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Abstract This paper presents a wideband fast multipole
boundary element method (FMBEM) for two dimensional
acoustic design sensitivity analysis based on the direct dif-
ferentiation method. The wideband fast multipole method
(FMM) formed by combining the original FMM and the
diagonal form FMM is used to accelerate the matrix-vector
products in the boundary element analysis. The Burton–
Miller formulation is used to overcome the fictitious fre-
quency problem when using a single Helmholtz boundary
integral equation for exterior boundary-value problems. The
strongly singular and hypersingular integrals in the sensitiv-
ity equations can be evaluated explicitly and directly by using
the piecewise constant discretization. The iterative solver
GMRES is applied to accelerate the solution of the linear
system of equations. A set of optimal parameters for the
wideband FMBEM design sensitivity analysis are obtained
by observing the performances of the wideband FMM algo-
rithm in terms of computing time and memory usage. Numer-
ical examples are presented to demonstrate the efficiency and
validity of the proposed algorithm.
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1 Introduction

Acoustic design sensitivity analysis can provide information
on how the geometry change affecting the acoustic perfor-
mance of the given structure, and it is a key step of the acoustic
optimization process. Both the finite element method [1,2]
and the boundary element method (BEM) can be used to
implement the sensitivity analysis. It is well-known that BEM
has been widely used to solve the acoustic problems, because
it provides an excellent accuracy and easy mesh generation.
In particular, for exterior acoustic problems, the Sommer-
feld radiation condition [3] at infinity is automatically satis-
fied. In BEM implementation, the Galerkin method has been
widely applied to the numerical solution of boundary integral
equation [4,5], and it provides a powerful theoretical back-
ground for this method. Traditionally, however, the colloca-
tion method was widely used in the engineering community
and is adopted in this research.

Acoustic design sensitivity formulations presented in this
paper are obtained by differentiating the boundary integral
equations with respect to design variables which determine
the contour of the structure. A number of related researches
can be found in 1990s. Smith and Bernhard [6] derived
the semi-analytical sensitivity formulation by differentiat-
ing the discretized boundary integral equation. Matsumoto
et al. [7,8], Koo et al. [9] and Kane et al. [10] derived dif-
ferent acoustic sensitivity expressions with respect to the
shape design variables. However, the intrinsic drawback of
the conventional BEM has prevented the above sensitivity
algorithms to large scale engineering problems. In general,
the BEM discretizes the boundary instead of the domain and
takes less difficulties due to the one-dimension reduction in
mesh generation. However, it produces a dense and non-
symmetrical coefficient matrix, which induces O(N 3) arith-
metic operations to solve the system of equations directly,
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such as by using the Gauss elimination method. And the size
of memory for storing the coefficient matrix is O(N 2) as for
a problem involving N degrees of freedom. Obviously, the
acoustic design sensitivity analysis will take much more com-
puting time and storage requirement than its original acoustic
state analysis.

Many fast methods, such as the fast multipole methods
(FMM), the fast direct solver and the adaptive cross approx-
imation technique, have been applied to accelerate the solu-
tion of the integral equation. The fast direct solver which
directly constructed a compressed factorization of the inverse
of the matrix was presented by Martinsson and Rokhlin
[11–13] and it is suitable for problems involving relatively
ill-conditioned matrixes. The adaptive cross approximation
technique pioneered by Bebendorf and Rjasanow generates
blockwise low-rank approximants from the BEM matrices
and is a well-suited method for problems with a large num-
ber of iteration steps [14,15]. While the FMM proposed by
Rokhlin and Greengard [16–18] can be used to accelerate
the matrix–vector products and can decrease the memory
requirement to O(N ). So far this method has been applied
to the solution of problems for Laplace [19–21], Helmholtz
[22,23] and other equations [24,25]. There are actually two
forms of FMM for Helmholtz equation. One is the original
FMM and the other is the diagonal form FMM [26]. But both
of them fail in some way outside their preferred frequency
range. However, the wideband FMM formed by combining
the original FMM and the diagonal form FMM can solve the
problems accurately and efficiently at all frequencies [27].

On the other hand, the implementation of a single
Helmholtz boundary integral equation may have the diffi-
culty of nonuniqueness for exterior boundary-value prob-
lems. Two major methods have been proposed to tackle this
problem. One is the combined Helmholtz integral equation
formulation (CHIEF) [28] which can successfully conquer
the difficulty by adding some additional Helmholtz integral
equations in the interior domain. And it results in an over-
determined system of equation which can be solved using a
least-squares technique. But it is difficult to select the opti-
mum number and suitable positions of the interior points,
especially for the high-frequency problems. Another effec-
tive alternative to overcome the nonunique solution problem
is the Burton–Miller method [29] which consists of a linear
combination of the conventional boundary integral equation
(CBIE) and its normal derivative equation (NDBIE). The
NDBIE is hypersingular when the boundary is nonsmooth,
and some special treatments should be employed in its numer-
ical evaluation. The same situation exists for the BEM sen-
sitivity analysis.

Recently Zheng et al. [30] employed the wideband
FMBEM to three dimensional acoustic design sensitivity
analysis and opened the space of acoustic structure opti-
mization for engineering problems. However, some practi-

cal problems, for instance the noise barriers standing along
expressways or railways, can be simplified to two dimen-
sional models to predict the scattering acoustic fields. There-
fore, it is also of significance to develop two dimensional
acoustic design sensitivity analysis, which makes it possible
to observe higher frequency characters of the analyzed prob-
lem. In this work, the original FMM, diagonal form FMM and
wideband FMM are applied and compared each other. Dif-
ferent values of parameters affecting the performance of the
wideband FMM algorithm are evaluated and a set of optimal
parameters are found. Furthermore, The generalized mini-
mum residue (GMRES) method [31] is applied to accelerate
the solution of the linear system of equations. It should be
stressed that this work is the first application of the Wide-
band FMBEM to two dimensional acoustic design sensitivity
analysis.

This paper is organized as follows. The BEM and FMBEM
formulations in acoustic state analysis and acoustic design
sensitivity analysis are introduced in Sects. 2 and 3. The
wideband-FMBEM algorithm is presented in Sect. 4. In
Sect. 5, numerical examples are presented to demonstrate the
efficiency and validity of the proposed algorithm. Section 6
concludes the paper with further discussions.

2 BEM formulations

2.1 BEM formulations for acoustic state analysis

Consider the following Helmholtz equation governing time-
harmonic acoustic wave fields:

∇2φ(x) + k2φ(x) = 0, ∀x ∈ �, (1)

where φ is the acoustic pressure, k = ω/c the wave number,
ω the angular frequency, and c the wave speed in the acoustic
medium �.

The boundary conditions can be expressed as

φ(x) = φ(x) x ∈ Sφ, (2)

q(x) = ∂φ(x)

∂n(x)
= iρωv(x) x ∈ Sq , (3)

φ(x) = zv(x) x ∈ Sz, (4)

where n(x) denotes the outward unit normal vector to the
boundary S at point x, i the imaginary unit, ρ the medium
density, v(x) the normal velocity, z the acoustic impedance.
The quantities with upper bars are assumed to be known
functions prescribed on the boundary.

It is necessary to introduce a condition at infinity for exte-
rior acoustic problems. The physical requirement that all
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scattered and radiated waves are outgoing should be ensured.
For two dimensional problem, that is

lim
r→∞ r1/2

(
∂φ

∂r
− ikφ

)
= 0, (5)

The integral formulation of the solution to the Helmholtz
equation is

φ(x) =
∫
S

G(x, y)q(y)d S(y)

−
∫
S

F(x, y)φ(y)d S(y), x ∈ �, (6)

where x is the source point, y the field point and G(x, y) the
Green’s function. For two dimensional problem the Green’s
function is given by

G(x, y) = i

4
H (1)

0 (kr), (7)

and

F(x, y) = ∂G(x, y)

∂n(y)
= − ik

4
H (1)

1 (kr)
∂r

∂n(y)
, (8)

where r =| y − x |, H (1)
n denotes the first kind Hankel func-

tion of the n th order. The derivative of the integral represen-
tation (6) with respect to the outward normal at point x for
x ∈ � can be expressed as

q(x) =
∫
S

G1(x, y)q(y)d S(y)

−
∫
S

F1(x, y)φ(y)d S(y), (9)

where

G1(x, y) = ∂G(x, y)

∂n(x)
= ik

4
H (1)

1 (kr)
∂r

∂n(x)
, (10)

and

F1(x, y) = ∂ F(x, y)

∂n(x)
= ik

4r
H (1)

1 (kr)n j (x)n j (y)

− ik2

4
H (1)

2 (kr)
∂r

∂n(x)

∂r

∂n(y)
,

(11)

where n j is the Cartesian component of n(x) or n(y),
and ∂r

∂n = r, j n j . Einstein’s summation convention is used
throughout the paper, so repeated indices imply a summa-
tion over their range.

Letting the source point x approaches the boundary
S, Eqs. (6) and (9) give the following boundary integral
equations:

c(x)φ(x) =
∫
S

G(x, y)q(y)d S(y)

−
∫
S

F(x, y)φ(y)d S(y), (12)

and

c(x)q(x) =
∫
S

G1(x, y)q(y)d S(y)

−
∫
S

F1(x, y)φ(y)d S(y), (13)

where the coefficient c(x) is determined by the boundary
geometry at the source point x . Equations (12) and (13) are
referred to as the CBIE and NDBIE formulas. It is well-
known that the CBIE or NDBIE for exterior boundary-value
problems may have difficulty of nonuniqueness. However,
the linear combination of them can yield unique solutions for
all frequencies, if the coupling constant of the two equations
is a complex [32].

If the boundary is nonsmooth, Eq. (12) is a strongly singu-
lar boundary integral equation and Eq. (13) is a hypersingu-
lar boundary integral equation. Such integrals usually need
special treatments but they can be evaluated explicitly and
directly with the Cauchy principal value and the Hadamard
finite part integral method respectively by using piecewise
constant discretization (or called zero order element) [33,34].
Thus, in such piecewise constant discretization, as for 2D
problems, the CBIE and NDBIE formulas can be rewritten
as

1

2
φ(x) − C1q(x) =

∫
S\Sx

G(x, y)q(y)d S(y)

−
∫

S\Sx

F(x, y)φ(y)d S(y), (14)

and

1

2
q(x) − C2φ(x) =

∫
S\Sx

G1(x, y)q(y)d S(y)

−
∫

S\Sx

F1(x, y)φ(y)d S(y), (15)
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where

C1 = i

4
lim
ε→0

∫
�ε

H (1)
0 (kr)d S(y), (16)

and

C2 = lim
ε→0

⎡
⎢⎣

∫
�ε

ik

4r
H (1)

1 (kr)d S(y) − 1

πε

⎤
⎥⎦ . (17)

S \ Sx denotes the boundary S except Sx , Sx is the element
containing the source point x . Sε denotes a semi-circle with
a radius ε centred at x and �ε denotes Sx \ Sε, as shown in
Fig. 1. L is the length of the element in which point x locates.
By eliminating the singular parts in functions H (1)

0 (kr) and

H (1)
1 (kr)/(kr), the coefficients C1 and C2 can be expressed

respectively by the following two formulations:

C1 = − L

2π

[
ln

(
kL

2

)
− 1

]

+ i

4
lim
ε→0

∫
�ε

[
H (1)

0 (kr) − 2i

π
ln(kr)

]
d S(y), (18)

and

C2 = ik2

4
lim
ε→0

∫
�ε

[
H (1)

1 (kr)

kr
+ 2i

πk2r2 − i

π
ln(kr)

]
d S(y)

− k2 L

4π

[
ln

(
kL

2

)
+ 8

k2L2 − 1

]
, (19)

where the non-singular integrals can be calculated by using
Gauss quadrature.

εS

Γε n(y)

n(x)

θ
ε

Fig. 1 An infinitesimal hemicircle attached to the zero order element
Sx

The linear combination of Eqs. (14) and (15) can be
expressed as

∫
S\Sx

[G(x, y)q(y) − F(x, y)φ(y)] d S(y)

+ α

∫
S\Sx

[
G1(x, y)q(y) − F1(x, y)φ(y)

]
d S(y)

=
(

1

2
+ αC2

)
φ(x) −

(
C1 − α

2

)
q(x), (20)

where α can be chosen as i/k for k � 1, but i for k < 1 [35].
If the boundary S is divided into N elements (e.g. using

piecewise constant discretization in this study). Then, after
collecting the equations for all collocation points (nodes)
located at the centre of each element and expressing them in
matrix forms, one can obtain the following system of linear
algebraic equations:

[H ]{φ} = [G]{q}. (21)

Moving all the unknown terms of Eq. (21) to the left-
hand side and all the known terms to the right-hand side
by considering the boundary conditions (e.g. for Neumann
type problems, the pressure φ is unknown and the normal
derivative q is specified), one finally obtain the following
system of linear equations:

[A]{x} = {b}, (22)

where [A] is the coefficient matrix, {x} the vector of unknown
boundary values at the nodes, {b} the known vector. All the
unknown boundary state values can be obtained after Eq. (22)
is solved. Finally, one can calculate the sound pressure φ at
any interior point by using Eq. (6).

2.2 BEM formulations for acoustic design sensitivity
analysis

By differentiating Eqs. (6) and (9) with respect to an arbitrary
design variable, one can obtain the following formulations for
acoustic design sensitivity analysis:

φ̇(x) =
∫
S

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+
∫
S

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+
∫
S

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y), (23)
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and

q̇(x) =
∫
S

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y)

+
∫
S

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y)

+
∫
S

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y), (24)

where the upper dot ˙( ) denotes the differentiation with
respect to the design variable, and Ḟ(x, y), Ġ(x, y), Ḟ1(x, y),

Ġ1(x, y), d Ṡ(y) can be expressed in the form of the coordi-
nate sensitivity, as follows:

Ġ(x, y) = − ik

4
H (1)

1 (kr)ṙ , (25)

Ḟ(x, y) = − ik

4
H (1)

1 (kr)

[
(ẏ j − ẋ j )n j (y)

r
+ r, j ṅ j (y)

]

+ ik2

4
H (1)

2 (kr)ṙr, j n j (y), (26)

Ġ1(x, y) = ik

4
H (1)

1 (kr)

[
(ẏ j − ẋ j )n j (x)

r
+ r, j ṅ j (x)

]

− ik2

4
H (1)

2 (kr)ṙr, j n j (x), (27)

and

Ḟ1(x, y) = ik

4r
H (1)

1 (kr)
˙n j (x)n j (y)

+ ik3

4
H (1)

3 (kr)ṙr, j n j (x)r,lnl(y)

− ik2

4
H (1)

2 (kr)
n j (x)n j (y)ṙ

r

− ik2

4
H (1)

2 (kr)r, j n j (x)
˙r,lnl(y)

− ik2

4
H (1)

2 (kr)
˙r, j n j (x)r,lnl(y)

− ik2

4
H (1)

2 (kr)
2ṙr, j n j (x)r,lnl(y)

r
, (28)

where

ṙ = r, j (ẏ j − ẋ j ), (29)

and

˙r,lnl(y) = (ẏl − ẋl)nl(y)

r
− ṙr,lnl(y)

r
+ r,l ṅl(y). (30)

ẋ j and ẏ j will be evaluated when the boundary of the ana-
lyzed domain is fully parameterized with the shape design
variable. According to [36], ṅl(y) and d Ṡ(y) can be written as

ṅl(y) = −ẏ j,ln j (y) + ẏ j,mn j (y)nm(y)nl(y), (31)

and

d Ṡ(y) = [ẏl,l − ẏl, j nl(y)n j (y)]d S(y), (32)

where an index after a comma denotes the partial deriva-
tive with respect to the coordinate component and ẏ j,m =
∂ ẏ j/∂ym .

If point x approaches the boundary S in Eqs. (23) and
(24), one can obtain the following formulations for acoustic
design sensitivity analysis:

c(x)φ̇(x) =
∫
S

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+
∫
S

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+
∫
S

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y),

(33)
and

c(x)q̇(x) =
∫
S

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y)

+
∫
S

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y)

+
∫
S

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y).

(34)

Obviously, the singularities in Eqs. (33) and (34) are the
same as those in Eqs. (12) and (13), and the related integrals
can be evaluated explicitly in terms of the Cauchy principal
value and the Hadamard finite part integral method by using
the piecewise constant discretization. For this discretization,
the details of the evaluation process are given in Appendix
A. Finally, the non-singular boundary integral formulations
of Eqs. (33) and (34) can be written as

1

2
φ̇(x) =A1 +

∫
S\Sx

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+
∫

S\Sx

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+
∫

S\Sx

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y), (35)
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and

1

2
q̇(x) =B1 +

∫
S\Sx

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y)

+
∫

S\Sx

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y)

+
∫

S\Sx

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y),

(36)

where

A1 = − ik

4
lim
ε→0

∫
�ε

H (1)
1 (kr)ṙd S(y)q(x)

+ C1q̇(x) + C1q(x)[ẋl,l − ẋl, j nl(x)n j (x)], (37)

and

B1 = − ik2

4
lim
ε→0

∫
�ε

[
H (1)

2 (kr)+ 4i

πk2r2

]
d S(y)r,lr, j ẋl, jφ(x)

+
(

4

π L
+ C2

)
r,lr, j ẋl, jφ(x) + C2φ̇(x). (38)

In fact, one can also obtain Eqs. (35) and (36) by differen-
tiating Eqs. (14) and (15) with respect to the design variable
directly, and the details of the deduction process are given in
Appendix B.

For exterior boundary-value problems, Eq. (35) or (36)
may give rise to the difficulty of the nonuniqueness. However,
the linear combination of them provides unique solutions for
all frequencies and it can be expressed as

1

2
φ̇(x) =

∫
S\Sx

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+
∫

S\Sx

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+
∫

S\Sx

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y)

+ α

∫
S\Sx

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y)

+ α

∫
S\Sx

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y)

+ α

∫
S\Sx

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y)

− α

2
q̇(x) + A1 + αB1. (39)

After obtaining all the unknown boundary state values by
solving Eq. (22) and subsequently substituting all the bound-
ary state values into the discretized form of Eq. (39), one can
obtain the following equation:

[A]{y} = {c}, (40)

where [A] is the same matrix as that in Eq. (22), {y} the
vector of unknown boundary sensitivity values at the nodes,
{c} the known vector. All the unknown boundary sensitivity
values can be obtained after Eq. (40) is solved. Finally, one
can calculate the sensitivity value φ̇ at any interior point by
using Eq. (23).

3 FMM formulations

In this section, the FMM approach is introduced to accelerate
the matrix-vector product and the iterative solver GMRES is
used to solve Eqs. (22) and (40). First, the fundamentals of
the original FMM (low-frequency method) are presented. It
is well-known that the original FMM is inefficient for high
frequency problems, so the diagonal form (high-frequency
method) is introduced to overcome this difficulty. But the
diagonal form has instability problem for the solution of
low frequency Helmholtz equations. Following the work of
Zheng et al. [30], a wideband FMM for two dimensional
acoustic design sensitivity analysis is constructed to over-
come the above problems.

3.1 Original FMM formulations

3.1.1 Original FMM formulations for acoustic state
analysis

With Graf’s addition theorem, the Green’s function (7) can
be expanded into the following series:

G(x, y) = i

4

+∞∑
n=−∞

On(
−→ycx)I−n(

−→yc y), (41)

where yc is an expansion point near y, the functions On and
In are defined by

On(x) = in H (1)
n (kr)einθ , (42)
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and

In(x) = (−i)n Jn(kr)einθ , (43)

where Jn denotes the n th order Bessel function, (r, θ) indi-
cates the polar coordinate of vector x.

S0 stands for a subset of the boundary S, which is far away
from the source point x . First, the integrals in Eq. (20) can
be reformulated by

A2 =
∫
S0

[G(x, y)q(y) − F(x, y)φ(y)]d S(y), (44)

and

B2 =
∫
S0

[G1(x, y)q(y) − F1(x, y)φ(y)]d S(y). (45)

By substituting Eq. (41) into Eqs. (44) and (45), we can
obtain the following formulas:

A2 =
+∞∑

n=−∞
On(

−→ycx)Mn(yc), (46)

and

B2 =
+∞∑

n=−∞

∂On(
−→ycx)

∂n(x)
Mn(yc), (47)

where Mn is the multipole moment defined by

Mn(yc) = i

4

∫
S0

[I−n(
−→yc y)q(y) − Dn(

−→yc y)φ(y)]d S(y),

(48)

where yc is located close to S0 and Dn(
−→yc y) is given by

Dn(
−→yc y) = ∂ I−n(

−→yc y)

∂n(y)
. (49)

The M2M, M2L, L2L translation formulas are given by

Mn(y1
c ) =

+∞∑
m=−∞

I−n+m(
−−→
y1

c yc)Mm(yc), (50)

Ln(xl) =
+∞∑

m=−∞
(−1)n On−m(

−−→
y1

c xl)M−m(y1
c ), (51)

and

Ln(x1
l ) =

+∞∑
m=−∞

In−m(
−−→
x1

l xl)Lm(xl), (52)

Fig. 2 Multipole expansion points and the boundary nodes

where y1
c is located close to S0, xl and x1

l close to x , as shown
in Fig. 2.

To the end, one can obtain the following formulations:

A2 =
+∞∑

n=−∞
I−n(

−→
x1

l x)Ln(x1
l ), (53)

and

B2 =
+∞∑

n=−∞
Dn(

−→
x1

l x)Ln(x1
l ). (54)

3.1.2 Original FMM formulations for acoustic design
sensitivity analysis

By differentiating Eq. (41) with respect to the design variable,
one can obtain the following expression:

Ġ(x, y) = i

4

+∞∑
n=−∞

Ȯn(
−→ycx)I−n(

−→yc y)

+ i

4

+∞∑
n=−∞

On(
−→ycx) İ−n(

−→yc y), (55)

and then, one can obtain

Ḟ(x, y) = i

4

+∞∑
n=−∞

Ȯn(
−→ycx)Dn(

−→yc y)

+ i

4

+∞∑
n=−∞

On(
−→ycx)Ḋn(

−→yc y), (56)

123



638 Comput Mech (2013) 52:631–648

where İ−n(
−→yc y) and Ḋn(

−→yc y) are defined by

İ−n(
−→yc y)=(−i)n

[
n Jn(kr)

(
ṙ

r
−i θ̇

)
− Jn+1(kr)kṙ

]
e−inθ ,

(57)

and

Ḋn(
−→yc y) =(−i)ne−i(β+nθ)

×
{

Jn−1(kr)

[
ṙ(n − 1)

r
− i(β̇ + nθ̇ )

]
− kṙ Jn(kr)

}

− (−i)nei(β−nθ)

×
{

Jn+1(kr)

[
ṙ(n + 1)

r
+i(β̇−nθ̇ )

]
−kṙ Jn+2(kr)

}
,

(58)

where β denotes the angle between the vector from yc to y
and the outward normal at point y.

First, the integrals in Eq. (39) can be reformulated by:

D1 =
∫
S0

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+α

∫
S0

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y), (59)

D2 =
∫
S0

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+α

∫
S0

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y), (60)

and

D3 =
∫
S0

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y)

+ α

∫
S0

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y). (61)

By substituting Eqs. (41), (55) and (56) into Eqs. (59)–
(61), one can obtain the following formulations:

D1 =
∞∑

n=−∞

⎡
⎣Ȯn(

−→ycx)+α

˙
∂On(

−→ycx)

∂n(x)

⎤
⎦ Mn(yc)

+
∞∑

n=−∞

[
On(

−→ycx) + α
∂On(

−→ycx)

∂n(x)

]
M1

n (yc), (62)

D2 =
∞∑

n=−∞

[
On(

−→ycx) + α
∂On(

−→ycx)

∂n(x)

]
M2

n (yc), (63)

and

D3 =
∞∑

n=−∞

[
On(

−→ycx) + α
∂On(

−→ycx)

∂n(x)

]
M3

n (yc), (64)

where

M1
n (yc) = i

4

∫
S0

[
İ−n(

−→yc y)q(y) − Ḋn(
−→yc y)φ(y)

]
d S(y),

(65)

M2
n (yc) = i

4

∫
S0

[
I−n(

−→yc y)q̇(y) − Dn(
−→yc y)φ̇(y)

]
d S(y),

(66)

and

M3
n (yc) = i

4

∫
S0

[
I−n(

−→yc y)q(y) − Dn(
−→yc y)φ(y)

]
d Ṡ(y).

(67)

Actually, the M2M, M2L, L2L translation formulas for
Eqs. (65)–(67) are the same as Eqs. (50)–(52). Finally D1, D2

and D3 can be expressed in terms of local expansion coeffi-
cients as

D1 =
∞∑

n=−∞

[
İ−n(

−→xl x) + α Ḋn(
−→xl x)

]
Ln(xl)

+
∞∑

n=−∞

[
I−n(

−→xl x) + αDn(
−→xl x)

]
L1

n(xl), (68)

D2 =
∞∑

n=−∞

[
I−n(

−→xl x) + αDn(
−→xl x)

]
L2

n(xl), (69)

and

D3 =
∞∑

n=−∞

[
I−n(

−→xl x) + αDn(
−→xl x)

]
L3

n(xl). (70)

3.2 Diagonal formulations

3.2.1 Diagonal formulations for acoustic state analysis

The plane wave expansion of the Green’s function (7) can be
written as

G(x, y) = i

8π

∮
eikk̂·−→xl x T (θ,

−−→ycxl)e
−ikk̂·−→yc ydθ, (71)

where

k̂(θ) = (cos θ, sin θ), (72)
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and

T (θ,
−−→ycxl) =

∞∑
n=−∞

e−inθ On(
−−→ycxl). (73)

By substituting Eq. (71) into (44), one have

A2 = i

8π

∮
eikk̂·−→xl x T (θ,

−−→ycxl)B(θ, yc)dθ, (74)

where B(θ, yc) is the high-frequency moments defined by

B(θ, yc) =
∫
S0

[
e−ikk̂·−→yc yq(y) − E(

−→yc y)φ(y)
]

d S(y), (75)

and

E(
−→yc y) = ∂e−ikk̂·−→yc y

∂n(y)
. (76)

The B2B, B2H and H2H translation formulas are given by

B(θ, y1
c ) = e−ikk̂·−−→y1

c yc B(θ, yc), (77)

H(θ, xl) = T

(
θ,

−−→
y1

c xl

)
B(θ, y1

c ), (78)

and

H(θ, x1
l ) = eikk̂·−−→xl x1

l H(θ, xl). (79)

To the end, the boundary integrals can be expressed as

A2 = i

8π

∮
eikk̂·−→x1

l x H(θ, x1
l )dθ. (80)

Similar procedure, Eq. (45) has the following form:

B2 = i

8π

∮
∂eikk̂·−→x1

l x

∂n(x)
H(θ, x1

l )dθ. (81)

3.2.2 Diagonal formulations for acoustic sensitivity
analysis

By differentiating Eq. (71) with respect to the design variable,
one can obtain the following expression:

Ġ(x, y) = i

8π

∮ ˙eikk̂·−→xl x T
(
θ,

−−→ycxl
)

e−ikk̂·−→yc ydθ

+ i

8π

∮
eikk̂·−→xl x T

(
θ,

−−→ycxl
) ˙e−ikk̂·−→yc ydθ, (82)

and then, one can obtain

Ḟ(x, y) = i

8π

∮ ˙eikk̂·−→xl x T
(
θ,

−→ycxl
)

E
(
θ,

−→yc y
)

dθ

+ i

8π

∮
eikk̂·−→xl x T

(
θ,

−−→ycxl
)

Ė
(
θ,

−→yc y
)

dθ. (83)

By substituting Eqs. (82) and (83) into Eqs. (59)–(61), one
can obtain the following formulations:

D1 = i

8π

∮ ⎡
⎣ ˙

eikk̂·−→xl x + α

˙
∂eikk̂·−→xl x

∂n(x)

⎤
⎦ T

(
θ,

−−→ycxl
)

B(θ, yc)dθ

+ i

8π

∮ [
eikk̂·−→xl x + α

∂eikk̂·−→xl x

∂n(x)

]
T

(
θ,

−−→ycxl
)

B1(θ, yc)dθ,

(84)

D2 = i

8π

∮ [
eikk̂·−→xl x + α

∂eikk̂·−→xl x

∂n(x)

]
T

(
θ,

−−→ycxl
)

B2(θ, yc)dθ,

(85)

and

D3 = i

8π

∮ [
eikk̂·−→xl x +α

∂eikk̂·−→xl x

∂n(x)

]
T

(
θ,

−−→ycxl
)

B3(θ, yc)dθ,

(86)

where

B1(θ, yc) =
∫
S0

[ ˙e−ikk̂·−→yc yq(y) − Ė
(
θ,

−→yc y
)
φ(y)

]
d S(y),

(87)

B2(θ, yc) =
∫
S0

[
e−ikk̂·−→yc yq̇(y) − E

(
θ,

−→yc y
)
φ̇(y)

]
d S(y),

(88)

and

B3(θ, yc) =
∫
S0

[
e−ikk̂·−→yc yq(y) − E

(
θ,

−→yc y
)
φ(y)

]
d Ṡ(y).

(89)

Actually, the B2B, B2H and H2H translation formulas
for Eqs. (87)–(89) are the same as Eqs. (77)–(79). Finally
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D1, D2 and D3 can be expressed in terms of local expansion
coefficients as

D1 = i

8π

∮ ⎡
⎣ ˙eikk̂·−→xl x + α

˙
∂eikk̂·−→xl x

∂n(x)

⎤
⎦ H(θ, xl)dθ

+ i

8π

∮ [
eikk̂·−→xl x + α

∂eikk̂·−→xl x

∂n(x)

]
H1(θ, xl)dθ,

(90)

D2 = i

8π

∮ [
eikk̂·−→xl x + α

∂eikk̂·−→xl x

∂n(x)

]
H2(θ, xl)dθ,

(91)

and

D3 = i

8π

∮ [
eikk̂·−→xl x + α

∂eikk̂·−→xl x

∂n(x)

]
H3(θ, xl)dθ. (92)

3.3 Wideband FMM formulations

The wideband FMBEM obtained by combining the original
form and the diagonal form of the FMBEM is accurate and
efficient at any frequency. In the wideband FMBEM, we use
the following M2B formula to convert the moments of the
original form to those of the diagonal form:

B(θ, yc) = −4i
+∞∑

n=−∞
einθ Mn(yc). (93)

The local expansion coefficients of the diagonal form can
be converted to those of the original form by using the fol-
lowing H2L formula:

Ln(xl) = i

8π
(−1)n

∮
einθ H(θ, xl)dθ. (94)

Actually, the number of terms used in the functions
O, I, M and L and the number of the plane wave samples
k̂ along the unit circle have to be truncated. The number of
truncation terms and the plane wave samples depends on the
the size d of the cell and the wave number k. It is given in
the following form in [18]:

p = kd + c · log(kd + π). (95)

where c is a constant. Obviously, a larger c relates to a larger
truncation number p and it normally leads to an improve-
ment of accuracy but induces to a longer computing time
and larger memory usage. Thus, it is a key parameter in the
FMM algorithm.

4 Wideband FMM algorithm

4.1 Preparation

Firstly discretize the boundary S as usual as in the conven-
tional BEM. Then take a square which contains S and call it
a cell of level 0. This cell (the parent cell) is divided into four
equal child cells of level 1. Keep dividing a cell in this way
until the element number in that cell is less than a specified
number, and call this childless cell a leaf cell. At any level of
refinement, once an empty cell is encountered, its existence
is forgotten and it is not used in the subsequent process. If
two cells at level l share at least one vertex, they are said to
be adjacent. If two cells at level l are not adjacent but their
parent cells are adjacent at level l − 1, they are said to be
well-separated. The list of all well-separated cells of cell C
forms the interaction list of C . Far cells of C consist of those
cells whose parent cells are not adjacent to the parent cell
of C .

4.2 Upward pass

Computation of the multipole moments. Calculate the multi-
pole moments of each cell starting from a leaf cell and tracing
the tree structure upward to level 2. For a leaf cell, the mul-
tipole moment of the low-frequency FMM is calculated by
using Eq. (48) and that of the high-frequency FMM is cal-
culated by using Eq. (75). For a non-leaf cell, by adding all
the moments from its child cells after shifting the moments
to the centre of their parent cell, one can obtain the multi-
pole moment. For wave number k and the square side length
d, if their product (kd) is less than a specified number, the
moments of the low-frequency FMM are calculated by M2M
translation , otherwise the moments of the high-frequency
FMM are calculated by B2B translation. When kd is equal
to the specified number, the moments of the low-frequency
FMM need to be shifted to the moments of the high-frequency
FMM by M2B translation. The procedure is repeated upward
to level 2. The specified number is written as 2πv, where
v denotes the switch parameter between high-frequency
FMM and low-frequency FMM [37].

4.3 Downward pass

Computation of the local expansion coefficients. The local
expansion coefficients of cell C at level l are the sum of two
parts. One is obtained from all cells in the interaction list of
C and the other is obtained from all the far cells of C . If kd
of cell C is greater than or equal to the specified number, the
local expansion coefficients are calculated by B2H and H2H.
If kd of cell C is less than the specified number but that of C’s
parent cell is greater than or equal to the specified number,
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the local expansion coefficients are calculated by M2L and
H2L. Otherwise they are calculated by M2L and L2L.

4.4 Evaluation of the integrals

For a source point in a leaf cell C at level l, evaluation of the
boundary integrals consists of two parts. The contributions
from elements in leaf C and its adjacent cells are evaluated
directly in the way as the conventional BEM. Then the con-
tributions from all the cells in the interaction list and far cells
of C are calculated by shifting the local expansion coeffi-
cients from the centre of C to the source point. If kd of cell
C is less than the specified number, the above second part
is evaluated by using Eqs. (68)–(70), otherwise by using
Eqs. (90)–(92).

4.5 Choice of the switch parameter v

When v increases, more cells in the tree structure are calcu-
lated by the low frequency FMM, and the wideband algo-
rithm obtains higher accuracy but takes more CPU time.
When v decreases, more cells in the tree structure are calcu-
lated by the high frequency FMM, and the wideband algo-
rithm takes less CPU time but reduces the accuracy. To a limit,
if v is very small, the correct solution might not be obtained
because of the instability of the high frequency FMM. So it is
very important to choose a suitable v value, which normally
comes from careful numerical tests.

5 Numerical examples

5.1 Scattering from an infinite rigid cylinder

A numerical simulation of acoustic scattering from an infinite
rigid cylinder with Neumann boundary condition, as shown
in Fig. 3, is given to demonstrate the accuracy and efficiency
of the present algorithm. The computation is done on a desk-
top PC with an Pentium 2.59 GHz processor and 3.24 GB
memory.

In this example, we consider the acoustic scattering of a
plane incident wave with unit amplitude on an infinite rigid
cylinder with radius a = 1.0 m centred at point (0, 0), and
the plane incident wave is travelling along the positive x axis
(θ = 0). The analytical solution of the sound pressure at
point (r, θ) is given as

φ(r, θ) = −
∞∑

n=0

εnin J ′
n(ka)

H (1)′
n (ka)

H (1)
n (kr) cos(nθ), (96)

where εn denotes the Neumann symbols, i.e., ε0 = 1; εn = 2
when n is greater than 0. ( )′ stands for the differentiation with
respect to ka.

Fig. 3 Scattering from an infinite rigid cylinder with radius a

When the design variable is chosen as a, one can obtain
the analytical solution of sound pressure sensitivity by dif-
ferentiating Eq. (96) with respect to the design variable, as
follows:

∂φ(r, θ)

∂a
=−

∞∑
n=0

εnin

[
J ′

n(ka)

H (1)′
n (ka)

]′
H (1)

n (kr) cos(nθ). (97)

Sample internal points are evenly distributed on a circle of
r = 2a and the coordinates of the test point are (2a, 0). The
boundary of the circle is discretized with 80,000 constant
elements and the maximum number of boundary elements in
per leaf is set to 60. With this parameter, the number of tree
levels is 10, the number of leaves is 2,196 and the number of
cells is 3,829.

From Figs. 4 and 5, it can be seen that numerical results
agree very well with the analytical solutions, and it demon-
strates the accuracy of the algorithm. Figures 6 and 7 indicate
that the sensitivity values obtained by FMBEM-CBIE cannot
agree with the analytical solutions at fictitious eigenfrequen-
cies, but FMBEM-BM (FMBEM based on Burton–Miller
method) can yield excellent solutions at all frequencies. The
relative error is defined as

Fig. 4 Real part of pressure at points on circle r = 2a with k = 8π
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Fig. 5 Imaginary part of pressure at points on circle r = 2a with
k = 8π

Fig. 6 Real part of pressure sensitivity at point (2a, 0) with different
k

error =
∣∣pnumer − panaly

∣∣∣∣panaly
∣∣ , (98)

where the pnumer denotes the numerical solution and the
panaly denotes the analytical solution. p can be sound pres-
sure or its sensitivity value.

Actually, in the numerical evaluation of these bound-
ary integral equations, truncation and numerical integration
errors are the main errors. And estimates for these errors can
be found in [38]. Due to the complexity of the differential
equations, giving a provement of the uniform convergence
of the numerical results is very hard and is not the key point
for this work. However, by observing Fig. 8, it can be found
that the solution converges well when refining the boundary
mesh and it implicates the accuracy of the presented algo-
rithm. The CPU time used to calculate the sensitivity values
at the test point is plotted in Fig. 9, which demonstrates the

Fig. 7 Imaginary part of sensitivity at point (2a, 0) with different k

Fig. 8 Relative error of the pressure sensitivity at point (2a, 0) with
k = 4π

Fig. 9 CPU time used to calculate the pressure sensitivity values at
point (2a, 0) with k = 4π
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Fig. 10 Relative error at point (2a, 0) with different c and v values for
acoustic state analysis with k = 4π

Fig. 11 Relative error at point (2a, 0) with different c and v values for
acoustic sensitivity analysis with k = 4π

efficiency of FMBEM for two dimensional acoustic design
sensitivity analysis.

In Fig. 10 one can see the effect of constants c and v on
the error of the wideband FMM solutions for acoustic state
analysis, where k is set to 4π . The errors of the solutions

with c = 4 are higher than those with larger c and the errors
can further reduce with the mesh refinement. The errors with
c = 5 and c = 6 for v = 0.25 are quite close to each other,
and the errors with v = 0.25 and v = 0.5 for c = 5 are
quite close to each other too. When the switch parameter
v is chosen as 0.1, the method is still stable but the error
increases. Actually the choice of parameters c and v affects
the performance of the wideband FMM algorithm in terms
of computing time and memory usage. Solutions with high
accuracy can be obtained by increasing the value of c and v,
and a high computing cost is associated with this accuracy
increase. Figure 11 displays the effect of constants c and v

on the errors of the wideband FMM solutions with k = 4π

for acoustic sensitivity analysis, which behaves quite similar
to that in acoustic state analysis shown in Fig. 10. In view
of the above results, the combination of parameters c = 5
and v = 0.25 provides a good balance between accuracy and
performance, and it will be used in the following calculations.

In Table 1, ‘Low’, ‘High’ and ‘Wide’ denote the origi-
nal FMM, the diagonal form FMM and the wideband FMM
respectively. ’−’ means that the solution can not be obtained
and it implies the numerical instability of the high-frequency
FMM at low frequencies. CBEM denotes the conventional
BEM method and ‘+’ means that the solution calculated by
using the CBEM method takes too long time to be get. The
computing efficiency of the original FMM decreases rapidly
with the ka increase. But the wideband FMM formed by
combining the original FMM and the diagonal form FMM
can solve this problem accurately and efficiently.

5.2 Scattering from sound barriers

Noise from expressways and railways is an important aspect
of noise pollution but can be rectified by erecting barriers
between the noise source and the zone to be protected. For
a long straight barrier and a line source, two-dimensional
model can be used to predict the acoustic field. The barrier
is assumed to have infinite length and its cross section is
uniform along the length. In this example, three types of
barriers that are erected on a rigid, flat and sufficient large

Table 1 Computational time and relative error at the test point for CBEM and the three fast algorithms with different ka and degree of freedom

ka DOFs Relative error CPU time (sec)

CBEM Low High Wide CBEM Low High Wide

0.1 1, 500 1.27E−6 3.0E−6 - 3.0E−6 30 3 − 3

0.5 1, 500 8.1E−6 9.8E−6 5.1E−5 9.8E−6 35 4 4 4

1.0 2, 000 2.7E−6 6.1E−5 8.4E−5 6.1E−5 69 5 5 5

10 4, 000 9.3E−6 5.1E−5 6.8E−5 5.3E−5 402 27 17 18

30 6, 000 1.13e−5 6.7E−5 8.3E−5 7.9E−5 1,242 202 69 70

50 10, 000 + 2.2E−4 2.4E−4 2.4E−4 + 780 145 147

123



644 Comput Mech (2013) 52:631–648

Fig. 12 Cross sections of the vertical and T-shaped barriers

Fig. 13 Cross section of the Half-Y-shaped barrier
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Fig. 14 Noise level distribution around a vertical barrier (db)

ground are examined. Figures 12 and 13 show their cross-
section contours over a plane ground at a distance of 10.5m
from a coherent homogeneous monofrequency line source
situated 1.0 m above the ground. The width d of the barriers
is set to 0.2 m. The source frequency is 100 Hz and all surfaces
of the barriers are rigid. The vertical barrier is discretized with
120,000 zero order elements with equal length, the T-shaped
barrier 138,000 zero order elements and the Half-Y-shaped
barrier 124,230 zero order elements.

Figure 14 shows the sound pressure level distribution for
the case of a vertical barrier, then T-shaped barrier in Fig. 15
and Half-Y-shaped barrier with angle θ = 40◦ in Fig. 16. The
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Fig. 15 Noise level distribution around a T-barrier (db)
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Fig. 16 Noise level distribution around a Half-Y-shaped barrier (db)

sound pressure level distribution in Fig. 14 is quite similar to
that in [39], which demonstrates the correctness of the present
wideband FMBEM algorithm. From the above three figures,
one can find that adding substructures at the top of noise
barriers has the advantage of improving the barrier perfor-
mance without increasing its overall height. Figure 17 shows
the distribution of the acoustic pressure level sensitivity with
respect to the design variable θ as shown in Fig. 13. It can
be seen that the sensitivity values within the shadow zone to
be protected behind the barrier are greater than those within
other areas and it implies that the noise can be controlled
efficiently by choosing suitable θ value.

6 Conclusions

A wideband FMBEM has been developed for the analysis of
two dimensinoal acoustic design sensitivity problems. The
Burton–Miller method is used to get correct solutions at all
frequencies. The strongly singular and hypersingular inte-
grals in the sensitivity equations can be evaluated explicitly
and directly with Cauchy principal value and the Hadamard
finite part integral method when the zero order element is
employed to discretize the boundary, where the explicite free-
term expressions are given for the first time. A set of opti-
mal parameters in the wideband FMBEM design sensitivity
analysis are obtained by observing the performances of the
algorithm in terms of computing time and memory usage.
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Fig. 17 Acoustic pressure level
sensitivity distribution around a
Half-Y-shaped barrier (db)
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It can be seen that the combination of parameters c = 5
and v = 0.25 provides a good balance between accuracy
and performance. Furthermore, the different performances
of the low, high and wideband forms of the FMBEM are
observed carefully in the 2D acoustic sensitivity analysis and
the advantages of the wideband form can be easily found from
the comparison of the simulation results.

Future work includes applying the acoustic design sen-
sitivity analysis to shape optimizations and extending the
method to other kinds of sensitivity problems such as poten-
tial and elastostatic problems.
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Postdoctoral Science Foundation under Grant No. 2012M510162 are
acknowledged.

7 Appendix A: evaluation of the integrals on Sε and �ε

Sε and �ε are depicted in Fig. 1. The radius and shape of the
semi-circle Sε do not vary with respect to the design variable.
First one can obtain easily the following formulations on Sε :

n j (x)n j (y) = cos θ, (99)

and

y j − x j = εn j (y). (100)

By differentiating the above two equations with respect to the
design variable, one can derive the following formulations:

˙n j (x)n j (y) = 0, (101)

and

˙y j − x j = ε
˙n j (y). (102)

Moreover,

d Ṡ(y) = 0. (103)

By substituting the above equations into the singular integrals
on boundary Sε in Eqs. (33) and (34), one can obtain the
following formulations:
∫
Sε

F(x, y)φ̇(y)d S(y) = −1

2
φ̇(x), (104)

∫
Sε

F1(x, y)φ̇(y)d S(y) = − 1

πε
φ̇(x) − 1

4
q̇(x), (105)

and

∫
Sε

G1(x, y)q̇(y)d S(y) = 1

4
q̇(x). (106)

The results of the other integrals on boundary Sε in Eqs. (33)
and (34) are all zero.

The element �ε will vary with respect to the design vari-
able and the distribution of ẏ j varies linearly on �ε , one can
obtain the following formulations on �ε :

ẏl,m = ẋl,m, (107)

ẏl − ẋl = ẋl, j (y j − x j ), (108)

and

d Ṡ(y) = [ẏl,l − ẏl, j nl(y)n j (y)]d S(y) + r,lr, j ẋl, jε. (109)

By substituting the above equations into the singular integrals
on boundary �ε in Eqs. (33) and (34), one can obtain the
following equations:
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∫
�ε

Ġ(x, y)q(y)ds(y)

= − ik

4
lim
ε→0

∫
�ε

H (1)
1 (kr)ṙd S(y)q(x), (110)

∫
�ε

G(x, y)q̇(y)d S(y)

= i

4
lim
ε→0

∫
�ε

H (1)
0 (kr)d S(y)q̇(x), (111)

∫
�ε

G(x, y)q(y)d Ṡ(y)

= i

4
lim
ε→0

∫
�ε

H (1)
0 (kr)d S(y)q(x)[ẋl,l − ẋl, j nl(x)n j (x)],

(112)

∫
�ε

F1(x, y)φ̇(y)d S(y)

= ik2

4
lim
ε→0

∫
�ε

[
H (1)

1 (kr)

kr
+ 2i

πk2r2 − i

π
ln(kr)

]
d S(y)φ̇(x)

− k2 L

4π

[
ln(

kL

2
) + 8

k2 L2 − 1

]
φ̇(x) + 1

πε
φ̇(x), (113)

∫
�ε

Ḟ1(x, y)φ(y)d S(y)

=
(

4

π L
− 2

πε

)
r,lr, j ẋl, jφ(x) − ik2

4
r,lr, j ẋl, jφ(x)

· lim
ε→0

∫
�ε

[
H (1)

2 (kr) + 4i

πk2r2

]
d S(y), (114)

and

∫
�ε

F1(x, y)φ(y)d Ṡ(y)

= 2

πε
r,lr, j ẋl, jφ(x) + ik2

4
r,lr, j ẋl, jφ(x)

· lim
ε→0

∫
�ε

[
H (1)

1 (kr)

kr
+ 2i

πk2r2 − i

π
ln(kr)

]
d S(y)

− k2L

4π

[
ln

(
kL

2

)
+ 8

k2L2 − 1

]
r,lr, j ẋl, jφ(x). (115)

The results of the other integrals on boundary �ε in Eqs. (33)
and (34) are all zero.

8 Appendix B: the direct differentiation wtih respect the
design variable

By differentiating Eq. (14) directly with respect to the design
variable, one can obtain the following equation:

1

2
φ̇(x) =Ċ1q(x) + C1q̇(x)

+
∫

S\Sx

[Ġ(x, y)q(y) − Ḟ(x, y)φ(y)]d S(y)

+
∫

S\Sx

[G(x, y)q̇(y) − F(x, y)φ̇(y)]d S(y)

+
∫

S\Sx

[G(x, y)q(y) − F(x, y)φ(y)]d Ṡ(y),

(116)

where

Ċ1 = − ik

4
lim
ε→0

∫
�ε

H (1)
1 (kr)ṙd S(y)

+ C1[ẋl,l − ẋl, j nl(x)n j (x)]. (117)

Finally, one can obtain the following equation:

Ċ1q(x) + C1q̇(x) = A1. (118)

By substituting the above equation into Eq. (116), one can
obtain the same equation as Eq. (35).

By differentiating Eq. (15) directly with respect to the
design variable, one can obtain the following equation:

1

2
q̇(x) =Ċ2φ(x) + C2φ̇(x)

+
∫

S\Sx

[Ġ1(x, y)q(y) − Ḟ1(x, y)φ(y)]d S(y)

+
∫

S\Sx

[G1(x, y)q̇(y) − F1(x, y)φ̇(y)]d S(y)

+
∫

S\Sx

[G1(x, y)q(y) − F1(x, y)φ(y)]d Ṡ(y),

(119)

where

Ċ2 = M1 + M2, (120)

and

M1 = − ik2

4
lim
ε→0

∫
�ε

H (1)
2 (kr)ṙ/rd S(y), (121)
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M2 = lim
ε→0

∫
�ε

ik

4r
H (1)

1 (kr)d Ṡ(y). (122)

By eliminating the singular part in function H (1)
2 (kr), M1

can be expressed as

M1 = − ik2

4
lim
ε→0

∫
�ε

[
H (1)

2 (kr) + 4i

πk2r2

]
ṙ/rd S(y)

− lim
ε→0

∫
�ε

1

πr2 ṙ/rd S(y). (123)

From Eqs. (29) and (108), one can derived the following
equation on �ε:

ṙ/r = r,lr, j ẋl, j = ẏl,l − ẏl, j nl(y)n j (y), (124)

and ṙ/r does not vary with respect to the design variable
for the piecewise constant discretization. By substituting this
equation into Eq. (123), one can obtain

M1 = − ik2

4
lim
ε→0

∫
�ε

[
H (1)

2 (kr) + 4i

πk2r2

]
d S(y)r,lr, j ẋl, j

+
(

4

π L
− 2

πε

)
r,lr, j ẋl, j . (125)

By substituting Eq. (109) into Eq. (122), M2 can be expressed
as

M2 = lim
ε→0

∫
�ε

ik

4r
H (1)

1 (kr)d S(y)r,lr, j ẋl, j + 1

πε
r,lr, j ẋl, j .

(126)

By substituting Eq. (17) into the above equation, one can
obtain

M2 = C2r,lr, j ẋl, j + 2

πε
r,lr, j ẋl, j . (127)

By substituting Eqs. (125) and (127) into Eq. (120), Ċ2can
be expressed as

Ċ2 = − ik2

4
lim
ε→0

∫
�ε

[
H (1)

2 (kr) + 4i

πk2r2

]
d S(y)r,lr, j ẋl, j

+
(

4

π L
+ C2

)
r,lr, j ẋl, j . (128)

Finally, one can obtain the following equation:

Ċ2φ(x) + C2φ̇(x) = B1. (129)

By substituting the above equation into Eq. (119), one can
obtain the same equation as Eq. (36).
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