight path parallel to the interface. The deviation in crack
tip path for this case is found even small as compared to
equivalent mode-I load.

From the central interfacial crack simulations, the fatigue
life of plate is found minimum under mixed-mode loading,
moderate under mode-I loading, and maximum under ther-
mal loading. Moreover, the crack propagates in FGM parallel
to the interface under mode-I mechanical and thermal loads
but it penetrates into FGM to greater extent under mixed-
mode loading. Moreover, the life of the bi-layered plate also
depends on the direction of the shear load under mixed-mode
loading.
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Fig. 3 a Central crack under
mixed mode loading. b Central
crack extension with number of
cycles under pure mode-I
loading. c Crack path for central
crack under pure mode-I
loading. d Crack extension with
number of cycles when the shear
load is acting towards right.
e Crack extension with number
of cycles when the shear load is
acting towards left. f Central
crack path when the shear load
is acting towards right. g Central
crack path when the shear load
is acting towards left
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Fig. 4 a Central crack under thermal loading. b Central crack extension with number of cycles under thermal loading. c Crack path for central
crack under thermal loading

7 Conclusions

An XFEM approach is developed to simulate the interfa-
cial cracks in bi-layered materials under thermo-mechanical
loads. The bi-layered plate either having an edge or a cen-
tral crack at the interface is taken for the simulation. The
upper part of the plate is made of FGM whereas the lower
part is composed of a homogeneous material i.e., aluminum
alloy. The fatigue life of the bi-layered interfacial crack is
obtained for different load cases. The domain based inter-
action integral approach is extended to accurately evaluate
the SIFs. On the basis of these simulations, it is observed
that the fatigue crack propagates into the FGM for all load
cases under consideration. The fatigue life of the interfacial
central crack plate is found more as compared to the inter-
facial edge crack plate. Also, the fatigue life of the plate
under mixed-mode fatigue load is found less as compared to
mode-I fatigue load. It is also noticed that the fatigue life in
case of equivalent thermal load is found more as compared to
mode-I mechanical load. This work can be further extended
to evaluate the fatigue life of the bi-layered crack plate in the
presence of multiple discontinuities.

Appendix A: XFEM formulation

Governing equations

A planar domain (�) bounded by contour � divided into
three parts i.e., �u, �t and �c with internal flaws is shown in
Fig. 5. The displacement boundary conditions are imposed on
�u , while tractions are applied on �t and traction free condi-
tion are imposed on crack surfaces �c. The equilibrium and
boundary conditions for this problem may be described as

ΩcΓ

uΓ

tΓ

x

y

uu =

tt =

Fig. 5 Domain with discontinuities

∇.σ + b = 0 in � (19a)

σ .n̂ = t̄ on �t (19b)

σ .n̂ = 0 on �c (19c)

u = û on �u (19d)

where σ is the Cauchy stress tensor, u is the displacement
field vector, b is the body force vector per unit volume, t̄ is
the external traction vector and n̂ is the unit outward normal
vector. For small displacements, strain-displacement relation
can be described as

ε = ε(u) = ∇su (20)

where ∇s is the symmetric part of the gradient operator.
The constitutive relations for the linear elastic FGM under

consideration is given by Hook’s law

σ (u) = D(x) : ε(u) (21a)
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where x is the vector of x and y-coordinates, D(x) is the
constitutive matrix, which can be written for plane strain
condition as

D(x) = E(x)

{1 − 2ν(x)} {1 + ν(x)}

×
⎡
⎣1 − ν(x) ν(x) 0

ν(x) 1 − ν(x) 0
0 0 1−2ν(x)

2

⎤
⎦ (21b)

Variational formulation

Let the space for admissible displacement fields λ be defined
by Moes et al. [11]

λ = (v ∈ δ|v = ū on �u) and v discontinuous on �c (22a)

where the space δ is related to the regularity of the solution.
In the same way, the test function space λ0 may be defined as

λ0 = (v ∈ δ|v = 0 on �u) and v discontinuous on �c

(22b)

A weak form of the equilibrium equation can be written
as

∫

�

σ (u) : ε (v)dΩ =
∫

�

b · vdΩ +
∫

Γt

t̄ · vdΓ (23)

Substituting the constitutive relation σ (u) = D(x) : ε(u)

in the above equation, we obtain

∫

�

ε(u) : D(x) : ε(v)dΩ =
∫

�

b · vd� +
∫

Γt

t̄ · vdΓ (24)

The linear form,
�

T and the bilinear form,
�

S of the above
equation are obtained as

�

T (v) =
∫

Γ

b · vdΩ +
∫

Γt

t̄ · vd� (25)

�

S (u, v) =
∫

Ω

ε(u) : D(x) : ε(v)d� (26)

The quadratic energy functional can be written as

�(u) = 1

2

�

S (u, u)− �

T (u) (27)

On substitution of the relevant quantities, the expression
for the same is obtained as

�(u)= 1

2

∫

�

ε(u) : D(x) : ε(u)d�−
∫

Γ

b · udλ−
∫

Γt

t̄ · udλ

(28)

By substituting the trial and test functions and taking vari-
ation of the above equation, the following set of discrete equa-
tions is obtained using the arbitrariness of nodal variations

[K] {d} = {f} (29)

where d is the vector of nodal unknowns, K and f are the
global stiffness matrix and the external force vector respec-
tively. The stiffness matrix and force vector are computed on
element level, and are assembled into their global counter-
parts through usual finite element assembly procedure.

Displacement approximation

For modeling cracks in XFEM [4,11], the approximation
function takes the following form

uh(x) =
n∑

i=1

Ni (x)

⎡
⎢⎢⎢⎢⎢⎣

ūi + H(x)ai︸ ︷︷ ︸
i∈nr

+
4∑

j=1

β j (x)b j
i

︸ ︷︷ ︸
i∈n A

⎤
⎥⎥⎥⎥⎥⎦

(30a)

where i is the set of all nodes in the domain, Ni (x) is the ele-
ment shape function associated with node i satisfying the par-
tition of unity criterion, ūi is the nodal displacement vector
associated with the continuous part of the finite element solu-
tion, ai denotes the additional unknown degrees of freedom
associated with the discontinuous Heaviside function H(x),
and is defined for those elements, which are completely cut
by the crack to account for the jump in the displacement field,
b j

i is the additional degrees of freedom associated with those
elements, which are partially cut by the crack, and accounts
for stress singularity at the crack tip, n is the set of all nodes in
the mesh, nr is the set of nodes belonging to those elements
which are completely cut by the crack, and n A is the set of
nodes belonging to those elements which are partially cut by
the crack. In Eq. (30a), the first term represents the standard
finite element approximation, the second term represents the
enrichment for those elements which are completely cut by
the crack, and the third term represents the enrichment for
those elements which contain the crack tip. For any node nr ,
Heaviside jump function, H(x) takes a constant value, and
is equal to +1 on one side and -1 on other side of the crack.
Also, the standard displacements do not correspond to the
displacements computed by XFEM. Thus, a shifted enrich-
ment is used. If xi is the node of interest then Eq. (30a) can
be written as
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uh(x) =
n∑

i=1

Ni (x)

⎡
⎢⎣ūi + [H(x) − H(xi )]ai︸ ︷︷ ︸

i∈nr

+
4∑

j=1

[β j (x) − β j (xi )]b j
i

︸ ︷︷ ︸
i∈n A

⎤
⎥⎥⎥⎥⎥⎦

(30b)

In Eq. (30b), the difference between the values of the
Heaviside function at the evaluation (Gauss) point and nodal
point is taken to maintain the partition of unity. The tip enrich-
ment is performed for those elements which contain the crack
tip, and is achieved by adding additional function derived
from the theory of linear elastic fracture mechanics available
in the literature [2].

For isotropic and bi-layered FGM, the crack tip enrich-
ment functions are same as that of the homogenous materials
[14], and are obtained from the displacement solution of a
linear elastic crack in the infinite plate [2].

β j (x)

=
[√

r sin
θ

2
,
√

r cos
θ

2
,
√

r cos
θ

2
sin θ,

√
r sin

θ

2
sin θ

]

(30c)

XFEM formulation for cracks in FGM

Using the approximation function defined in Eq. (30b) for a
crack, the elemental matrices, Ke and fe are obtained as

fe =
{

fu
i fa

i fb1
i fb2

i fb3
i fb4

i

}T
and

Ke
i j =

⎡
⎢⎣

K uu
i j K ua

i j K ub
i j

K au
i j K aa

i j K ab
i j

K bu
i j K ba

i j K bb
i j

⎤
⎥⎦ (31a)

The sub-matrices and vectors that appear in the foregoing
equations are given by

Krs
i j =

∫

�e

(Br
i )

T D Bs
j d� where, r, s = u, a, b (31b)

fu
i =

∫

�e

Ni b d� +
∫

�t

Ni t̄ d� (31c)

fa
i =

∫

�e

Ni (H(x) − H(xi ))b d�

+
∫

�t

Ni (H(x) − H(xi ))t̄d� (31d)

fb
�
α

i =
∫

�e

Niβ�
α
((x) − (xi ))b d�

+
∫

�t

Ni (β�
α
(x) − (xi ))t̄ d� where,

�
α= 1, 2, 3, 4

(31e)

where Ni are finite element shape function, Bu
i , Ba

i , Bb
i and

Bb
�
α

i are the matrices of shape function derivatives given by

Bu
i =

⎡
⎣ Ni,x

0
Ni,y

0
Ni,y

Ni,x

⎤
⎦ (31f)

Ba
i =

⎡
⎣ (Ni (H(x) − H(xi ))),x

0
(Ni (H(x) − H(xi ))),y

0
(Ni (H(x) − H(xi ))),y
(Ni (H(x) − H(xi ))),x

⎤
⎦

(31g)

Bb
�
α

i =

⎡
⎢⎢⎣

(
Ni (β�

α
(x) − β�

α
(xi ))

)
,x

0(
Ni (β�

α
(x) − β�

α
(xi ))

)
,y

0(
Ni (β�

α
(x) − β�

α
(xi ))

)
,y(

Ni (β�
α
(x) − β�

α
(xi ))

)
,x

⎤
⎥⎥⎦ ,

�
α= 1, 2, 3, 4 (31h)

After obtaining the numerical formulations, Eq. (29) is
solved to obtain the nodal displacements, and then strains
and stresses are evaluated through post-processing. The dif-
ference between the solution for a homogenous material and
FGM lies in the fact that the material properties are a function
of the space variable. After obtaining the values of stress and
strain components, the values of stress intensity factor are
evaluated using domain based interaction integral approach.

Appendix B: Computation of stress intensity factors for
FGMS

For an elastic body subjected to thermo-mechanical load
(Fig. 6), a quantity J ′ (equivalent to J -integral) is given by

J ′ =
∮

�o

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d� (32)

where x = [x1 x2]T ≡ [x y]T , W̃ is the strain energy
density function and n j is the j th component of the outward
unit vector normal to an arbitrary closed contour �o enclosing
the area Ao. The J ′ in Eq. (32) can be converted into domain
form using divergence theorem,

J ′ =
∫

Ao

(
∂W̃

∂x1
− ∂σi j

∂x j

∂ui

∂x1
− σi j

∂2ui

∂x1∂x j

)
d A (33)

In Eq. (33),
∂σi j
∂x j

∂ui
∂x1

= 0 from equilibrium equations. For a
linear elastic material subjected to thermo-mechanical load,
W̃ can be written as

W̃ = 1

2
σi j εm

i j = 1

2
Ci jkl εm

kl εm
i j (34a)
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Fig. 6 Path �o surrounding an enclosed area Ao

where, εm
i j = εi j − γ�T δi j (34b)

γ is the coefficient of thermal expansion and �T is the tem-
perature difference. Now from Eq. (34a), we get

∂W̃

∂x1
= 1

2

∂Ci jkl

∂x1
εm

kl εm
i j + σi j

∂εm
i j

∂x1
(34c)

From Eq. (34b), we get
∂εm

i j
∂x1

= ∂εi j
∂x1

− ∂γ
∂x1

�T δi j −γ ∂�T
∂x1

δi j

Now, Eq. (34c) becomes

∂W̃

∂x1
= 1

2

∂Ci jkl

∂x1
εm

kl εm
i j + σi j

∂εi j

∂x1

− σi j

(
γ

∂�T

∂x1
+ ∂γ

∂x1
�T

)
δi j (34d)

Substituting ∂W̃
∂x1

from Eq. (34d) into Eq. (33), we arrive
at,

J ′ =
∫

Ao

(
1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl − σkk

∂(γ�T )

∂x1

)
d A (34e)

Hence,

J ′ =
∮

�o

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

=
∫

Ao

(
1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl − σkk

∂(γ�T )

∂x1

)
d A (35)

Now consider bi-material cracked body consisting of two
functionally graded materials as shown in Fig. 7. The crack
is lying at the interface of two materials along x-axis. For an
enclosed area Am1

o surrounded by a closed path (a → b →
�m1

2 → c → d → �m1
1 ) as shown in Fig. 7, Eq. (35) can be

rewritten as

1
2
m

1
1
m

2m
oA

1
1
mA

2
1
mA

1m
oA

ab
cd

fe

2
2
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Fig. 7 Path independent closed contour around the crack tip

J ′
1 =

∫

ab

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

�m1
2

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

cd

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

�m1
1

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

=
∫

Am1
o

(
1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl − σkk

∂(γ�T )

∂x1

)
d A (36)

Similarly, for an enclosed area Am2
o as shown in Fig. 7

surrounded by a closed path2 (d → c → �m2
2 → e →

f → �m2
1 ), Eq. (36) can be written as

J ′
2 =

∫

dc

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

�m2
2

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

e f

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

�m2
1

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

=
∫

Am2
o

(
1

2

∂Ci jkl

∂x1
εm

i j εm
kl − σkk

∂(γ�T )

∂x1

)
d A (37)
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Let
�

F=
(

W̃δ1 j − σi j
∂ui
∂x1

)
and

�

G=
(

1
2

∂Ci jkl
∂x1

εm
i j εm

kl − σkk
∂(γ�T )

∂x1

)
. Now combining Eqs.

(36) and (37), we get

J ′ =
∫

ab

�

F n j d� +
∫

�m1
2

�

F n j d� +
∫

cd

�

F n j d�

+
∫

�m1
1

�

F n j d� +
∫

dc

�

F n j d�

+
∫

�m2
2

�

F n j d� +
∫

e f

�

F n j d�

+
∫

�m2
1

�

F n j d� =
∫

Am1
o

�

G d A +
∫

Am2
o

�

G d A (38)

where J ′ = J ′
1 + J ′

2. If �1 = �m1
1 + �m2

1 , �2 = �m1
2 +

�m2
2 , A1 = Am1

1 + Am2
1 , A2 = Am1

2 + Am2
2 , Am1

o = Am1
2 −

Am1
1 , Am2

o = Am2
2 − Am2

1 , Ao = A2 − A1 = Am1
o + Am2

o ,
then Eq. (38) reduces to

J ′ =
∫

ab

�

F n j d� +
∫

�2

�

F n j d� +
∫

cd

�

F n j d� +
∫

�1

�

F n j d�

+
∫

dc

�

F n j d� +
∫

e f

�

F n j d� =
∫

Ao

�

G d A (39)

In Eq. (39),
∫

ab

�

F n j d� = 0 and
∫

e f

�

F n j d� = 0 as

σi j n j = 0, and W̃δ1 j n j d� = W̃ dx2 = 0.

Moreover,
∫

cd

�

F n j d�+∫
dc

�

F n j d�=0 as W̃δ1 j n j d�=
0 and σi j n j

∂ui
∂x1

is continuous across the perfect interface
between two functionally graded materials. Finally Eq. (39)
reduces to

J ′ =
∫

�2

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

�1

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

=
∫

Ao

(
1

2

∂Ci jkl

∂x1
εm

i j εm
kl − σkk

∂(γ�T )

∂x1

)
d A (40)

Since, Ao = A2 − A1 and changing the direction of arrow
on �1, above equation reduces to

∫

�2

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

−
∫

�1

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

A2−A1

(
σkk

∂(γ�T )

∂x1
− 1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl

)
d A = 0 (41)

Equation (41) can be further simplified as
∫

�2

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

A2

(
σkk

∂(γ�T )

∂x1
− 1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl

)
d A

=
∫

�1

(
W̃δ1 j − σi j

∂ui

∂x1

)
n j d�

+
∫

A1

(
σkk

∂(γ�T )

∂x1
− 1

2

∂Ci jkl

∂x1
εm

i j ε
m
kl

)
d A (42)

Hence, for a bi-layered material of two FGMs having
a crack and an interface both along x1-direction, the inte-

gral J = ∫
�

(
W̃δ1 j − σi j

∂ui
∂x1

)
n j d� − ∫

A

(
1
2

∂Ci jkl
∂x1

εm
i j ε

m
kl

−σkk
∂(γ�T )

∂x1

)
d A is path independent, where � is a path

starting from the lower crack face and terminating on the
upper crack face and A is the enclosed area within �.

Further, let q be a weight function such that its value is one
at the inner path �1, zero at the outer path �2, and arbitrary
elsewhere. Now J can be written as

J =
∫

�1

�

F n j d� −
∫

A1

�

G d A

= −
∫

�2

�

F n j qd� −
∫

e f

�

F n j qd� +
∫

�1

�

F n j qd�

−
∫

ab

�

F n j qd� −
∫

A1

�

G d A (43)

where first integral is zero because q = 0 on �2, and second
and fourth integrals are also zero because the integrands are
zero on the crack faces. Eq. (43) can be written as

J = −
∮

�

F qn j d� −
∫

A1

�

G d A (44)

where first term in Eq. (44) represents a closed contour
enclosing the area Ao, and A1 represents the enclosed area
inside the contour �1. In order to enhance the usefulness of
J , the form of contour integral is converted to equivalent
domain form as
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J = −
∫

Ao

∂

∂x j

{�

F q
}

d A −
∫

A1

�

G d A (45a)

where Ao is an enclosed area inside the closed contour in Eq.
(45a). Let the weight function q takes a value one at the crack
tip and zero at the contour �2. If inner contour �1 shrink to
the crack tip then A1 = 0, Ao = A2, and Eq. (45a) may be
simplified to

J = −
∫

A0

∂

∂x j

{�

F q
}

d A (45b)

After substituting the value of
�

F , Eq. (45b) can be written
as

J =
∫

A0

∂

∂x j

{(
σi j

∂ui

∂x1
− W̃δ1 j

)
q

}
d A (46)

For calculating the interaction integral for an elastic body,
we consider two equilibrium states of the cracked body. State
1 is the actual state with given boundary conditions while
state 2 is an auxiliary state. Superscript a represents the para-
meters for auxiliary state.

Actual state (State 1): σi j εi j ui �T J̃
Auxiliary state (State 2): σ a

i j εa
i j ua

i 0 J a

Defining thermal J - integral for both states

J̃ =
∫

Ao

∂

∂x j

{(
σi j

∂ui

∂x1
− 1

2
σikε

m
ikδ1 j

)
q

}
d A (47a)

J a =
∫

Ao

∂

∂x j

{(
σ a

i j
∂ua

i

∂x1
− 1

2
σ a

ikε
a
ikδ1 j

)
q

}
d A (47b)

The J -integral for the two superimposed state will be
given as

JT =
∫

Ao

∂

∂x j

{((
σi j + σ a

i j

)(
∂ui

∂x1
+ ∂ua

i

∂x1

)

−1

2

(
σik + σ a

ik

) (
εm

ik + εa
ik

)
δ1 j

)
q

}
d A (47c)

JT = J̃ + J a + M12 (48)

where

M12 =
∫

Ao

∂

∂x j

{(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1

−1

2

(
σikε

a
ik + σ a

ikε
m
ik

)
δ1 j

)
q

}
d A (49)

where the auxiliary field for the FGM may be taken from Yu
et al. [24,25] as

σ a
i j = Ctip

i jkl
1

2

(
∂ua

k

∂xl
+ ∂ua

l

∂xk

)
, εa

i j = Si jkl(x)σ a
kl and

εa
i j 
= 1

2

(
∂ua

i

∂x j
+ ∂ua

j

∂xi

)
(50)

Using the following σikε
a
ik =σik Sikpq(x)σ a

pq = εm
pqσ a

pq =
σ a

ikε
m
ik , Eq. (49) can be written as

M12 =
∫

Ao

∂

∂x j

{(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
q

}
d A

(51)

Equation (51) can be modified as

M12 =
∫

Ao

(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
∂q

∂x j
d A

+
∫

Ao

∂

∂x j

(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
q d A

(52)

Equation (52) can be written as

M12 =
∫

Ao

(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
∂q

∂x j
d A

+
∫

Ao

(
∂σi j

∂x j

∂ua
i

∂x1
+ σi j

∂2ua
i

∂x j∂x1
+ ∂σ a

i j

∂x j

∂ui

∂x1

+σ a
i j

∂2ui

∂x j∂x1
− ∂σ a

ik

∂x1
εm

ik − σ a
ik

∂εm
ik

∂x1

)
q d A (53)

Using equilibrium equation,
∂σi j
∂x j

∂ua
i

∂x1
= 0, and

∂σ a
i j

∂x j

∂ui
∂x1

=
0. Due to symmetry of the stress tensor, σi j

∂2ua
i

∂x j ∂x1
=

σi j
1
2

∂
∂x1

(
∂ua

i
∂x j

+ ∂ua
j

∂xi

)
and σ a

i j
∂2ui

∂x j ∂x1
= σ a

i j
∂εi j
∂x1

. Finally Eq.

(52) is simplified as

M12 =
∫

Ao

(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
∂q

∂x j
d A

+
∫

Ao

(
σi j

1

2

∂

∂x1

(
∂ua

i

∂x j
+ ∂ua

j

∂xi

)

+σ a
i j

∂

∂x1

(
εi j − εm

i j

)
− ∂σ a

ik

∂x1
εm

ik

)
q d A (54)
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Using Eq. (50), Eq. (54) can be further simplified as

M12 =
∫

Ao

(
σi j

∂ua
i

∂x1
+ σ a

i j
∂ui

∂x1
− σ a

ikε
m
ikδ1 j

)
∂q

∂x j
d A

+
∫

Ao

(
σi j

(
Stip

i jkl − Si jkl(x)
) ∂σ a

kl

∂x1

+σ a
i j

(
∂γ

∂x1
�T + γ

∂�T

∂x1

)
δi j

)
q d A (55)
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