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Abstract Underground construction involves all sort of
challenges in analysis, design, project and execution phases.
The dimension of tunnels and their structural requirements
are growing, and so safety and security demands do. New
engineering tools are needed to perform a safer planning
and design. This work presents the advances in the parti-
cle finite element method (PFEM) for the modelling and the
analysis of tunneling processes including the wear of the cut-
ting tools. The PFEM has its foundation on the Lagrangian
description of the motion of a continuum built from a set of
particles with known physical properties. The method uses
a remeshing process combined with the alpha-shape tech-
nique to detect the contacting surfaces and a finite element
method for the mechanical computations. A contact proce-
dure has been developed for the PFEM which is combined
with a constitutive model for predicting the excavation front
and the wear of cutting tools. The material parameters govern
the coupling of frictional contact and wear between the inter-
acting domains at the excavation front. The PFEM allows
predicting several parameters which are relevant for estimat-
ing the performance of a tunnelling boring machine such
as wear in the cutting tools, the pressure distribution on the
face of the boring machine and the vibrations produced in the
machinery and the adjacent soil/rock. The final aim is to help
in the design of the excavating tools and in the planning of
the tunnelling operations. The applications presented show
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that the PFEM is a promising technique for the analysis of
tunnelling problems.
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1 Introduction

Tunneling is a very challenging discipline in constant demand
of new technologies. The sizes on caverns and tunnels have
experienced a considerable increase during last years. Conse-
quently the sizes of the tunnel boring machines (TBMs) and
their diameters have also grown. The performance demands
on these machines are focused on the increase of effective-
ness and reduction of the operation time. The current research
is looking for new technologies in order to help and improve
the design of the TBMs. The present work focuses on the
numerical simulation of tunnelling processes with the parti-
cle finite element method (PFEM). The purpose is to predict
the effects produced by the mechanical excavation on the tun-
nel and its environment. With this numerical technique we
start with the ambitious challenge of modelling an excavation
in a tunnel.

The analysis of a boring machine excavating a massive
rock is usually undertaken nowadays by the study of a single
cutting tool. The study of a characteristic tool is commonly
performed by laboratory tests. With the obtained results ana-
lytical formulas are applied in order to find out the parame-
ters that will describe the behavior of the whole tunnelling
machine. This type of studies mainly rely on tunnelling expe-
rience of analysts and on experimental tests.

Modelling excavation using numerical simulation is some-
thing relatively new. The breakthrough comes from the devel-
opment of new computational mechanics techniques. An
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Fig. 1 Sequence of steps to
update in time a “cloud” of
nodes representing a rock mass
that is progressively fragmented
the action of a boundary force q
using the PFEM. Crossed circles
denote fixed nodes at the
boundary

example is the discrete element method (DEM) [12,17,23,
24]. DEM can simulate the cutting process induced by the
excavation tools. However, a high computational cost is
required for this type of simulations.

The present work opens new possibilities for the mod-
elling of an excavation process with the PFEM focussing on
the global analysis of the whole machine-tool ground inter-
action.

The PFEM is founded on the Lagrangian description of
particles and motion and it combines a meshless definition of
the continuum containing a cloud of particles with standard
mesh-based finite element techniques.

The PFEM had its origins on computational fluid dynam-
ics (CFD) applications [10,18] and lately was applied
to fluid-structure interaction problems [19–21] and solid

mechanics [7,14,15]. In this work the PFEM is extended
to the modelling of ground excavation processes. The con-
tinuum, representing a solid or a fluid, is described by a col-
lection of particles in space. The particles contain enough
information to generate the correct boundaries of the analysis
domain. Meshing techniques like the Delaunay tessellation
and the alpha-shape concept [6] are used to discretize the con-
tinuum with finite elements starting from the particle distrib-
ution. The meshing process creates continuum sub-domains
and identifies the geometrical contacts between sub-domains.

Contact constraints are applied between the interacting
domains. The contact forces produced at the interface of
these domains can be predicted. When there is an interac-
tion between a tunnelling machine and the ground the con-
tact forces depend on the geometry of the machine and the
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Fig. 2 Clamped shallow circular arch. Three curves representing the theoretical solution, the FEM solution, the PFEM solution for the same mesh
of 18959 3-noded triangular elements

distribution of the tools on the cutting heads. These forces
change when the geomaterial is excavated. The boundary of
the ground experiences large changes as the digging goes
forward.

The crushing and fracture of the geomaterial at the excava-
tion front is modelled by combining a rate law and a damage
law. The first one estimates the excavated material and the
second one models the general behavior of the geomaterial.

The basis of the PFEM is described in the next section.
Then the particular extension of the method for analysis of
excavation problems is detailed. Some examples are pre-
sented showing that the PFEM is a promising numerical
technique for the modelling and simulation of excavation
processes and the prediction of wear in rock cutting tools.

2 The particle finite element method (PFEM)

The particularities of the PFEM makes it very suitable for
capturing free surface motions. This fact was the main rea-
son for introducing the PFEM for solid mechanics problems
where important changes in the boundary geometry occur.
Initially the PFEM was applied to model all kind of continua.
The basis of the PFEM computations is a finite element mesh
and this allows combining the PFEM with the standard FEM
to model different parts of a continuum with one or other
method. Existing material models for geomaterial typically
used in the FEM can be directly used into the PFEM, and
this is another advantage of this method.

Box 1 Flowchart of the information transfer for the stresses update:
particles-elements-particles

Transfer and update of stresses in the PFEM

1. Transfer the stresses from nodes to elements:

σσσ t
particle(→ σσσ t

node) → σσσ t
integration point

where “→” means variable transfer.

2. Calculate new stresses:

σσσ t+�t
integration point

3. Calculate stress increment for the step :

σσσ t+�t
integration point = σσσ t

integration point + �σσσ integration point

End of the step

4. Transfer stress increment to nodes

�σσσ integration point → �σσσ particle

5. Add nodal stress increment to the historical nodal stress values :

σσσ t+�t
particle = σσσ t

particle + �σσσ particle

2.1 Basic steps of the PFEM

In the PFEM the continuum are modelled using an updated
Lagrangian formulation. That is, all variables are assumed
to be known in the current configuration at time t . The new
set of variables is sought for in the next or updated config-
uration at time t + �t (Fig. 1). The finite element method
(FEM) is used to solve the continuum equations. Hence a
mesh discretizing the domain must be generated in order to
solve the governing equations in the standard FEM fashion.
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Fig. 3 Load versus CMSD response for fracture problem using Simo-
Ju model with exponential softening

Recall that the nodes discretizing the analysis domain are
treated as material particles which motion is tracked dur-
ing the transient solution. This is useful to model the sepa-
ration of particles from the main domain such as soil/rock
particles in an excacation problem, and to follow their sub-
sequent motion as individual particles with a known den-
sity, an initial acceleration and velocity and subject to grav-
ity forces. The mass of a given domain is obtained by inte-
grating the density at the different material points over the
domain.

The quality of the numerical solution depends on the dis-
cretization chosen as in the standard FEM. Adaptive mesh
refinement techniques can be used to improve the solution.

For clarity purposes we will define the collection or cloud
of nodes (C) pertaining to the analysis domain, the volume (V)
defining the analysis domain and the mesh (M) discretizing
the domain.

A typical solution with the PFEM involves the following
steps.

1. The starting point at each time step is the cloud of points
in the analysis domains. For instance nC denotes the
cloud at time t = tn (Fig. 2).

2. Identify the boundaries defining the analysis domain n V .
This is an essential step as some boundaries may be
severely distorted during the solution, including sepa-
ration and re-entering of nodes. The alpha shape method
[6] is used for the boundary definition.

3. Discretize the fluid and solid domains with a finite ele-
ment mesh n M .

4. Solve the Lagrangian equations of motion in the domain.
Compute the state variables at the next (updated) config-
uration for t + �t : displacements, stresses, strains and
temperature, etc.

5. Move the mesh nodes to a new position n+1C where n+1
denotes the time tn + �t , in terms of the time increment
size. This step is typically a consequence of the solution
process of step 4.

6. Go back to step 1 and repeat the solution process for the
next time step to obtain n+2C . The process is shown in
Fig. 1.

Figure 1 shows a conceptual example of application of
the PFEM to model the progressive fragmentation of a rock
mass under the action of external surface forces q.

2.2 Particle concept and variable updating

In the PFEM the continuum is described using material points
in space. These points are entities that store the domain infor-
mation. Each point has a label identifying the sub-domain to
which it belongs (i.e. a point belonging to the ground) and
a material label (i.e. sandstone). When certain properties are
assigned to the space coordinates of a point, it changes from
a simple spatial reference to a larger entity. This point is then
called a particle. The kinematics and mechanical properties
of the continuum domain are described by these particles.
All the practical information of the model is simply stored
on the particles.

Differently from the discrete methods based on particles
representing an area or volume in the space, in the PFEM a
particle does not represent a physical entitling with a certain
volume. It is only a geometrical entity that contains the infor-
mation of its immediate volume or area. This means that the
description of the whole continuum can be recovered from
the particles. The simplest form of doing this is by consider-
ing each particle as a node and then connecting all the nodes
with a finite element mesh (Fig. 1). Once the continuum has
been discretized by a mesh, a computation is performed using
the standard FEM.

From this description it arises a key feature of the PFEM.
It is possible to recover the physical domain from a cloud
of points but some information necessary for the mechanical
computations is not located at the proper position. Kinematic
variables (displacements, velocities and accelerations) are
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Fig. 4 Crack pattern and stresses at-peak using Simo-Ju model with exponential softening. Analysis with the FEM on the right and with the PFEM
on the left

Fig. 5 Boundary recognition of
a set of particles using the
α-shape method [19]

Fig. 6 Lack of definition in convex corners after remeshing a set of particles using the α-shape concept
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defined on each particle and therefore they describe correctly
the particle (node) motions. However, the variables which
are usually defined at the integration points of a finite ele-
ment mesh have not a direct correspondence with the mesh
nodes. This means that the information must be transferred
adequately from the particles to the integration points to per-
form the mechanical computation on the underlying contin-
uum. Box 1 shows a simple and natural scheme to transfer
the information from particles to elements. An incremental
transfer and update for the stresses is performed in order to
minimize the smoothing during the transfer. We have checked
that after this transfer the equilibrium position is not largely
perturbed. Therefore, the next analysis step can be per-
formed without any additional equilibrium re-computation.
Figure 2 shows the structural response of a clamped shal-
low circular arch under a point load. The solution using
PFEM is compared with the solution with the standard
FEM.

More elaborated methods, such as the superconvergence
patch recovery (SPR) technique [11] can be used for trans-
ferring the information from particles to elements. For tran-
sient problems the variables are updated on the particles. It
takes in account the particle contributive volume concern-
ing to the variable. The recover of element information is
done if all nodes of a new element contain the relevant vari-
able. For a damage model, the internal variables concerning
damage are transferred to an element if all nodes of a new
element have already some damage active. A fragmentation
process modeled with damage is useful when well defined
zone with traction stresses is identified for the numerical
solution. The damage implementation used in this work is
the one described in [13] and [16] and we use it only at loca-
tions of the structures, where tensile stresses are recorded.
It is taken also as an example of implementation of a con-
stitutive model that goes a little bit further than the elastic
one. In the modelling of the constitutive behavior of the geo-
materials the laws are complex and they need the transfer
of several internal variables. In order to show the smoothing
for the damage field modeled by the PFEM a comparison of
the results of a problem modeled with FEM and PFEM is
presented (see Fig. 4). The calculation is done in 244 steps.
A re-meshing of the model and a transfer of the constitu-
tive variables are performed in each one of these steps. The
selected benchmark is the case of the classical problem of
a notched shear beam (see [25,2]) where loading conditions
are non-symmetric with respect to the notch. For the response
of the beam, the load is compared with the crack mouth slid-
ing displacement (CMSD), which coincides with the relative
vertical displacement on the lower points of the notch ∂u.
Figure 3 shows the non-linear response of the beam in terms
of load-CMSD for the Simo-Ju model with exponential soft-
ening.

2.3 Boundary definition via remeshing process

As previously mentioned, the particles are the basis of the
continuum definition in the PFEM. From these particles the
continuum is defined by interconnecting the particles and
building a mesh. A Delaunay tessellation into 3-noded trian-
gles or 4-noded tetrahedra is used for this purpose [9]. This
creates a discretized continuum domain, but does not neces-
sarily recover exactly the previous domain. In order to define
the shape of the boundary another concept is needed.

In our work we use the α-shape technique to characterize
the element size when a Delaunay tessellation is performed
[6,9,10,18]. The convex hull defined by a cloud of points is
meshed taking an account a certain predefined α-size ratio.
Every particle has information concerning the α-size of the
elements in its surroundings. This provides a methodology
for an accurate boundary definition after meshing the domain
(Fig. 5) [6].

The first distribution of particles determines the charac-
teristic length for each particle. This is translated to a charac-
teristic α-size which defines every new boundary when the
Delaunay tessellation is performed. The correct value of α

is computed using the average distance between neighboring
particles as follows:

α j =
nb∑

i=1

∣∣xi − x j
∣∣

nb
(1)

where nb is the number of neighboring particles i , that are
defined as particles contained in the same sub-domain as par-
ticle j and xk is the spatial position of a particle. In order to
set the tolerance of alpha in non-structured meshes, a char-
acteristic α-size is assigned to the new elements of the mesh
from the α-size of their nodes. The α-size of the particles has
been computed using the previous mesh and stored as geo-
metrical information of the particle. The obtained elemental
value for the α-size is compared with the minimum radius
of circle which contains all nodes of the new element. Cer-
tain tolerance on the circle radius is admitted to set the level
of accuracy of the selection. The performed comparison is
summarized as follows:

1

N

N∑

j=1

α j ≤ rtol ∗ R(e) (2)

where N is the number nodes of the element, α j the α-size
of the node j, R(e) is the minimum radius of the circle which
contains all particles and rtol a value between 0.5 and 1.

Any geometry in 2D and 3D can be recovered after
the particle definition using the α-shape technique. Some
extra refining must be however applied to detect the bound-
aries of empty holes in the domain. Usually the α-shape
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Box 2 Flowchart of the boundary refinement. The refining scheme is
complementary to the α-shape process

Initial boundary defined

A. Compute convex normals ni assigned to boundary particles

B. Create a new mesh ( with j elements and i nodes (particles))

C. Pass the α-shape method to determine the new boundary

D. Refining scheme:

1. Locate elements e j which nodes are all located in the boundary

2. Determine the center c j of the triangles or tetrahedra elements

3. Compute for all vertexes:

a. The vector from the center to the vertex:

dk = c j − vk

b. The projection of the inward normal nk over dk :

pk = nk · dk ∀k = 1, nvertex

where nvextex is the number of element vertexes

c. if (pk < 0) → {vk = f alse and n f v = n f v + 1}:
the element e j is outside the boundary

the vertex vk is marked as false

n f v is the number of false vertexes

4. Selection criteria:

n f v ≥ 1 → e j = f alse (for Triangles)

n f v > 1 → e j = f alse (for Tetrahedra)

5. All false elements are not considered in the new mesh

Final deformed boundary defined

method fails in the definition of sharp corners, as depicted in
Fig. 6.

To overcome this handicap in the boundary detection an
additional refining algorithm can be applied after mesh gen-
eration. The algorithm is based in the convex nature of the
elements formed in edges or in holes, which must be pol-
ished. The criteria to consider or not the elements is based
on the boundary inward normals to the element nodes. Box 2
summarizes the refining scheme.

The main conceptual steps of the PFEM during one time
increment are presented in Fig. 7.

2.4 Governing equations and solution scheme

Once a domain is defined the mechanical behavior of the
system can be computed. A discretization of the continuum
is automatically available after meshing the particle domain.
This allows us to perform a finite element computation on
the given domain. A summary of the main governing equa-
tions using an updated Lagrangian formulation is presented
below. The relevant dependent variables are the initial density
ρ0(X, t), the displacement u(X, t), and the Lagrangian mea-
sures of stress and strain in the current configuration ϕϕϕ(B)

[26,29].

Fig. 7 Main steps followed in PFEM solution during a time increment (from left to rightand up to down)
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Fig. 8 Using the alpha-shape method in the detection of contact
between subdomains is done automatically. This generates contact ele-
ments when the sub-domains are close enough

Mass conservation

ρ(X, t)J(X, t) = ρ0(X, t) (3)

Conservation of linear momentum.

∂σi j

∂x j
+ ρb̄i = ρüi (4)

Constitutive equation (In our work we use a damage model).

σi j = (1 − d)Ci jkl Ekl (5)

where Ekl is the linear part of the Green-Lagrange strain
tensor and d is the damage internal variable. Note that any
constitutive model of continuous mechanics can be used in
the context of the PFEM.

The weak form of the balance of linear momentum equa-
tion (Eq. 4) is obtained by applying the principle of virtual
work. This yields

g(ϕϕϕ,ηηη) =
∫

ϕϕϕ(B)

σσσ · ∇Sηηη dV −
∫

ϕϕϕ(B)

ρ(b̄ − v̇) · ηηη dV

−
∫

ϕϕϕ(∂B)

t̄ · ηηη d S = 0 (6)

where ηηη is a vector valued function ηηη = {ηηη |ηηη = 0 on ∂Bu},
representing virtual displacements; t̄ are the surface tractions,
ρb̄ are the body forces and ρv̇ are the inertia forces.

In Eq. (6), all integrals, stresses and gradients are com-
puted in the current configuration. This introduces a nonlin-
earity in the solution for large displacement problems. The
discretization procedure follows the general FEM methodol-
ogy for solid mechanics [26,29].

Note that the main difference introduced by the PFEM in
the discretization process is that the basic discrete unit is the
particle, while the mesh is a consequence of a distribution of
particles. This offers a flexible adaptation of the geometry to

Box 3 Definition of a self-contact element in the PFEM

1. A self-contact element has all nodes on the surface boundary.
The particles of the surface boundary have a prior definition of
the exterior normal and the domain label. They also have a
prior definition of the connectivities with other surface
boundary particles before the contact search

2. Using the previous mesh connectivities of the surface, a
self-contact element will have:

- In 2D: A node without any connectivity with others.

- In 3D: One or two element nodes without any connectivity with
others.

This defines two different contact element types in 3D, Node to
face element and edge to edge element. See Fig. 9

.

3. Using the previous mesh boundary normals, a self-contact
element will have:

- All normals associated to element nodes pointing towards the
outside of the element:

The vector from the center of the element to each node is
computed and projected on the normal of the corresponding
node. If the projection is negative the condition is fulfilled.
When the angles are acute some corrections are needed and a
certain tolerance on the projection is permitted

the continuum kinematics. This description is suitable for a
good conjunction between the rapid changes in the domain
boundary and the numerical computations for predicting the
mechanical behavior.

When large displacements and large deformations occur,
as for excavation problems, other mechanical phenom-
ena are present. Usually the continuum breaks, disconti-
nuities appear and large domains are split into small ones.
The PFEM allows to reproduce these complex phenomena.
For the numerical modeling of excavation we have focused
on the characterization of contact mechanics and the boring
of the material. The treatment of frictional contact is detailed
in the next section.

3 Contact mechanics with the PFEM

3.1 Geometrical detection

The geometrical detection of contact is a complex problem.
The geometric search is especially complex when the contact
of more than two bodies has to be considered. In excavation
problems this happens when the solids break, and hence sev-
eral discrete elements are originated from the initial set up
during the solution process.

Static contact problems with large deformations also need
fast and reliable search algorithms, as contact areas are not
known a priori and can change much within a load step. The
search for an active set of contact constraints is not trivial in
this case, since a surface point of a body may contact any
portion of the surface of another body. Thus the search for
the correct contact detection eventually needs considerable
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Fig. 9 Self-contact elements in 3D formed between two exterior surfaces of the domain: a Node to face element, b Edge to edge element

effort, depending on the problem. This is especially true when
self-contact is possible.

Classically, the contact search task is split into two phases:
the spatial search for objects (finite element subdomains)
which might possibly come into contact, and the determina-
tion of pairs of objects (finite element subdomains) which
actually intersect and hence are in contact.

Usually in the first phase the finite elements lying on the
surface of the solid are ordered by a sorting algorithm. After
that, a hierarchical structure is set up to find out which bodies,
part of the bodies, surfaces or parts of the surfaces are able
to come into contact. This is a global search within a given
time step or displacement increment. Search algorithms com-
bine complex structures of cell decompositions, binary tree
searches or more advanced spatial methods [27].

The complicated phases in the spatial search are simplified
in the PFEM as the spatial search is intrinsically bound up
with the generation of the mesh. Contact is detected when the
domains are so close as to generate contact elements between
the interacting subdomains (Fig. 8) [7,10,14,15,18]. An
interface mesh is created anticipating the spatial contact.
Hence, a mesh for the domain and another one for the inter-
face are generated. This permits to anticipate the collision of
the different subdomains.

Usually the mesh identification is performed compar-
ing labels between domain particles. A contact element is
detected when the element contains particles of two or more
different subdomains. This yields a rapid and automatic
detection of the contact interface mesh. However this detec-
tion procedure is not possible when the same subdomain
enters in contact. This can happen due to large deformations
or when parts of the same subdomain are segregated dur-
ing the detection of boundaries with the α-shape procedure.
Then the contact is produced between subdomains with the
same identification label and has to be treated as self contact-
ing subdomains. In order to include self-contact in the spatial

search, new tools have to be added to the contact search algo-
rithm.

The algorithm for detecting self-contact elements in this
work is based on the evaluation of the surface normals. Let
us consider that every particle that belongs to the surface of
a subdomain has an associated inward normal vector which
points towards the inner side. After applying the α-shape cri-
teria, a self-contact element must fulfill the conditions stated
in Box 3:

The conditions in Box 3 are illustrated in Fig. 9 for a 3D
self-contact tetrahedron. Note that the contact domain in 3D
has two different modalities, Node to face element and Edge
to edge element.

The first modality simplifies the number of elements to
be analyzed. Only elements on the edges and self-contacting
elements will be formed entirely by particles on the boundary
of the same subdomain. The second modality rejects contact
elements that are formed in the convex edges of the subdo-
main and also helps to identify the position of the element.
Hence, if the element is located outside the subdomain it is
then a self-contact element.

Self-contact conditions have been written for determin-
ing the contact elements for meshes of 3-noded triangles
and 4-noded tetrahedra. Once the set of contact elements
is determined and fixed for each time step, the contact con-
straint can be formulated in a fictitious continuum domain
composed by the contact element set. In the PFEM, the same
finite elements used for discretizing the continuum are used
to model the contact domain (Fig. 3). This is an advantage of
the PFEM, which provides a simple discretization procedure
for modelling contact.

3.2 Treatment of contact constraint

The treatment of the contact constraint is based in the inter-
face mesh created in the contact detection. This procedure has
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Fig. 10 Deformed configuration Bα and minimum distance between
bodies [27]

been named in this work as the continuum constraint method
(CCM). The CMM was originally developed in 2009 and
it shares many similarities with the contact domain method
(CDM) developed by Oliver et al. [7,15]. In both the CCM
and the CDM the contact constraint is formulated in the ficti-
tious domain created between the contacting bodies Bc when
the geometrical detection is performed. When the constraint
is active on ∂Bc, the contact term is then related to the con-
tinuum and acts as an internal work term in the continuum
formulation (Eq. 6).

The first particular feature of the CCM is related to the
definition of the contact kinematics. Usually the kinemat-
ics are defined by two sub-domains where a contact gap
function describes the spatial interaction between them. In
the PFEM the normal contact gap function ḡN defines if the
contact is active or not and determines a reference value for
the penetration condition. Firstly it is necessary to define
xα as the coordinates of the current configuration ϕϕϕ(Bα) of
the body and n1 as the normal vector associated with body
B1 at the minimum distance point (see Fig. 10). After that,
the inequality constraint for the non-penetration condition is
started as

gN = (x2 − x̄1) · n̄1 − ĝN ≥ 0 (7)

where ĝN is the prior gap between the two bodies. In this
case, the penetration function defines if the contact is active
or not; i.e.

ḡN =
{

true → if (x2 − x̄1) · n̄1 − ĝN < 0
f alse → otherwise

(8)

when ḡN = true, then gN = (x2 − x̄1) · n̄1 − ĝN . This is
necessary for notation consistency in the imposition of the
correct contact constraints.

For the tangential contact, the tangential gap gT defines
the length of the frictional path and is computed for the slip
condition as

Fig. 11 A much simplified abrasive wear model showing how a cone
removes material from a surface

gT =
t∫

t0

‖ξ̇ξξα
x̄1
,α‖dt (9)

where t is the time used to parameterize the path of point x2, ξξξ

are the convective coordinates of x1 during the motion and α

is the index of the deformed configuration Bα , as illustrated
in Fig. 10.

The definitions presented for the gap in Eqs. (7) and (9)
fulfill the Kuhn-Tucker conditions for contact [27].

The contact constraint for the PFEM is finally written as:

Cc =
∫

ϕϕϕ(Bc)

(Pσσσ c + Tσσσ c) · ∇Sηηηc dv

=
∫

ϕϕϕ(Bc)

σσσ c · ∇Sηηηc dv (10)

In Eq. (10) P is the projection tensor P = n̄1 ⊗ n̄1 and n̄1

is the normal to the contact surface at the minimum distance
point. Tensor T can be written for the stick case as T =
(I − P). Equation (10) expresses the virtual internal work
within the contact domain.

The integration is performed with respect to the contin-
uum domain ϕϕϕ(Bc) instead of the contact surface ∂Bc ≡ 
c.
Note that ϕϕϕ(Bc) is the sub-domain occupied by the interface
contact domain Bc in the current configuration. The virtual
displacements ηηη

γ
c in Eq. (10) are equivalent to the ones in

Eq. (6); i.e. ηηηc ≡ ηηη.
Tensor σσσ c in Eq. (10) is the Cauchy stress tensor for the

contact domain which depends on δḡN and δgT . This is
defined as

σσσ c =
{

( K
J n ln J n)1 → if (ḡN = true and pN < 0)

0 → if (ḡN = f alse or pN ≥ 0)

(11)

The constitutive law used to compute σσσ c is equivalent to a

penalty law where K is the bulk modulus K = λ + 2 μ

3
and

J n is the Jacobian determinant computed using the projected
displacements:
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(u · n̄1) > 0 → un = (u · n̄1) · n̄1 = Pu (12)

The discretization of the constant constraint (10) for the
normal forces is analogous to the first term of the principle of
virtual work (see Eq. 6) [26]. Considering the normal force
vector produced by the normal contact as FN := (C CC

c )N ,
yields

FN := (Cc)N =
∫

ϕϕϕ(Bc)

(Pσσσ c) · ∇Sηηηc dv (13)

Using the variation of the contact test functions ∇Sηηηc (6)
for the projected displacements (12) and using the isopara-
metric concept [26], the contact constraint can be written on
a parent configuration � as

(ηηηc)
T (Cc)N =

nce⋃

ce=1

P

nn∑

I=1

ηηηT
I

∫

����

Bn
0I

T
σσσ ce det jn

ce d�

(14)

where subscript (.)ce means contact element and superscript
(.)n means that the variables are computed using the nor-
mal projected displacements (12). The � means that it is
expressed on the parent configuration. The projection tensor
is P = n̄1 ⊗ n̄1, considering that the normal in the contact
surface n̄1 is rate independent. Bn

0I
T contains the derivative

of the shape functions commonly used in the finite element
approximation.

The tangential contact constraint for the CCM formulation
in the slip case, considering Coulomb law [28], is written as

FT := (Cc)T =
∫

ϕϕϕ(Bc)

κκκc · ∇SηηηcdV

=
∫

ϕϕϕ(Bc)

−μ Tσσσ c · ∇SηηηcdV (15)

where T = t̄1 ⊗ n̄1 and σσσ c is described by (11). When the
friction coefficient μ, the normal n̄1 and tangent t̄1 are rate
independent, the previous equation can be written as

(Cc)T = −μT

∫

ϕϕϕ(Bc)

σσσ c · ∇SηηηcdV (16)

This expression can be applied when the contact surface
does not suffer big changes in one time step. When the slid-
ing condition is applied, the discretization of the tangential
contact constraint for the CCM method is given by

(ηηηc)
T (C CC

c )T =
∫

ϕϕϕ(Bc)

−μTσσσ c · ∇Sηηηc dV

=
nce⋃

ce=1

−μT

∫

ϕϕϕ(�ce)

(∇Sηηηc)
T σσσ ce dV

=
nce⋃

ce=1

−μT

nn∑

I=1

ηηηT
I

∫

ϕϕϕ(�ce)

Bn
0I

T
σσσ ce dV

=
nce⋃

ce=1

−μT

nn∑

I=1

ηηηT
I

∫

����

Bn
0I

T
σσσ ce det jn

ce d�

(17)

The contact constraint is inserted in an implicit solution
scheme using a rotational approach. This means that the
convergence for the uniqueness of the contact active set is
checked within the Newton iteration. Contact is not a con-
servative contribution. The linearization of the contact equa-
tions introduces additional terms in the consistent tangent
matrix which must be taken into account during the implicit
solution. In a rotational approach of an iterative scheme the
quadratic convergence of a Newton-Raphson method is lost.
In this case an approximation of the consistent tangent matrix
is suitable enough for the computation. The approximated
tangent matrix for the contact contribution is given by

Kcon =
nce⋃

ce=1

(P (K̂con
ce )P − μT (K̂con

ce )P) (18)

with

K̂con
ce = K̂mat

ce + K̂geo
ce (19)

and matrices K̂mat
ce and K̂geo

ce defined by

K̂mat
ce =

nce⋃

ce=1

nn∑

I=1

nn∑

K=1

∫

ϕϕϕ(�ce)

[B̄n
0I

T D̄vol B̄n
0K ] dV (20)

K̂geo
ce =

nce⋃

ce=1

nn∑

I=1

nn∑

K=1

∫

ϕϕϕ(�ce)

[(∇x̄ NI
T ) σ̄σσ ce ∇x̄ NK ] I dV

(21)

where D̄vol is the volumetric part of the incremental mate-
rial constitutive tensor ¯̂cc expressed in the current configu-
ration. NJ are the shape functions for the elements in the
contact interface. The convergence properties in case of con-
tact varies depending on the stability of the contact active set
and the deformation on the contact area. For a stable active
set we observe quadratic convergence when the deformation
of the contact area is low. When the contact area experiences
a larger deformation the quadratic convergence is lost and
the convergence rate decreases to linear and in some cases
sublinear.

To model an excavation process, not only the computa-
tion of the contact forces between solid domains is needed.
Also a scheme to capture and treat the changing geometries
is required. The features of the PFEM allow us to model
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Fig. 12 A simplified excavation model for a removal of a solid material by means of a cutting tool

Fig. 13 Drag tools parallel to the cutting direction. α: rake angle; β:
clearance angle

rapidly changing boundaries and adapt the geometry to every
mechanical process. This opens a new way for the treatment
of wear in rock cutting materials and also for modeling exca-
vation problems with dynamic boundary generation.

4 Modelling tunneling processes

The better knowledge of the excavation process is a mat-
ter of great interest in tunnelling engineering. The process
of crushing and digging a solid material introduces several
complicated phenomena that must be taken in account in the
analysis. The wear produced on the cutting tools is another
relevant phenomenon when a massive rock material is bored.

Most of these phenomena are related to the constitutive
behavior of materials and to the mechanical contact. To pay a
specific attention to each particular physical problem distinct
multi-scale analyses are needed. To simplify these processes
usually the problem is seen from the macro-scale and mod-
eled with particular laws.

In the next sections, the general theory for modelling wear
of rock cutting tools is introduced. From that theory the
macroscopic model for excavation is developed. The model
is independent from the constitutive behavior of the bodies
in order to not restrict its general application.

In general, wear is related with the sliding contact and
can involve different mechanisms at various stages of the
mechanical process. It depends upon the properties of the
material surfaces, the surface roughness, the sliding distance,

the sliding velocity and the temperature. For processes
involved in excavation it is important to reduce the wear
mechanisms. Abrasive wear is chosen as the most relevant
type of wear for the analysis.

4.1 Abrasive wear of rock cutting tools

Abrasive wear arises when a hard rough surface slides against
a softer surface, digs into it, and plows a series of grooves.
The material originally in the grooves is normally removed
in the form of loose fragments, or else it forms a pair of
mounds along each groove. The material in the mounds is
then vulnerable to subsequent complete removal from the
surface.

To quantify abrasive wear through constitutive equations,
the properties or effects that play a major role have to be
determined. In our work a simple wear model is considered.
In this model, the asperities on the hard surface are assumed
to be conical (Fig. 11). A conical asperity, carrying a load
�FN penetrates into a softer surface removing certain vol-
ume. Taking in account all asperities of the contact surface
leads to an expression that was proposed initially by Archard
for adhesive wear in [1] and [8], and later also applied to
abrasive wear [22],

Vwear = kabr
FN gT

H
(22)

where gT is the relative sliding distance and kabr is the abra-
sive wear coefficient that physically represents the average
geometry of the asperities. The range of kabr is between 10−2

and 10−5. The penetration hardness coefficient H is speci-
fied by the Brinell test or the Vickers test, the last one is
performed by pressing a square pyramid into a flat surface
and then measuring the diagonals of the square indentation.

The hardness coefficient is the basis of the Mohs’s hard-
ness scale, widely used by mineralogists. The effect of hard-
ness on the abrasive wear rate is the fact that an abrasive
material must be harder than the surface to be abraded,
thought not enormously harder. This is an important feature,
as a no abrasive material will cut anything harder than itself.
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Fig. 14 A simplified
excavation model for removal of
solid material by means of a
cutting disc. s is the cutter
spacing and w is the disc edge
width

Fig. 15 Excavation strategy consisting in a Shaping the Surface using the computed volume loss

4.2 Excavation

The mechanism of cutting and digging on the ground is not
so much different compared to wear of a solid surface. The
most significant difference is the scale where the process
takes place. The wear of materials usually is associated with
the micro-scale of solid surfaces. When one refers to the ero-
sion of a fluid on a solid surface the scale starts to change.
The same happens when a solid surface digs onto another.
Excavation processes can be described with the same physi-
cal variables and with similar laws as wear. Figure 12 shows
how a macro-scale model for excavation is analogue to the
micro-scale model used for wear.

The volume loss rate of the excavated material depends on
the relative displacement of the cutting tool and the hardness
of the material. A rate function is used for the descrip-
tion of excavation as was done with wear. Similar analo-
gies have been employed by other researchers in order to
model fracture of hard cutting indenters in a brittle material
[5,17].

The asperities of the surfaces are now cutting tools with a
specific geometry. The characteristic cutting tools for TBMs
are discs and for roadheaders are drag picks. In the case of
picks the excavation model can be represented with the basic
model of Fig. 12. Hence the estimation of the volume loss
of material for the particular case of drag picks is:

Vdp = Kdp
FN gT

Hd
(23)

where Kdp is a measure of the boreability or excavability of
the pick which depends on extra variables like the clearance
angle in the cutting direction β and the rake angle of the bit
α (Fig. 13). Hd is the hardness of the material.

The derivation of (23) is analogue to the one performed
for abrasive wear. A physical definition of Kdp is

Kdp = tan θ

π
(24)

where θ = β̄ + ᾱ is the sum of the average clearance angle
and the average rake angle for the roadheader bits.
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Box 4 Flowchart for the
analysis of an excavation with
the PFEM

1. Read the initial conditions and initialization parameters from a reference mesh:

(a) Nodal variables: {u0, u̇0, ü0,σσσ 0}

(b) Elemental variables: domains, materials, constitutive laws and excavation laws...

(c) Scalar variables: timestep (�t) and all needed coefficients.

2. Compute the nodal distance parameters hnode for the α-shape using the initial mesh.

3. Transfer the elemental variables to the nodes (particles).

4. Refine the mesh if needed (insert and release particles).

5. Rotational execution of the implicit time integration for (t + �t):

(a) Estimate a solution uν := ut+�t . Start Newton iterations ν+1

(b) Get the elemental variables from their values in the particles

(c) Compute the residual (uν ,σσσν ) →
r = f int + fcon − fext

(d) Compute the system jacobian matrix A = M
β�t2 + Kmat + Kgeo + Kcon

(e) Solve the linear system: r − A �u = 0

(f) uν+1 = uν + �u

(g) Check convergence; if not met, go to (a).

(h) Check active contact elements; if the active set changes, go to (a) with the new active set

Compute tool wear and excavation volumes: V t+�t
w and V t+�t

d

Compute the variables increment: u = uν+1,�σσσ ,�εεε, ...

Project the stress and strain increments to the particles: �σσσ particle,�εεε particle , ...

6. Incremental update:

(a) Particle positions: xt+�t = xt + u

(b) Define the surface position of the particles due to wear and excavation

(c) Velocities, Accelerations: u̇ = u̇ν+1, ü = üν+1

(d) Stresses: σσσ t+�t
particle = σσσ t

particle + �σσσ particle

(e) Strains: εεεt+�t
particle = εεεt

particle + �εεε particle

(f) Update the internal variables in the constitutive laws

7. Create a new mesh:

(a) Check wear and damage on particles: remove excavated particles

(b) Transfer the domain particles to the mesher

(c) Apply the α-shape method in the new mesh: Boundary recognition

(d) Update the variables dimensions (if the number of particles has changed)

(e) Identify the interacting domains and the interface mesh for contact

8. Check active contact elements

9. Estimate the solution for the next time step

10. Output results. If the simulation is not complete go to 4

In the case of discs, a more detailed model has to be studied
as shown in Fig. 14.

The volume loss of material produced by a disc cutting a
geomaterial is expressed as

Vd = Kd
FN

UC S
gT (25)

where UCS is the uniaxial compressive strength, the most
widely test for rock strength. Kd is the boreability coeffi-
cient that physically represents the weighted average of the
values of spacing s̄ = ∑nd

i=1 (si/nd) and the disc width

w̄ = ∑nd
i=1 (wi/nd) (where nd is the number of discs).

Kd = kp (w̄ + s̄)

103 (26)

where kp is a constant that depends on the material (kp =
3940 for hard rocks) and the 1/103 appears due to the conver-
sion of disc penetration from millimeters to meters. A more
detailed development of the Eq. 26 can be found in [3]. Kd is
a parameter that has to be calibrated using the properties of
the excavated material and the geometrical properties of the
TBM cutter head: discs distribution and disc geometry.

123



Comput Mech (2013) 52:607–629 621

Table 1 Time consuming with the programmed code for the PFEM (2,4 GHz processor)

Problem d.o.f �t (s) Average iters Build time (s) Solver time(s) Mesh time(s) Total time for �t (s)

2D-RH* 15838 0.005 3 0.3 0.2-0.5 0.18 4

3D-RH* 157653 0.01 2-6 27 15-30 15 200

3D-TBM 391897 0.01 6 41 43 21 500

RH* Roadheader

Fig. 16 2D model of an
excavation problem with a
roadheader

Equation (25) depends on the normal force applied to the
excavation front FN , which is only a component of the con-
tact forces received by the head of the TBM.

Equations (22), (23) and (25) are applied in the context of
the PFEM formulation described. In the PFEM every parti-
cle represents a part of the domain volume. The surface of
a body is composed by particles that represent the volume
of the same body associated to them. By means of the con-
tact model the interaction between two solid domains can be
quantified. The result is the normal force FN associated to
the surface particles, and the relative velocities or the sliding
distances. Therefore, for each particle laying on the surface,
the volume loss of material can be estimated in time by the
excavation model. Equation (22) can be written in its more
general form as:

V t+�t
d = V t

d + Kd
‖FN ‖

Hd
(‖vt‖ · �t) (27)

where vt is the relative tangent velocity between the contact
surfaces and �t is the time step. The volume loss of material
Vd can be compared with the volume associated to each con-
tact particle. From this comparison different strategies for
geometry shaping can be formulated.

The global concept of shaping the surface after computing
wear and excavation is presented in Fig. 15. When the volume
associated to the patch of the particle is reached the particle
is released from the material volume.

4.3 Constitutive models and excavation

The damage from the stresses generated in the excavation can
be extended inwards and affect other parts of the excavated
material. The damage not directly produced by the excavation
crush is described by the constitutive model, but not by the
excavation model. On the other hand, the damage which frac-
tures the ground due to excavation is considered within the
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Fig. 17 2D excavation with a
roadheader

Fig. 18 2D excavation with roadheader. Mesh used for the PFEM computation. Stresses, strains and accelerations on the ground due to excavation
and accumulated wear on the roadheader surface after 32” of excavation

excavation model. The boreability coefficient Kd includes
this phenomenon (see Eq. 26). This coefficient defines the
material properties that quantify the damage produced on
the surface of the geomaterial, but only in the cutting region.

When damage occurs on some part of the massive ground,
the boreability coefficient of this zone (Kd ) is modified in
order to include the effect. Material properties change and is
easier to dig on it. Therefore the damage model affects the
excavation model by means of this coupling. The modifica-
tion on the boreability coefficient is applied using the damage
variable d as follows:

K̂d = Kd

1 − d
with d ∈ [0, 1) (28)

where K̂d includes the damage influence in the volume loss
rate. Using the general form of Eq. (23) and introducing the
damage influence yields

Vd = K̂d
FN gT

Hd
=

(
1

1 − d

)
Kd

FN gT

Hd
(29)

The layer of elements in the contact surface is not described
by the geomaterial constitutive law. Instead of that, an
elastic layer is used. This is applied in order to avoid
the local effects that contact forces produce in contact
surfaces. Damage produced in the surface area is com-
puted by the excavation model. Once a damaged ele-
ment is reached by the excavation front, the amount of
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Fig. 19 Computed contact
forces on the 2D roadheader and
averaged contact interaction
curve

Fig. 20 3D model of a
roadheader cutting a ground

accumulated damage is accounted for in the model by using
Eq. (28).

Similarly as for worn particles, totally damaged particles
do not contribute to the mechanical behavior of the domain.
Therefore when particles on the body surface reach the maxi-
mum damage level (d = 1) they are removed from the analy-
sis domain.

4.4 General solution scheme

Box 4 presents the flowchart for modelling an excavation
problem with the PFEM using a rotational execution of an
implicit time integration scheme.

5 Simulation of tunneling problems

The PFEM formulation described previously has been imple-
mented in a computational code written in C++ [4]. The sim-
ulation models are created using the same procedure as in
the classical FEM. The materials contain certain properties
related to excavation. Some particular parameters about the
contact strategy and the mesh regeneration are also included
in the definition of the model. Some examples are presented
in order to show how an excavation is modeled using the
PFEM accounting for the wear of the rock cutting tools. All
examples presented have been run in a single processor Pen-
tium IV PC. In Table 1 an indicative computing time for the
main processes of these examples is presented.
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Table 2 Material properties for
the 3D roadheader excavation
example

Materials Rock Elastic foundation Roadheader head Roadheader center

E (Pa) 20.5 × 109 1.96 × 1010 1.96 × 1012 1.96 × 1011

ν 0.15 0.33 0.33 0.33

δ (kg/m3) 2,500 4,500 7,850 7,850

H (Pa) 1010 1010 1010 1010

Kw 0.5 0.5 0.1 0.0

μd 0.2 0.2 0.2 0.2

μs 0.3 0.3 0.3 0.25

Fig. 21 Wear on the cutting
tool after 20.9 s penetrating on
the massive rock and at 158.12 s,
when the roadheader is moving
towards the side

Fig. 22 3D roadheader excavation. Contour lines of accelerations produced by the excavation forces
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Fig. 23 Geometry of TBM head

Note that to capture the surface wear and excavation the
cutting tools have to travel across the whole ground surface.
This must be managed with a suitable combination of the
rotation and penetration speeds on each case of study. In
some examples the penetration velocity has been forced to
be larger than the realistic one in order to get results in a more
reasonable time.

5.1 2D roadheader tools

The first application example is a simplified model of an elas-
tic roadheader in 2D. Usually excavation problems are fully
3D. However, some simplifications can be made to model
the problem in 2D. The purpose of the example is to check
the suitability of the PFEM for modelling and simulating a
real excavation. The roadheader has a circular center which
has an imposed rotation and displacement. This transfers the
rotation to the dentated ring on the roadheader surface which
generates friction when contacting with the ground. Figure 16
shows the 2D model with the material properties and bound-
ary conditions.

The problem is solved as a dynamic interaction between
two continuum domains. A small Rayleigh damping has
been included in order to reduce the frequencies induced by
the excavation impacts [3]. For the elastic ground material
Rayleigh parameters are a1 = 0 and a2 = 0.05 and for the
roadheader a1 = 0 and a2 = 0.01. The geomaterial in the
excavation region is modelled with a damage constitutive law
using a Drucker-Prager damage surface and linear softening
[16]. The soil region far from the excavation front has been
modeled with a simple hyperelastic model. The visco-elastic
behavior considered for this material is introduced by the
Rayleigh damping. The values considered for the damping
coefficients are a1 = 0 and a2 = 0.01.

Figure 17 shows the excavation in the initial, intermediate
and final states. The impacting forces are depicted using the
resulting accelerations in the excavation front.

The wear coefficient Kw and the material hardness H are
shown for each material. A model of cutting picks has been
considered on the surface of the roadheader (see Eq. 23).
The hardness of the geomaterial is Hdp = 107 Pa and the
boreability coefficient Kdp = 2500. The friction coefficients
are μs = 0.3 and μd = 0.25. The thickness of the model is
t = 1 m. The total excavation time studied was about 100 s.

In Fig. 18 the results after approximately 32 s of analysis
are depicted. Stresses, strains and accelerations in the ground
as well as wear produced on the surface of the roadheader
after 2 revolutions of the tunneling machine are presented.

Some conclusions can be extracted from this simplified
excavation analysis. The first one is that the computing time is
very large compared with the real time simulated. Around 4 h
of computing time were needed to obtain 10 s of actual exca-
vation time. The numerical treatment of contact and crushing
in the excavation front has a temporary scale much smaller
than the time for the operational excavation.

Note that in the presented example the imposed advance
velocity of the roadheader is large. This increases the excava-
tion velocity generating a more demanding test for the per-
formance of the method. In 32 s the roadheader penetrates
almost 1 meter in the ground. As a result of this imposition
the computed contact forces are extremely large (see Fig. 19)
and can not be directly compared with the usual parameters
of an excavation with a roadheader.

The penetration velocity has been forced to be larger than
the realistic one in order to get results in a more reasonable
time. To capture the surface wear and excavation, the cutting
tools have to travel across the whole ground surface. A suit-
able combination of the rotation and penetration speeds can
be a solution for the characterization of the excavation in a
shorter time. This is a first attempt to accelerate the numeri-
cal simulation but it would require an appropriate correction
factor in order to estimate the magnitude of the excavation
forces when the excavation has different parameters.

5.2 3D Roadheader

In this example an excavation with a roadheader is modeled
in 3D. The objective is to reproduce a real excavation as well
as checking the times and the performance of the method.
The simulation considers a ripping process. Firstly the rip-
ping head is pushed towards the rock-solid with a constant
rotation. After 18 s, when the roadheader has excavated a con-
siderable portion of the rock, it moves over a lateral part. To
reproduce the work a rotation of 2 rpm is imposed at the cen-
ter of the roadheader during the entire analysis. An imposed
velocity of v = (0, 0,−0.01) m/s is applied at the first 18 s
and a velocity of v = (0.01, 0, 0) m/s in the following time
steps. Prescribed velocities are applied in the cylindrical axis
of the machine only. The external part of the roadheader is
set free. The geometry of the model is displayed in Fig. 20.
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Fig. 24 Model of the real rock
cutting head of the TBM

Table 3 Material properties for
the TBM excavation example Materials Rock TBM rear support TBM cutting head

E (Pa) 4 × 109 1.96 × 1012 1.96 × 1011

ν 0,15 0,33 0,33

δ (kg/m3) 2500 7850 7850

H (Pa) 2 × 109 1010 1010

Kw 1 0.5 0.5

μd 0.2 0.2 0.2

μs 0.3 0.3 0.3

The rock-solid is fixed on the base. Points in the lateral walls
are allowed to move vertically.

Table 2 lists the material properties of the model. The wear
coefficient Kw and the material hardness H are defined as
properties of each material. A cutting pick model has been
considered on the surface of the roadheader (see Eq. 23).
The hardness of the geomaterial is Hdp = 0.5 × 107 Pa and
the boreability coefficient Kdp = 100. These properties are
assigned to the surface of the roadheader head considering
50 picks on it.

The discretization of the model was done with an initial
mesh of 270463 4-noded tetrahedra with 52551 nodes. The
time step used in the analysis is �t = 0.04 s.

The simulation permits to characterize some important
excavation variables. Firstly, the most important unknowns
are the contact forces. Contact occurs when the disc edges
come near the ground wall. An interface mesh of contact ele-
ments is generated and it anticipates the contact area. The
contacting forces are transmitted through the contact ele-
ments to each domain. This interaction damages the solid
material and digs into it. With the normal contact force and
the relative sliding velocity an excavated volume and a worn
volume are computed for each surface particle. The geome-
try of the ground is shaped at the same time the excavation
moves forward. Figure 21 shows the distribution of wear on
the head of the roadheader after the initial penetration on the
massive rock and some seconds later when it rips onto the
left side.

The resultant of the surface forces can be translated to the
axis of the roadheader in order to yield force and momentum
reactions. This gives practical information of the power and
torque needed for the excavation. At the same time, exca-
vation forces generate accelerations on the rock which are
transmitted to the surface. The foundation located on the
top of the model vibrates due to the excavation. Figure 22
shows the produced acceleration for different stages of the
excavation. This information is very useful in order to pre-
dict possible damages in buildings located on the ground
surface.

5.3 TBM excavation

The simulation of the actual functioning of a tunnel bor-
ing machine (TBM) is performed in this example. Figure 23
shows the actual geometry of the TMB head. It is a rock cut-
ting head of small size. This machine is usually used when
large water canalizations must go underground. That happens
when the water piping crosses a highway or a populated area.
This type of machines are used only for excavating hard rock.
For soft rock grounds discs are not used and are generally
replaced by picks.

The geometry of a TBM is very complex. Therefore, a sim-
plified model is created from the machine depicted in Fig. 23.
Figure 24 shows the cutting head model of the TMB which
will be used to excavate the piece of solid rock. In Table 3
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Fig. 25 Discretization of the
model. The initial mesh has
704475 tetrahedra and 127299
nodes

Fig. 26 TBM simulations. Excavation rate and stresses on the rock surface in the initial interaction

the material properties for the rock-solid and the TMB head
are presented. To model the excavation, the characteristics
of the ground and the boreability of the cutting parts have to
be defined. These properties are assigned to the TBM head
surface for each disc. Generic values has been assigned for
the boreability Kd ⊂ (150, 300), for the hardness of the rock
material Hd ∼ 1.0×108 Pa and for the uniaxial compressive
strength of the rock UC S ∼ 1.88 × 108 Pa.

The TBM kinematics are the head rotation and the forward
movement. In order to reproduce them, a velocity of v =
(0.01, 0, 0)m/s and a rotation of 4 rpm are imposed to the
rear support of the TBM head. These movements are kept
constant during the entire analysis. The rock-solid domain is
fixed at the base.

The problem is analyzed using a mesh of 704475 4-noded
tetrahedra with 127299 nodes. The mesh is finer in the exca-
vation zone (see Fig. 25). The time step used in the analysis
is �t = 0.01 s.

Figures 26 and 27 show some results of the initial inter-
action between the TBM and the ground. The computed
force evolution on the TMB cutting wheel is very irregular.
Instantaneous action and reaction forces appear when discs
impact on the rock face. Figure 27 shows the instantaneous

Fig. 27 Normal forces and strains due to the excavation at the early
stage of the excavation

forces of the TBM discs against the massive rock. From that
results the power required for the TBM operation can be
estimated.
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Fig. 28 Volume loss due to wear on the TBM discs at time t = 1.79s

The model also reproduces the volume loss due to exca-
vation. Some volume on the surface of the ground is taken
away automatically when discs dig on it. The prior geom-
etry is shaped to the new geometry at each time step. The
results provide a reference for the TMB excavation advance
and prediction of wear on the cutting tools of the machine
(Fig. 28).

Wear values are useful for predicting how many times the
discs must be changed during the excavation of the tunnel.
The most outworn tools can be also determined using the
wear distribution on the TMB head. This is shown in Fig. 28
which depicts the wear produced on the TBM discs after
some rotation and pressure over the rock surface.

6 Conclusions

This work presents advances of the PFEM for the modelling
and simulation of ground excavation and wear of rock cutting
tools in tunnelling processes. The algorithms for the particle
transfer scheme, the definition of the geometrical boundary,
the treatment of frictional contact, the models for predicting
tool wear and excavation have been explained.

The derivation of the discretized equations in the PFEM
is based on the standard FEM. This permits the use of well-
known constitutive equations of continuum mechanics and
all the existing background theoretical and numerical knowl-
edge in the FEM.

Preliminary results show that the PFEM is a good method
to model complex excavation problems and wear of rock
cutting tools. As such, it promises to be a powerful tech-
nique for solving a wide range of complex 3D problems of

practical interest in underground constructions in civil and
mining engineering.

The next challenge in the proposed method is its detailed
validation with experimental data on excavation and wear for
different geomaterials and rock cutting tools and machinery.

References

1. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl
Phys 24:981–988

2. Arrea M, Ingraffea AR (1982) Mixed-mode crack propagation in
mortar and concrete. Cornell University, Ithaca

3. Carbonell JM, Oñate E, Suárez B (2010) Modeling ofground exca-
vation with the particle finite-element method. J Eng Mech ASCE
136:455–463

4. Carbonell JM (2009) Modeling of ground excavation with the par-
ticle finite element method. PhD thesis, Universitat Politècnica de
Catalunya (UPC), Dec 2009

5. Chiara B (2001) Fracture mechanisms induced in a brittle material
by a hard cutting identer. Int J Solids Struct 38:7747–7768

6. Edelsbrunner H, Mucke EP (1994) Three dimensional alpha
shapes. ACM Trans Gr 13:43–72

7. Hartmann S, Oliver J, Weyler R, Cante JC, Hernández JA (2009)
A contact domain method for large deformation frictional contact
problems. Part 2: numerical aspects. Comput Methods Appl Mech
Eng 198:2607–2631

8. Holm R (1946) Electric contacts. Almquist and Wiksells, Stock-
holm

9. Idelsohn S, Calvo N, Oñate E (2003) Polyhedrization of an arbitrary
3D point set. Comput Method Appl Mech Eng 192:2649–2667

10. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element
method a powerful tool to solve incompressible flows with free-
surfaces and breaking waves. Int J Numer Methods Eng 61:267–
307

11. Khoei AR, Gharehbaghi SA (2007) The superconvergence patch
recovery technique and data transfer operators in 3d plasticity prob-
lems. Finite Elem Anal Des 43:630–648

123



Comput Mech (2013) 52:607–629 629

12. Labra C, Rojek J, Oñate E, Zárate F (2008) Advances in discrete
element modelling of underground excavations. Acta Geotechnica
3:317–322

13. Oliver X, Cervera M, Oller S, Lubliner J (1990) Isotropic damage
models and smeared crack analysis of concrete. In: N. Bicanic,
H. Mang (eds) Second international conference on computer aided
analisys and design of concrete structures, vol 2. Zell am See, Aus-
tria, pp 945–958

14. Oliver X, Cante JC, Weyler R, González C, Hernández J (2007)
Particle finite element methods in solid mechanics problems. In:
Oñate E, Owen R (Eds) Computational plasticity. Springer, Berlin,
pp 87–103

15. Oliver J, Hartmann S, Cante JC, Weyler R, Hernández JA (2009)
A contact domain method for large deformation frictional contact
problems. Part 1: theoretical basis. Comput Methods Appl Mech
Eng 198:2591–2606

16. Oller S, Mecánica Fractura (2001) Un enfoque global. Edicions
UPC, CIMNE

17. Oñate E, Rojek J (2004) Combination of discrete element and finite
element methods for dynamic analysis of geomechanics problems.
Comput Methods Appl Mech Eng 193:3087–3128

18. Oñate E, Idelsohn SR, Del Pin F (2004) The particle finite element
method. An overview. Int J Numer Methods Eng 1(2):964–989

19. Oñate E, Idelsohn SR, Celigueta MA (2006) Lagrangian formula-
tion for fluid-structure interaction problems using the particle finite
element method. Verification and validation methods for challeng-
ing multiphysics problems, CIMNE, pp 125–150

20. Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances
in the particle finite element method for the analysis of fluid-
multibody interaction and bed erosion in free surface flows. Com-
put Methods Appl Mech Eng 197(19–20):1777–1800

21. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011)
Possibilities of the particle finite element method for fluid-soil-
structure interaction problems. Comput Mech 48(3):307–318

22. Rabinowicz E (1995) Friction and wear of materials. Wiley, New
York

23. Rojek J, Oñate E, Labra C, Kargl H (2011) Discrete element sim-
ulation of rock cutting. Int J Rock Mech Min Sci 48(6):996–1010

24. Rojek J, Oñate E, Kargl H, Labra C, Akerman U, Lammer E, Zárate
F (2008) Prediction of wear of roadheader picks using numerical
simulations. Geomechanik und Tunnelbau, 1:4754

25. Rots JG, Nauta P, Kusters GMA, Blaauwendraad J (1985) Smeared
crack approach and fracture localization in contrete. Heron 30:1–48

26. Wriggers P (2008) Nonlinear finite element methods. Springer,
New York

27. Wriggers P (2006) Computational contact mechanics second edi-
tion. Springer, Heidelberg

28. Zavarise G, Wriggers P, Nackenhorst U (2006) A guide for engi-
neers to computational contact mechanics. Consorzio TCN scarl,
2006

29. Zienkiewicz OC, Taylor RL (2000) The finite element method
for solid and structural mechanics, vol 2. Elsevier Butterworth-
Heinemann, London

123


	Modelling of tunnelling processes and rock cutting tool wear  with the particle finite element method
	Abstract 
	1 Introduction
	2 The particle finite element method (PFEM)
	2.1 Basic steps of the PFEM
	2.2 Particle concept and variable updating
	2.3 Boundary definition via remeshing process
	2.4 Governing equations and solution scheme

	3 Contact mechanics with the PFEM
	3.1 Geometrical detection
	3.2 Treatment of contact constraint

	4 Modelling tunneling processes
	4.1 Abrasive wear of rock cutting tools
	4.2 Excavation
	4.3 Constitutive models and excavation
	4.4 General solution scheme

	5 Simulation of tunneling problems
	5.1 2D roadheader tools
	5.2 3D Roadheader
	5.3 TBM excavation

	6 Conclusions
	References


