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Abstract In this paper, we have presented a 2D Lagrangian
two-phase numerical model to study the deformation of
a droplet suspended in a quiescent fluid subjected to the
combined effects of viscous, surface tension and electric
field forces. The electrostatics phenomena are coupled to
hydrodynamics through the solution of a set of Maxwell
equations. The relevant Maxwell equations and associated
interface conditions are simplified relying on the assumptions
of the so-called leaky dielectric model. All governing equa-
tions and the pertinent jump and boundary conditions are dis-
cretized in space using the incompressible Smoothed Particle
Hydrodynamics method with improved interface and bound-
ary treatments. Upon imposing constant electrical potentials
to upper and lower horizontal boundaries, the droplet starts
acquiring either prolate or oblate shape, and shows rather dif-
ferent flow patterns within itself and in its vicinity depending
on the ratios of the electrical permittivities and conductivities
of the constituent phases. The effects of the strength of the
applied electric field, permittivity, surface tension, and the
initial droplet radius on the droplet deformation parameter
have been investigated in detail. Numerical results are vali-
dated by two highly credential analytical results which have
been frequently cited in the literature. The numerically and
analytically calculated droplet deformation parameters show
good agreement for small oblate and prolate deformations.
However, for some higher values of the droplet deformation
parameter, numerical results overestimate the droplet defor-
mation parameter. This situation was also reported in litera-
ture and is due to the assumption made in both theories, which
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is that the droplet deformation is rather small, and hence the
droplet remains almost circular. Moreover, the flow circula-
tions and their corresponding velocities in the inner and outer
fluids are in agreement with theories.
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1 Introduction

The motion of droplet within a bulk fluid medium takes
place in numerous natural and engineering processes such
as blood-flow, air entrainment at ocean surfaces, cloud cavi-
tation, boiling heat transfer, petroleum refining, spraying of
liquid fuel and paint, and bubble reactors in the chemical
industry [1–3]. This motion in a viscous liquid is a dynam-
ically complicated, nonlinear, and non-stationary hydrody-
namical process, and is usually associated with a significant
deformation in the droplet geometry due to the complex inter-
actions among fluid convection, viscosity, gravitational and
interfacial forces. Deforming droplet can acquire complex
shapes, thereby resulting in a large variety of flow patterns
around droplets [1,4–6].

In multiphase systems of different electrical permittivities
and conductivities, the utilization of electric fields pro-
vides a promising way to control the motion and defor-
mation of droplets which can be crucial for a variety
of engineering applications such as electrospray ioniza-
tion, electro-coalescence and mixing, electrostatic print-
ing and electro-spinning [2,3,7]. To state more explicitly,
if a droplet suspended in a quiescent viscous liquid is
exposed to an externally applied electric field, in addition
to the gravitational force induced deformation and motion if
exist, it will also be deformed depending on the strength

123



694 Comput Mech (2013) 52:693–707

of the applied electric field and the fluid properties such
as viscosity, surface tension, electrical conductivity, and
permittivity [7–9].

Although a number of experimental, theoretical, and
numerical studies have addressed the buoyancy-driven motion
of a droplet through a quiescent fluid [6,10–12], there are
only a few works that consider the effect of the applied elec-
tric field on the dynamics of bubble deformation [5,7,8],
and a complete understanding of the underlying mecha-
nisms has not yet been achieved, which necessitates fur-
ther studies in this field. Additionally, not only the problem
in question but also the large majority of other multiphase
flow problems have generally been modeled using mesh
dependent techniques [5,6,8,13] and the validity and accu-
racy of mesh free methods for modeling droplet deforma-
tion under the influence of electric field need to be further
investigated.

In multiphase systems, modeling the evolution of interface
is a crucial part of the flow simulations, and needs to be per-
formed correctly in order to obtain reliable numerical results.
Mesh-dependent methods are generally associated with the
difficulties in handling large topological deformation, and
hence, depending on the problem in hand (i.e., if the topology
of the flows deforms significantly), mesh-refinement might
be required. In literature, within the context of mesh depen-
dent methods, different approaches have been proposed and
studied to simulate the interface evolution on a regular grid.
The majority of these techniques utilizes Eulerian interface-
capturing method wherein the interface is represented as
either by a discontinuity line of some characteristic function
or a zero-level set of some implicit function reconstructed
from the properties of some relevant field variables such as
fluid fractions or density. The former method is referred to as
the “discontinuous approach” (for example, volume of fluid
(VOF) method) while the later one is called as the “con-
tinuous approach” (for instance, Level Set method). In both
approaches, the interface is modeled through a solution of an
additional transport equation and treated as a material line
propagating with the fluid. The term “interface-capturing”
comes from the fact that the interface is recovered using the
current distribution of the relevant field variable. Two main
steps of the interface-capturing algorithm are (i) the propa-
gation and (ii) the reconstruction. Both of these steps should
be implemented with a great care since the propagation step
may introduce some difficulties for the numerical method
while the reconstruction step may significantly affect the vis-
cous stress and surface tension forces’ approximation at the
interface (calculated from the location, orientation and curva-
ture of the interface). The main advantages of the interface-
capturing methods are: (i) easy treatment of reconnection
or merging of interfaces, (ii) mass conservation in a natural
way, and (iii) its extendibility to three-dimensional problems.
The major disadvantages of the method can be named as:

(i) the advection of either discontinuous or continuous inter-
face function, (ii) the complexities in determining the exact
interface location, normal and curvature, (iii) numerical
smearing of the interfacial boundary conditions as well as
the interface details.

An alternative to the above-mentioned interface captur-
ing approaches can be the Lagrangian meshless methods
which are inherently combined with the interface-tracking
approaches and are holding the benefits of: (i) precise track-
ing and the delineation of material interface, (ii) easy imple-
mentation of the interface boundary conditions and (iii) the
absence of nonlinear convective term in the momentum equa-
tion. The main reason for choosing the Smoothed Parti-
cle Hydrodynamics (SPH) technique, as a well-advanced
member of Lagrangian meshless methods, for the problems
considered in the present work is due to the fact that in
comparison to the conventional mesh-dependent computa-
tional fluid dynamics methods, the SPH method possesses
the above mentioned unique features for modeling multi-
phase fluid flows and associated transport phenomena. Being
more specific, in the SPH technique, the complexities in
determining the interface position are easily avoided, and
breaking and reconnection of interface can be treated nat-
urally since phases can be easily distinguished due to the
fact that each individual particle holds material properties,
and the particle positions mark the locations of the inter-
face because of the movable nature of the SPH particles.
Additionally, discontinuities in transport coefficients, and
interfacial forces can be easily included in governing equa-
tions or numerical scheme. The flow modeling with large
topological deformations is possible since the SPH method
does not require connected grid points and spatial partial
derivatives in governing equations are computed directly
from the differentiation of the weighting function analyt-
ically instead of taking the derivatives of the field vari-
ables on grid points. Numerical instabilities which might
be observed in mesh dependent methods due to the dis-
cretization of nonlinear convective terms in the momentum
balance equations is automatically eliminated owing to the
non-existence of convective term in the numerical approx-
imation scheme. The SPH method can be conveniently
extended to three-dimensional problems without facing sig-
nificant challenges in the course of modifying the numer-
ical algorithm. Due to above substantiated attributes, the
SPH method has recently received a great deal of attention
for modeling multiphase flow problems. For more details
about numerical modeling of multiphase flows with the SPH
method, interested readers are referred to [14].

In this study, we numerically investigate the effect of an
electric field on the neutrally buoyant droplet in a quies-
cent Newtonian fluid. The dynamics of the droplet is sim-
ulated computationally by solving conservation of mass and
momentum equations together with associated interface and
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boundary conditions. These governing equations and relevant
interface and boundary conditions are discretized by employ-
ing the SPH method. The leaky dielectric model is used in
order to account for the effects of the electric field, and elec-
trical properties of liquids. In the leaky dielectric model, the
droplet with finite electrical conductivity and with no free
electrical charge is considered. Under these model assump-
tions, electric stresses are supported only at the droplet inter-
face, and are absent in the bulk. The interface of the droplet
is modeled as a transition zone with a finite-thickness across
which the material properties vary smoothly. The surface ten-
sion and electric field effects are integrated into momentum
balance equations as volumetric forces by using the contin-
uum surface force (CSF) and the divergence of the Maxwell
stress tensor, respectively. The extensive amount of computa-
tions performed have enabled us to study the complex nature
of droplet dynamics under the combined effect of Maxwell
stresses, surface tension, and viscous forces.

2 Mathematical formulation

2.1 Mechanical balance laws of continua

All constituents of the multiphase system are considered to
be viscous, Newtonian and incompressible liquids with con-
stant material properties DΓ/Dt = 0 where D/Dt is the
material time derivative operator, and the arbitrary field Γ
may represent the density, and viscosity, among others. The
set of equations governing the electrohydrodynamics (EHD)
of viscous fluids is composed of Maxwell’s equations, and
the conservation of mass and linear momentum which are
written in their local form for the volume and the disconti-
nuity surface, respectively as

Dρ

Dt
= −ρ∇ · v, (1)

ρ
Dv
Dt

= ∇ · T + ρfb + f E , (2)

‖ρ (v − u)‖ · n = 0, (3)

‖ρ v (v − u)− T − T E‖ · n = fs, (4)

where Eq. (1) and (2) are valid in V − ξ which denotes the
volume excluding points lying on the discontinuity surface
ξ while Eqs. (3) and (4) are valid only on the discontinuity
surface and represent the jump condition across ξ . Here, ρ
is the density, v is the divergence-free velocity vector, T is
the symmetric total stress tensor, fb is the body force, and
f E is the Lorentz force per unit volume, which can be shown
to be equal to the divergence of the so-called Maxwell stress
tensor T E as f E = ∇ · T E [15]. As can be noted, the electro-
statics and hydrodynamics are coupled together through the
Maxwell stress tensor. Furthermore, the symbol ‖ ‖ indicates

the jump of the enclosed quantities across the discontinuity
surface ξ ; for instance, ‖Γ ‖ = Γ + − Γ − where Γ + and
Γ − are the values of Γ on the positive and negative sides
of the discontinuity surface, u is the velocity of the discon-
tinuity surface, and n is the unit normal to the discontinuity
surface, and finally, fs is the surface force per unit area on
the interface due to the surface tension. For a Newtonian
fluid, the total stress tensor can be defined as T = −pI + τ

where p is the absolute pressure, I is the identity tensor, and
τ = μ(∇v + (∇v)+) is the viscous part of the total stress
tensor, where μ is the dynamic viscosity, and the sign +
denotes transpose operation.

The surface tension force acting on the interface ξ in the
unit normal direction can be formulated as

fs = ∇sγ + γ κ n, (5)

where ∇s is the surface gradient operator, and defined as
∇s = P · ∇ = ∇ − n(n · ∇) where P = I − n ⊗ n is the
projection tensor which extracts the tangential component of
a vector field, ⊗ is a dyadic product, γ is the surface tension
coefficient, and κ = −P : ∇n = −∇ · n is the curvature
where the notation : indicates the inner product. Here, one
can note that the surface gradient of surface tension gives
rise to a tangential force while surface tension on a curved
surface leads to a normal force.

Assuming that the discontinuity surface is a material inter-
face (which requires that v = u), the momentum fluxes are
continuous across the fluid-fluid interface, namely, ‖τ‖ ·n =
0, and ‖T E‖·n = 0, and the surface tension is independent of
position, i.e., P ·∇γ = 0, the interface mass balance is satis-
fied identically, and the momentum balance on the interface
reduces to

fs = ‖p‖ · n = γ κ n. (6)

It should be noted that the surface tension force fs is a local
surface force and the calculation of which requires the solu-
tion of the jump condition for the momentum balance. For
the sake of computational convenience and efficiency, it is a
common practice to express the local surface force fs as an
equivalent volumetric force fv(the force per unit volume)
as is done in the CSF method originally proposed by
Brackbill et al. in [16]. The basic concept behind this
approach is to replace the sharp interface between two flu-
ids with a transition region of a finite thickness. This can be
fulfilled through multiplying the local surface tension force
with a dirac delta function δ, and the effect of surface ten-
sion can be consequently included in the momentum balance
equation in the form of an external force term as [17,18]

fv = γ κ n δ. (7)
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2.2 Electrohydrodynamics balance Laws

Electrohydrodynamics is a science concerned with the inter-
actions of electric fields and electric charges in fluids. The
electrical conductivity of fluids may range from exceedingly
low value to high value hence allowing for a fluid to be clas-
sified as extremely good insulator (dielectrics) or highly con-
ducting. In EHD transport phenomena, due to the transient
nature of the problems, the electric current distribution is not
steady. Therefore, in accordance with the Ampere-Maxwell’s
law,

∇ × B = μM J + μMε
∂E
∂t
, (8)

dynamic currents in the system give rise to a time-varying
induced magnetic field. Here, B and E respectively are mag-
netic and electric field vectors, μM is the magnetic perme-
ability, and J is total volume current. In EHD, the dynamic
currents are so small that the influence of magnetic induction
is negligible whereby the electromagnetic part of the sys-
tem can be described by a quasi-static electric field model.
Additionally, in the system considered, there is no externally
applied time-varying magnetic field. In light of these assump-
tions, the coupling between the electric and magnetic field
quantities in the Faraday’s law ∇ × E = −∂B/∂t disappears
which requires that the electric field vector be irrotational as
[19]

∇ × E = 0, (9)

which necessitates that the gradient of the electric field vector
be a symmetric tensor, namely, ∇E = (∇E)+. The total
volume current is defined as

J = qvv + j, (10)

where the first term on the right hand side is the convection
current due to the free charges, qv is the volume-charge den-
sity of free charges, and j is the volume conduction current
density, ohmic current, which is related to electric field vector
through

j = σE, (11)

where σ is the electrical conductivity.
The Gauss’ law for electricity in a dielectric material with

the absolute permitivity (hereafter referred to as the permi-
tivity) ε can be written in terms of the electric displacement
vector, D = εE as

∇·D = qv. (12)

On taking the divergence of the differential form of
Ampere’s law, and using the entity ∇ ·∇ × B = 0 (the diver-
gence of the curl is equal to zero) together with the Gauss’

law (Eq. (12)) for electricity, one can write the charge con-
servation as

Dqv

Dt
+ ∇ · j = 0. (13)

Considering a homogeneous fluid with the constant per-
mittivity and the electrical conductivity, and then substitut-
ing the Gauss’ law for electricity in a dielectric material
(Eq. (12)) together with the volume conduction current den-
sity (Eq. (11)) into the charge conservation equation (Eq.
(13)), one can write

q̇v = −qv
σ

ε
. (14)

The integration of this differential equation produces

qv = qvo exp

(−t

t E

)
, (15)

which describes the time relaxation of the net free charges
along fluid particles line. Hence, homogeneous fluids support
no net free charges. However, in inhomogeneous materials,
free charges can be generated by an electric field compo-
nent along the gradients of conductivity and/or permittiv-
ity. Here, t E = ε/σ is referred to as the bulk relaxation
time. For EHD problems, the time t can be considered as
the viscous time scale of the fluid motion, which is defined
as tμ = ρL2/μ, where L is the characteristic length scale.
A two-fluid system can be classified as dielectric-dielectric,
dielectric-conducting, or conducting-conducting by compar-
ing the magnitude of t E with tμ where the last case is the
focus of this work.

As in the case of mechanical balance laws, in the surface-
coupled model for a sharp interface, the electrical mater-
ial properties are also piecewise constant on either side of
the interface. However, jump conditions are also needed for
Maxwell’s equations to relate interfacial and bulk properties.
The jump conditions corresponding to Eqs. (9), (12) and (13)
are written respectively as [15,19]

n × ‖E‖ = 0, (16)

n · ‖D‖ = qs, (17)

δqs

δt
+ n · ‖J − qvv‖ + ∇s · K = 0, (18)

where qs is a surface density of free charge (charge per unit
surface area), δ/δt is the total time derivative in following
the motion of the discontinuity surface ξ along its normal,
and defined as δ/δt = ∂/∂t + (v · n)(n · ∇) wherein the
velocity of the discontinuity surface u is replaced by v based
on the assumption that the discontinuity surface is a mater-
ial interface. Here, K is the total surface current defined as
K = k+qsu where k and qsu are the surface conduction and
convection currents, respectively. Eq. (16) states that the tan-
gential component of the electric field vector is continuous
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across the discontinuity surface while Eq. (17) reveals that
the normal component of the electric displacement vector is
discontinuous at the interface. Equation (18) is the conserva-
tion of charge on the discontinuity surface.

As stated previously, the electrostatics and hydrodynamics
of a fluid system can be coupled together in the momentum
balance equation through the Maxwell stress tensor which
accounts for the stress induced in an incompressible liquid
medium due to the presence of an electric field. The Maxwell
stress tensor can be written as [20,19]

T E = DE − 0.5(D·E)I, (19)

where in Eq. (19), the contribution from the induced mag-
netic field was neglected. Upon taking the divergence of the
Maxwell stress tensor and then using Eq. (12) and the sym-
metry of the gradient of the electric field vector as well as
the product rule of differentiation, one can obtain the electric
force f E per unit volume as [20,19]

f E = qvE − 0.5E·E∇ε, (20)

Here, the first term on the right hand side of Eq. (20) is the
electric force acting along the direction of the electric field
due to the interaction of the free charges with the electric field
while the second term accounts for the polarization force due
to the pairs of charges, which acts along the normal direction
to the interface as a result of term ∇ε.

2.3 Leaky dielectric model

For a two-fluid system with finite electrical conductivities in
a quasistatic electric field and tμ >> t E and in the absence
of buoyancy forces, both volume and surface charge conser-
vation equations in Eqs. (13) and (18) can attain steady state
condition (i.e., Dqv/Dt = 0 and δqs/δt=0) in a time scale
much smaller than the viscous time scale of the fluid motion.
Such a system can be referred to as conducting-conducting.
Therefore, relying on the quasistatic assumption, the conser-
vation of charge in Eq. (13) can be simplified to

∇ · (σE) = 0. (21)

Additionally, since the electric field is irrotatioal (∇×E =
0), due to the mathematical entity of ∇ × ∇φ = 0 (the curl
of the gradient of a scalar function is equal to zero), which
holds for any arbitrary scalar field, the electric field vector
can be expressed in terms of electric potential as

E = −∇φ, (22)

where φ is the electric potential. This would mean that the
charge conservation equation (Eq. (21)) in the domain can
be re-written as

∇ · (σ∇φ) = 0. (23)

Following the work of Saville [19], if the conservation of
charge equation for the interface given in Eq. (18) is written
in dimensionless form, one can show that the effect of sur-
face current to the physics of problems with tμ >> t E is
negligible. The interface condition for Eq. (23) can then be
written as

‖σE‖ · n = 0, (24)

by justifiably ignoring the surface current. This interface
condition is referred to as the continuity of the current across
the interface. Further interface condition can be written as
the continuity of the electric potential across the interface
as ‖φ‖ = 0. For a two-fluid system, having a constant
electrical conductivity in each fluid, Eq. (23) for electrical
potential reduces to Laplace equation (∇2φ = 0) in each
medium.

With the solution of Eq. (23), the electric potential can be
obtained, and then the electric field strength is calculated by
E = −∇φ. Based on Eq. (12), we can obtain the distribution
of volume charge density as qv = ∇ · (εE). Having calcu-
lated the distributions of electric charge density and electric
field strength, the electric force within the liquid bulk in the
vicinity of interface can then be determined through Eq. (20)
for incompressible fluid.

Upon combining Eq. (2) with Eqs. (7) and (20), one can
obtain the equation of motion including volumetric surface
tension and electric field forces as

ρ
Dv
Dt

= −∇ p + μ∇2v + γ κnδ

+qvE − 0.5E·E∇ε + ρfb. (25)

3 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics method is a meshless par-
ticle based approach which was originally introduced sep-
arately by Monaghan and Gingold [21], and Lucy [22] to
simulate astrophysical problems. Later on, it was adapted to
be able to carry out simulations in other fields of engineer-
ing and natural sciences, especially fluid dynamics and solid
mechanics. Recent developments empowered this method to
model more complicated physical phenomena such as multi-
phase flows, and fluid-solid interactions. Benefiting from its
particle based nature, distributed particles in the continuum
are influenced by their neighboring particles by means of a
weighting or kernel function W (rij, h), or in a concise nota-
tion, Wij. Any arbitrary kernel function Wij, which satisfies
certain conditions, can relate the particle of interest i to its
neighboring particles j through the magnitude of the distance
vectors for pairs of particles rij = |rij| and the smoothing
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length h, where rij = ri − rj. A particle j is called a neigh-
bor particle to i as long as rij < κh where κ is a constant
associated with the particular weighting function and κh is
referred to as a smoothing radius (cut-off distance, support
or localized domain) beyond which the weighting function
goes to zero. For the clarity of the presentation, it is worthy
of introducing notational conventions to be used in the rest of
this article. Latin italic indices (i; j) are used only as particle
identifers to denote particles and will always be placed as
subscripts that are not summed unless used under the sum-
mation symbol. When a vector is written in a componet form,
suffix notation is employed with Latin italic indices placed
as superscripts. As well, throughout this article the Einstein
summation convention is employed whereby any repeated
component index is summed over the range of the index.

The integral approximation of any arbitrary function for
particle i, fi, can be written as

fi ∼= 〈 fi〉 ≡
∫
Ω

fjWijdrj, (26)

where drj is a differential volume element andΩ represents
the total bounded volume of the domain. Upon replacing the
integral operation over the volume of the bounded domain by
the mathematical summation operation over all neighboring
particles j of the particle of interest i, and the differential
volume element by the inverse of the number density ψj for
a particle j, one thus obtains the discrete representation of
Eq. (26) as

fi =
∑

j

1

ψj
fjWij. (27)

The number density for the particle i can be calculated as

ψi =
∑

j

Wij. (28)

It may also be expressed in terms of the particle density ρ
and the mass m by

ψi = ρi/mi. (29)

Upon substituting fj by ∂ fj/∂xk
j in Eq. (26) and then

performing the integration by parts, then converting the fol-
lowing volume integral

∫
Ω
∂( fjWij)/∂xk

j drj to the surface
integral through using the divergence theorem and noting
that this surface integral should be zero due to the fact that
the kernel function goes to zero beyond its support domain,
and finally knowing that ∂Wij/∂xk

j = −∂Wij/∂xk
i , one may

obtain the simplest form of the SPH discretization for the
gradient of the arbitrary function fi as

∂ fi

∂xk
i

=
∑

j

1

ψj
fj
∂Wij

∂xk
i

. (30)

The above SPH approximation for the spatial discretiza-
tion of a gradient operation has been known to be incapable

of providing sufficient accuracy, wherefore more accurate
discretization schemes have been proposed in literature. One
of them is known as a corrective SPH gradient discretization
[17] which can be obtained upon using a Taylor series expan-
sion and the properties of a second-rank isotropic tensor, and
written for an arbitrary vector valued function as

∂ f p
i

∂xk
i

aks
i =

∑
j

1

ψj

(
f p
j − f p

i

)∂Wij

∂xs
i
, (31)

where aks
i = ∑

j
1
ψj

r k
ji
∂Wij
∂xs

i
is a second rank tensor. The SPH

Laplacian formulation can be written in two different ways
as,

∂

∂xk
i

(
ζi
∂ f p

i

∂xk
i

)
= 8(a pm

i )−1
∑

j

2

ψj

ζiζj

ζi + ζj
f p
ij

r p
ij

r2
ij

∂Wij

∂xm
i
, (32)

∂

∂xk
i

(
ζi
∂ f p

i

∂xk
i

)
= 8

(2 + all
i )

∑
j

2

ψj

ζiζj

ζi + ζj
f p
ij

r s
ij

r2
ij

∂Wij

∂xs
i
. (33)

In above equations, ζ might denote μ, ρ−1, and σ and
f p
ij = f p

i − f p
j . In this work, Eq. (32) is used for the Lapla-

cian of velocity while Eq. (33) is used for the Laplacian of
pressure in the Poisson pressure equation. In a multiphase
system, the accurate treatment of the jump in transport para-
meters across the interface is important for the accuracy and
robustness of the SPH scheme wherefore a weighted har-
monic mean interpolation is applied in above equations as

ζi = 2ζiζj/(ζi + ζj). (34)

It has been previously noted that the smoothing kernel has
to satisfy several conditions. The first one is the normaliza-
tion condition that requires∫
Ω

W (rij, h)drj = 1. (35)

The second one is the Dirac-delta function property.
That is, as the smoothing length approaches to zero, the
Dirac-delta function is recovered. Hence,

lim
h→0

W (rij, h) = δ(rij). (36)

The third one is the compactness or compact support
property, which necessitates that the kernel function be zero
beyond its compact support domain.

W (rij, h) = 0 when rij > κh, (37)

and be positive within the support domain.
The fourth one is that the kernel function has to be spher-

ically symmetric even function

W (rij, h) = W (−rij, h). (38)

Finally, the value of the smoothing function should decay
with increasing distance away from the center particle.
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In literature, it is possible to find a variety of kernel func-
tion which satisfies above-listed conditions. Most commonly
used ones are spline kernel (for instance, cubic or quintic) and
Gaussian functions. The smoothing kernels might be consid-
ered as discretization schemes in mesh dependent techniques
such as finite difference and volume. The stability, accu-
racy and the speed of the SPH simulation heavily depend
on the choice of the smoothing kernel function as well as the
smoothing length. Considering the stability and the accuracy
of the simulations, throughout the present work, the com-
pactly supported two-dimensional quintic spline kernel is
used at the expense of higher computational cost. For exam-
ple, the utilization of the higher order quintic spline in simu-
lations is at least two times computationally more expensive
than that of the cubic spline. The two-dimensional quintic
spline kernel function has the form of

Wij = χ

⎧⎪⎪⎨
⎪⎪⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5 0 ≤ q ≤ 1
(3 − q)5 − 6(2 − q)5 1 ≤ q ≤ 2
(3 − q)5 2 ≤ q ≤ 3
0 3 ≤ q

, (39)

where q = rij/h and χ is 7
478πh2 for 2-D simulations.

4 Numerical scheme

Here, we briefly introduce the initial and boundary conditions
as well as describe the sequence of the numerical algorithm
implemented in this work. The computational domain is rep-
resented by a set of discrete points (so-called SPH particles)
initially located on a Cartesian grid which have an equidistant
particle spacing. Depending on their initial position, particles
are associated with different integer labels whereby fluid and
boundary particles as well as boundary particles with differ-
ent boundary conditions can be distinguishable from each
other. The constituents of the multiphase system are also dis-
tinguished from each other through integer labels known as
color function

c =
{

0 fluid 1
1 fluid 2

. (40)

The color function value of each phase remains the same
during the entire simulation. Each particle is endowed with
transport variables and initial conditions.

Boundary conditions are applied onto solid boundaries by
means of the multiple boundary tangent (MBT) method [?
]. According to the MBT method, the field variables of each
fluid particle Γ (i.e. velocity or pressure) is extrapolated to
its neighbor ghost particles across the tangent line (or tan-
gent plane in 3-D) of the solid boundary thereby imposing
different boundary conditions, namely, Γg = 2Γs − Γ f and
Γg = Γ f for the Dirichlet and Neumann boundary condi-
tions respectively. Here subscripts g, s, and f indicate that

the field variable Γ is associated with the ghost, boundary,
and fluid particles, respectively. Other properties of a ghost
particle (i.e. mass, density, number density, viscosity, and
electric permittivity and conductivity) is identical to those of
its “mother” fluid particle. Boundary conditions are enforced
upon the inclusion of ghost and solid boundary particles into
the solution of governing equations.

The initial mass of each particle is calculated using the
relation mi = ρi/ψo where ψo = max(ψi) is the initial or
reference particle number density which is retained constant
during the computation. To enhance the robustness of the
model, and circumvent the particle disorderness and fracture
induced numerical problems, an artificial particle displace-
ment (APD) term is added to the advection equation [24].
The APD vector δri = βVmaxr2

i,o

∑
j rij/r3

ij is calculated for
all fluid particles where the β is a problem-dependent para-
meter which is set to be equal to 0.03 for all test cases, and
ri,o = ∑

j rij/N is the average the cut off distance for a given
particle with N being the number of neighbor particles. As
one may note that the APD vector is an odd function and
therefore has a non zero value only for asymmetric particle
distribution.

For all test cases, time step is initially set to Δt =
2 × 10−4s and is updated afterward using the Courant-
Friedrichs-Lewy (CFL) condition wherein the recommended
time-step isΔt = CC F L h/vmax where vmax is the maximum
velocity magnitude of particles and CC F L = 0.125. For the
time marching, we have used a first-order Euler time step
scheme along with a projection method based ISPH approach
[25]. Thus, we first move particles from their current posi-
tions r(n)i with their current divergence free velocities v(n)i at
time t to the temporary or intermediate positions r∗

i using

r∗
i = r(n)i + v(n)i Δt + δri. (41)

Having advected particle positions to their intermediate
positions, their neighbors (both real and ghost particles)
are recalculated. For simulations involving small topologi-
cal changes in flow, which is the case for test problems con-
sidered in this work, fluid particles experience rather small
changes in positions at each time step in comparison to par-
ticle spacing whereby one may assume that the neighbor
of a given particle will not change significantly. To reduce
the computational cost incurred due the neighbor finding
process, the neighbor lists and ghost particles are updated
every tenth time step. However, for numerical modeling that
may have large topological changes in flow, the neighbor list
needs to be updated more frequently or at each time step.

Afterward, in the interface subroutine, the surface tension
force in Eq. (7) is computed as

fv = −γ (∇ · (∇C/|∇C |))∇C, (42)
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where C is a smoothed color function which can be written
for particle i as

Ci =
∑

j Wijcj∑
j Wij

. (43)

In converting Eq. (7) into Eq. (42), the unit normal and
delta dirac function are calculated respectively as n =
∇C/|∇C |, and δ = |∇C | where |∇C | is the magnitude of
the gradient of the smoothed color function.

It is noted that unlike the initial color function c, the
smoothed color function C is updated for all particles at each
time step and its value differs from unsmoothed color func-
tion only for particles at the vicinity of interface.

Since each fluid particle has constant ρ, μ, ε and σ

which are discontinuous across the interface, the numeri-
cal scheme might have instabilities especially in the case of
a large mismatch in the transport parameters of constituents
[17,18]. Thus, these transport parameters are smoothed using
a weighted arithmetic mean interpolation

ρi = (1 − Ci)ρ1 + Ciρ2, (44)

μi = (1 − Ci)μ1 + Ciμ2, (45)

εi = (1 − Ci)ε1 + Ciε2, (46)

and

σi = (1 − Ci)σ1 + Ciσ2, (47)

where
∑
α Cα

i = 1 where Cα
i is the smoothed color function

of α th phase. In essence, the smoothed color function pro-
vides a finite transition region along the interface at which
the field variables can smoothly change from one phase into
another thereby avoiding sharp jump at the interface.

Afterward, the intermediate velocity v∗
i is computed on

temporary particle locations through the solution of the
momentum balance equations with the forward time inte-
gration as

v∗
i = v(n)i + f (n)i Δt. (48)

Here, f (n)i represents the right hand side of the momen-
tum balance equation given in Eq. (25), which embodies
viscous, volumetric surface tension and electric forces
excluding the pressure gradient term, calculated using old
velocities, updated transport properties and intermediate
positions. Given the intermediate particle positions and
velocities, the intermediate number densities

ψ∗
i = ψ

(n)
i −Δtψ(n)i (∇ · v∗

i ), (49)

and mixture densities

ρ∗
i = ψ∗

i

∑
α

mα
i Cα

i , (50)

as well as divergences of intermediate velocities are calcu-
lated, which will be used at the correction step in the pressure
Poisson equation. Then, at the correction step, we add the
effect of pressure gradient term into intermediate velocity v∗

i

to obtain the divergence free velocity vector v(n+1)
i at the new

time

v(n+1)
i = v∗

i − Δt

ρ∗ ∇ p(n+1)
i , (51)

where the pressure p(n+1) has been obtained through the
solution of the pressure–Poisson equation, which can be for-
mulated in general form as

∇ · v∗

Δt
= ∇ ·

(∇ p

ρ∗

)
, (52)

by taking the divergence of Eq. (51) and noting that the
incompressibility condition requires that ∇ · v(n+1)

i = 0.
Eq. (52) is solved using a direct solver based on the Gauss
elimination. The boundary condition for pressure is obtained
by projecting Eq. (52) on the outward unit normal vector n to
the boundary. Thus, one can obtain the Neumann boundary
condition as(
ρ∗

Δt

)
(v∗ − v(n+1)) · n = ∇ p · n. (53)

Upon approximating the boundary condition for v∗ by
v(n+1), namely, (v∗ − v(n+1)) · n = 0, the pressure boundary
condition reduces to ∇ p · n = 0.

Finally, with the correct velocity field for t (n+1), all fluid
particles are advected to their new positions r(n+1)

i using an
average of the previous and current particle velocities as

r(n+1)
i = r(n)i + 0.5(v(n)i + v(n+1)

i )Δt + δri. (54)

Neighbor and ghost particle lists are updated, and then the
initial (reference) number density of the fluid is restored.

5 Results

In this section, we consider two main test cases. The first test
case is the deformation of static circular droplet under the
influence of the surface tension force only, which is mod-
eled to validate the implementation of surface force and the
numerical scheme. The second one is also the deformation
of a droplet which is this time subjected to both surface ten-
sion and a constant externally applied electric field. The sec-
ond test case has been numerically simulated under various
combinations of fluid properties to reveal the capability and
the accuracy of the SPH method in modeling the multiphase
EHD problems.

The deformation of a static circular droplet under the sur-
face tension force is a commonly utilized test case for vali-
dating the accuracy of numerically computed pressure jump
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Fig. 1 The comparison of numerically computed pressure jumps as
a function of surface tension coefficient with that calculated by the
analytical equation, namely, Laplace’s law

across the interface in multiphase systems, which can also be
calculated analytically from the relation, pin − pout = γ /r .
This relation is known as the Laplace’s law that relates pres-
sure difference between inside and outside of the droplet to
the surface tension coefficient and the curvature. For this test
problem, the computations are performed in a square domain
with the edge length of H = 0.04 [m]. The origin of the static
circular droplet with a radius of r = 0.005 [m] is placed at
the center of the square domain, which is represented by an
array of 100 × 100 particles in x− and y− directions, and
the smoothing length for all particles is set equal to 1.6 times
the initial particle spacing. The simulations are performed
for constant density and viscosity values of ρ1 = ρ2 = 1000
[kg/m3], μ1 = μ2 = 1 [Pa.s], respectively, and for several
values of the surface tension coefficient γ [N/m]. Here, sub-
scripts 1, and 2 are used to denote parameters associated with
the inner and outer fluids, respectively. As for the boundary
conditions of the current test case, the pressure on the bound-
aries is set equal to zero, and the no-slip boundary condition
is imposed for velocity on all solid walls. The initial velocity
field is zero. Pressure jumps computed across the interface
for various surface tension coefficients are presented in Fig. 1
together with the results of the analytical solution, where the
linear continuous line represents the results obtained from the
analytical relation while the outcomes of the numerical simu-
lations are shown with filled-in circles. From this figure, one
can notice the good agreement between numerical and analyt-
ical results. Here, we would like to note that the current mul-
tiphase ISPH algorithm has been extensively validated in our
previous works by solving a wide variety of multiphase flow
test cases such as single vortex flow, square bubble deforma-
tion, bubble deformation in a shear flow, Newtonian bubble
rising in viscous and viscoelastic fluids, and Rayleigh-Taylor
instability, which can be found in [17,18,26].

In Fig. 2 is shown the two dimensional problem geometry
for the second test problem which is composed of a square
domain occupied by the immiscible background fluid and
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Fig. 2 The schematic of the problem domain. Upon setting an electric
potential at the upper and lower horizontal boundaries, a constant elec-
tric field in the downward direction is obtained in the model domain

the initially circular droplet having the radius of ro whose
origin is located at the center of the square domain. The size
of the computational domain as well as the boundary condi-
tions of flow equations for this test case are identical to that
for first one unless stated otherwise. Likewise, the modeling
domain is represented by particles generated on a rectangular
grid with identical and equidistant particle spacing. Addi-
tionally, for all simulations, the domain size is eight times
greater than initial droplet radius. The smoothing length for
all particles is set equal to 1.6 times the initial particle spac-
ing as in the case of the first test case. In the present test
case, both the droplet and background fluids have identi-
cal densities and viscosities, which are ρ1 = ρ2 = 1000
[kg/m3] and μ1 = μ2 = 1 [Pa.s], respectively, and a con-
stant surface tension coefficient γ is used. However, the inner
fluid’s electric permittivity ε1 and conductivity σ1 may differ
from that of the background fluid depending on the test case
studied. The boundary conditions for Eq.(23) are Dirichlet
and Neumann boundary (∇φ · n = 0) conditions for hori-
zontal and vertical walls, respectively.

The relative differences in the electric permittivity and
conductivity of both constituent phases are represented by
their ratios as

S = εin

εout
= ε1

ε2
, R = σin

σout
= σ1

σ2
, (55)

which are two significant parameters that play an important
role in simulations which will be discussed later in details.

One of the main features that can be compared in bubble
dynamics research is the droplet deformation parameter D,

123



702 Comput Mech (2013) 52:693–707

Fig. 3 Schematics for two
types of induced flow a R < S
and b R > S

 R<S  R>S(a) (b)

which is defined as

D = A − B

A + B
, (56)

where A and B are the diameters of the elliptic droplet
which are parallel and perpendicular to the direction of the
applied electric, respectively, at the steady state condition.
The droplet deformation parameter quantifies the deviation
in the geometry of a droplet from its original circular shape to
an elliptic one. The higher the value of D, the larger the ellip-
ticity whereas as the D goes to zero, the droplet approaches
to the circular shape. Besides, the positive value of D indi-
cates that the droplet is stretched in the electric field direc-
tion thus acquiring a prolate shape while the negative value
denotes that it is lengthened perpendicularly to the electric
field direction (transverse direction) hence forming an oblate
shape.

The numerical findings of this test case are compared with
two different theories in terms of the droplet deformation
parameter. The first one is the analytical equation developed
by Taylor [27] which formulates the droplet deformation
parameter as

DT = 9 fd,T E2
oε2ro

8(2 + R)2γ
, (57)

where Eo is the magnitude of the electric field vector (set to
be Eo = 1 unless stated otherwise) which is calculated as
(φ+ − φ−)/H with φ− = 0, and fd,T is the discriminating
function, which is evaluated as

fd,T = R2 + 1 − 2S + 3

2
(R − S), (58)

which determines the sign of DT in the above equation so
that according to fd,T , the droplet may oblate or prolate.

Taylor also showed that the fluid rotation in the droplet
and surrounding fluid is only dependent on the ratios between
electric permittivity and conductivities. Figure 3 shows fluid

vorticities inside and outside of a droplet subjected to a con-
stant electric field for the conditions of the R < S (left) and
R > S (right). Taylor’s theory suggests that for the condition
of R < S, there are four vortices inside the droplet which
have identical flow patterns. Namely, the flow direction is
from the center of the drop toward the pole along vertical
axis, from the pole to the equator along the perimeter of the
drop, and from the equator to the center of the drop along
the horizontal axis. However, for the condition of R > S, the
fluid circulates in the opposite direction in comparison to the
first case.

The second theoretical analysis which is used to evaluate
our results is the one introduced by Feng [13] wherein the
droplet deformation parameter D is formulated as

DF = fd,F E2
oε1ro

3(1 + R)2Sγ
. (59)

In the above equation, the sign of DF also depends on the
sign of fd,F because all the other terms have positive sign.
The discriminating function fd,F in Eq. (59) is defined as

fd,F = R2 + R + 1 − 3S. (60)

If fd,F is positive, the droplet deformation parameter DF

will be positive, wherefore the droplet will prolate, while the
negative values of fd,F result in oblate deformation of the
droplet.

In order to compare numerical results with those obtained
by using Taylor and Feng theories quantitatively, Table 1 is
presented. In this table, the droplet deformation parameter D
is presented for six different sets of input parameters. As one
may infer from the sign of evaluated droplet deformation
D in Table 1, the input parameters given in the first three
rows of the table lead to prolate deformation while the input
parameters in the fourth and fifth rows causes the droplet
to deform in the oblate form. However, the simulation with
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Table 1 The comparison of SPH and theoretical results (Eqs. (57) and (59)) in terms of the discriminating function fd and the deformation
parameter D for different combinations of conductivity and permittivities

ε1 S σ1 R γ fd,T DT fd,F DF Dn

0.3 0.5 40 2 0.01 6.25 0.0659 5.5 0.06111 0.0854

0.5 0.5 40 2 0.01 6.25 0.1099 5.5 0.10185 0.1304

0.5 0.5 150 3 0.01 12.75 0.1434 11.5 0.1198 0.1683

0.5 0.5 1 0.05 0.01 −0.6725 −0.0450 −4.25 −0.0630 −0.0612

3 5 10 0.5 0.03 −15.5 −0.1395 −13.25 −0.1963 −0.2293

0.05 0.2 2 0.1 0.03 0.46 0.00248 0.51 0.0058 0.0051

input parameters given in the last row is an exception, which
will be discussed in details later by referring to Fig. 4.

One may notice from Table 1 that for small deforma-
tion parameter values in both oblate and prolate conditions,
the results of numerical simulations agree very well with
those of analytical analysis except that there are rather small
deviations between the analytical and simulation results.
However, for relatively higher values of the droplet deforma-
tion parameter, the results of numerical simulations deviate
observably from those of both theories. It is important to state
that the theoretical analysis of both Taylor and Feng assume
that the droplet remains circular hence being accurate for
small droplet deformations only. Therefore, our findings are
in mesh with what have been reported in literature [4,7,28]
wherein it was shown both experimentally and numerically
that for large droplet deformations, these two analytical
expressions underestimate the droplet deformation parame-
ter. Another important point worthy of mentioning here is that
for the prolate deformation, our results are closer in magni-
tude to those of the Taylor’s theory. On the other hand, when
the droplet oblates, our findings have better agreement with
the results of the Feng’s theory rather than the Taylor’s the-
ory. In other words, in the prolate deformation, the Taylor’s
theory calculates higher values for the droplet deformation
parameter and the relative difference between Taylor data and
ours are less than the Feng’s theory. Yet, in oblate deforma-
tion, the opposite situation is observed. The reason for such
a controversy is hidden in Eqs. (57) and (59) where in Feng’s
theory, the inner fluid permittivity is used while in Taylor’s
theory, the droplet deformation parameter is evaluated using
the outer fluid’s permittivity.

The relation between the permittivity ratio S and the con-
ductivity ratio R is shown in Fig. 4a, which is hereafter
referred to as S − R map. In this figure, the dashed straight
line represents the situation of S = R. For the case of R < S
which is the region above the dashed straight line on the map,
the fluid particles inside and outside of droplet circulate with
the pattern explained earlier and depicted in Fig. 3a. As for the
case of R > S, the opposite flow circulation pattern should
be expected. Moreover, in the same figure, the variation of S

as a function of R is plotted by utilizing the discrimination
functions fd,T and fd,F in Eqs. (58) and (60) for the values of
fd,T = 0 and fd,F = 0, and the curves are denoted by solid
and dash-dot lines, respectively. Since these two curves are
almost equivalent to each other, we have provided our discus-
sion below referring to the Feng’s theory. The regions above
and below this curve represent the conditions of fd,F < 0
and fd,F > 0 in the given order, which correspond to the
oblate and prolate droplet deformations, respectively. Three
different combinations or configurations might be formed out
of the above given situations, which are plotted in Figs.4b, c,
and d, where the right half of each sub-figure shows particle
velocity vectors and the left half represents droplet (dark)
and surrounding (light) particle distribution for correspond-
ing simulations. The first configuration, which is shown in
Fig. 4b, belongs to the situation where R > S and in turn
fd,F > 0, which can be obtained using the input parame-
ters given in the first three rows of Table1. The results in
Fig. 4b are obtained by using the simulation parameters pro-
vided in the second row of the Table1. As a result, the flow
circulation inside the droplet is according to Fig. 3b, and
the droplet prolates. The second combination shown in Fig.
4c represents the R < S and as a result fd,F < 0,which
leads to the formation of the flow pattern as illustrated in
Fig. 3a and oblate droplet deformation. Under this configura-
tion, the droplet deformation is a representative figure for the
fourth and fifth rows of Table1. The input parameters for the
Fig. 4c is given in the forth row of the Table1. The third
configuration (i.e., R < S and fd,F > 0) forms when the
problem conditions belong to the small region flanked by
the straight and curved lines. In this configuration, as can
observed from Fig. 4d for which the input parameters are
given in the last row of the Table1, the droplet tends to pro-
late due to the fact that fd,F > 0 while the flow pattern is
opposite to Fig. 4b. One can note that the droplet does not pro-
late severely, which is a quite expected result since the input
parameters result in S, R, and fd,F values that fall into the
region between the straight and curved lines in the S−R map.

Figure 5 shows the variation of droplet deformation as a
function of different parameters. In subfigures, electric field
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Fig. 4 S–R map, and particle
positions for three different
simulations a The relation
between the permittivity and the
conductivity ratios: b
R > S, fd,F > 0; c
R < S, fd,F < 0; and d
R < S, fd,F > 0. Only a half
of the central regions is
displayed; different particle
shape and size are also shown to
indicate the fluid-fluid interfaces
and drop deformations
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strength, droplet initial radius, inner fluid permittivity, and
surface tension coefficient are separately varied to show the
dependency of droplet deformation to each parameter. In
these figure, the solid lines and unfilled circles represent the
results of Feng and Taylor theories, respectively, while the

numerical values are shown with filled circles. It is observed
that for all cases, our numerical simulations for larger droplet
deformations have overestimated values of D calculated by
both theoretical analyses. However, as discussed before, for
small deformations, the overestimation is relatively small.

Fig. 5 The variation of droplet
deformation parameter D as a
function of a the electric field
strength Eo, b the permittivity
εi , c the initial droplet radius ro,
and d the reciprocal of the
surface tension 1/γ
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Other parameters that can be compared with the the-
ory are the velocity profiles of fluid media inside and out-
side of droplet. Thanks to Feng [13], the fluid velocity
inside and outside the droplet may be evaluated theoretically
as,

vr,in = U∗[(r/ro)
3 − (r/ro)] cos 2θ, (61)

vθ,in = U∗[(r/ro)− 2(r/ro)
3] sin 2θ, (62)

vr,out = U∗[(ro/r)− (ro/r)3] cos 2θ, (63)

vθ,out = −U∗[(ro/r)3] sin 2θ, (64)

where r is the radial position, vr and vθ are the radial and
tangential velocities in the given order. Also, the U∗ is the
characteristic velocity, which corresponds to the maximum
velocity

U∗ = R − S

2S(1 + R)2
ε1 E2

oro

μ1 + μ2
. (65)

These equations carry some valuable conceptual facts
which are perfectly captured by current simulations. First,
for the radial velocity, in both expressions for inner and outer
fluid velocities, the fluid velocity approaches zero near the
droplet boundary. Moreover, the maximum radial velocity
may be observed where the cosine function in Eqs. (61) and
(63) is maximized. This happens at angles like θ = 0, and
π/2. On the other hand, for the angles like π/4 at which the
sinusoidal function has its maximum value, the tangential
velocity is maximized.

Figure 6 shows the profiles of the radial and tangential
velocity components for two different angles at which one of
the velocity components is maximized. In this figure, the the-
oretical velocity profile for radial and tangential components
are shown with solid and dashed lines, respectively. Also, the
numerical data for radial and tangential velocity components
are represented with unfilled and filled circles, respectively.
In accordance with Eqs. (62) and (64), the tangential veloc-
ity component has to be zero at θ = 0, which is observed in
Fig. 6a where the radial velocity may have its maximize val-
ues. Eqs. (61) and (63) require that for the circular droplet, the
radial velocity should be zero at the droplet interface where
r = ro. Nevertheless, after the droplet gets deformed, its
interface is no longer at r = ro. Thus, the numerical results
show a slight deviation in evaluation of zero radial velocity
prediction, which is again due to the assumption made in
theory that the droplet remains circle.

Finally, to show the convergence of our results with
respect to particle resolution, one of the test cases is reex-
amined here. In this case, the numerical parameters are set
to S = 0.5, R = 2.0, σ1 = 40, ε1 = 0.3, and the sur-
face tension coefficient has the value of 0.012. Under this
condition, the droplet prolates as the calculated deformation
parameter is equal to D = 0.077. Fig. 7a represents the fluid
particles’ positions for four different particle resolutions of

60 × 60, 80 × 80, 100 × 100, and 120 × 120 for the quar-
ter of the entire domain. Figure 7b shows the corresponding
velocity vectors inside and outside the droplet.

A close observation on Fig. 7a reveals that for low particle
resolution cases, i.e. 60 × 60 and 80 × 80, the droplet defor-
mation is dependent on the particle resolution. However, as
the particle resolution increases, this dependency vanishes
so that the droplet deformation is identical for 100 × 100,
and 120×120 particle resolutions. Moreover, Fig. 7b clearly
reveals that as the particle resolution increases, the center
of vorticities inside and outside of droplet converges to a
certain location, so that the position of vorticity centers are
independent of particle resolution at high values. This brings
the conclusion that considering the computational costs and
the satisfactory accuracy of 100 × 100 particle resolution, as
well as minor quantitative and qualitative difference between
the results of 100 × 100, and 120 × 120 results, the parti-
cle resolution of 100 × 100 has been employed for all the
simulations for which results are presented.

6 Conclusion

In this work, the SPH method has been used to model EHD
of a droplet suspended inside a neutral viscous fluid with
different electrical and hydrodynamical properties. To be
able to couple electric field forces, surface tension forces,
droplet deformation, and flow fields, momentum balance
equations including electric field and surface tension forces
are solved together with a set of Maxwell equations sim-
plified by the using leaky dielectric model. The electric
field and surface tension forces are included in the momen-
tum balance equations as volumetric forces through taking
the divergence of the Maxwell stress tensor and using the
CSF approach, respectively. The interface between phases is
tracked by means of color functions which are also used for
the calculation of surface normals, curvature and properties
of the mixture across the interface. Quite many simulations
have been performed to investigate the effects of the electric
field strength, permittivity ratios, and electrical conductivity
ratios, surface tension and the initial droplet radius on the
droplet deformation parameter. It is found that in the leaky
dielectric model, droplets deform in either prolate or oblate
manners depending on the ratios of electrical conductivity
and permittivity. The simulation results have been validated
by two theories and shown to agree well with those pre-
dicted by both theories for small droplet deformation para-
meters. However, it is observed that the numerical results
overestimate the analytically calculated droplet deformation
parameters for high deformations, which was also under-
scored in some other relevant works in literature. The reason
behind this discrepancy lies in the assumption made by the-
ories such that the droplet deformation is rather small, and
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Fig. 6 The profiles for the
components of the velocity
profile and their comparison
with analytical results a for the
case of θ = 0, b for the case of
θ = π/4. This figures are
generated from the simulation
with input parameters provided
in the forth row of Table 1 after
the steady state has been
reached

Fig. 7 Numerical convergence
a Particle position distribution,
and b velocity vectors, for
different particle resolutions of
60 × 60, 80 × 80, 100 × 100,
and 120 × 120
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hence the droplet remains nearly circular after the deforma-
tion. Depending on the relative magnitudes of the electric
permittivity and conductivity ratios (i.e., the case of R > S,
or S > R), flow circulations have different patterns. The elec-
tric field strength only affects the magnitude of the droplet
deformation. The intensity of the circulatory flow motion
gets stronger when the droplet is subject to a larger defor-
mation due to the high value of the steady electric field. The
results of the current work suggest that the SPH method is
able to capture the physics behind the droplet deformation
under the influence of a steady electric field in a robust and
accurate manner. The SPH model will be further extended to
study other complex and interesting EHD problems such as
the deformation of a non-Newtonian droplet in a Newtonian
fluid.
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