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Abstract A new variational method for selective mass scal-
ing is proposed. It is based on a new penalized Hamilton’s
principle where relations between variables for displacement,
velocity and momentum are imposed via a penalty method.
Independent spatial discretization of the variables along with
a local static condensation for velocity and momentum yields
a parametric family of consistent mass matrices. In this
framework new mass matrices with desired properties can
be constructed. It is demonstrated how usage of these non-
diagonal mass matrices decreases the maximum frequency of
the discretized system and allows for larger steps in explicit
time integration. At the same time the lowest eigenfrequen-
cies in the range of interest and global structural response
are not significantly changed. Results of numerical experi-
ments for two-dimensional and three-dimensional problems
are discussed.

Keywords Selective mass scaling · Variational principle ·
Dynamics · Hybrid-mixed · Penalty methods

1 Introduction

The basic idea of selective mass scaling (SMS) in the context
of non-linear structural dynamics is to add artificial terms to
the mass matrix, thus reducing the highest discretized eigen-
frequencies of the structure, while changing the lower fre-
quencies as little as possible [1]. SMS aims at reduction of
the computational cost, since the highest eigenfrequency of
the system limits the critical time step for explicit time inte-
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gration. In general SMS can be written in the form

M◦ = M + λ◦, (1)

where M◦ is the scaled mass matrix, M is the consistent mass
matrix (CMM) or lumped mass matrix (LMM) and λ◦ is the
artificially added mass.

Several methods for SMS are proposed in the literature.
Acceleration filtering for thin walled structures modeled with
solid elements is suggested in [2]. This approach suppresses
relative oscillation in thickness direction via adding inertia
for these modes. Two general methods for SMS are given in
continuation of that work in [3]. In the first method inertia
proportional to the stiffness matrix is added. This method
preserves the eigenmodes of the system and the reduction of
the highest eigenfrequency can be easily estimated. However,
this method is not well suited for non-linear problems where
the stiffness matrix changes under large rotations and defor-
mations. The second method uses an algebraically built λ◦
which does not change upon deformation and rotations. This
λ◦ also preserves translational mass of individual elements.
The latter method is easy implementable and it is available in
commercial codes, e.g. LS-DYNA and RADIOSS. However,
this method changes eigenmodes and increases rotational
inertia of elements. Another motivation of stiffness propor-
tional SMS is given in [4]. It is based on Mindlin’s theory
of elasticity with micro-inertia, i.e. various strain rate gradi-
ents also have inertia. In a recent work [5] an algebraic SMS
for thickness direction of solid-shells is proposed. Therein,
applicability of SMS for slightly distorted elements was dis-
cussed for the first time.

A common disadvantage of all these methods is lack of
rigorous formulation and consistency proofs. Moreover, the
factor defining the amount of SMS has no clear meaning.

The principal idea of this work is to derive λ◦ using varia-
tional methods. Applying parametrized variational principles
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established in [6] for inertia terms we obtain a new penalized
Hamilton’s principle for dynamics. Discretization of the lat-
ter principle yields SMS methods with desired properties.

2 Problem statement

Let B ⊂ Rdim be a reference configuration of a body
(dim = {1, 2, 3}). ∂Bu and ∂Bσ refer to parts of the body
surface where displacement and traction boundary condi-
tions are applied, respectively. Consider the following elasto-
dynamic problem for time interval I = [0, tend ]
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρü = divσ (u) + b̂ in I × B
u = 0 in I × ∂Bu

σn = t̂ in I × ∂Bσ

u(0, .) = u0 in B
u̇(0, .) = v0 in B

(2)

where u(t, x) : R
dim+1 → R

dim is the displacement vector,
ρ is the density, b̂ and t̂ are the body force and boundary
tractions, respectively, u0 and v0 are initial displacement and
velocities. We restrict ourselves to linear constitutive equa-
tion given by Hooke’s law

σ = D ε, ε = sym grad u in B, (3)

with D, σ and ε being elasticity modulus, stress tensor and
engineering strain, respectively.

Equations (2–3) define an initial boundary value problem
(IBVP) for an elasto-dynamic problem. An extension to non-
linear case is straightforward and it is not discussed herein.

Now we pose a problem to setup a framework which
allows a parametric family of consistent mass matrices. Such
framework should include two parts: an alternative varia-
tional principle for dynamics and a discretization procedure.

The following considerations are used for derivation of
the new principle. In order to get maximum flexibility for
discretization, a multi-field approach with independent vari-
ables for displacement, velocity and momentum is used. The
fields are linked in a weak sense using the penalty method.
The penalty factors then naturally define scaling parame-
ters for the family of mass matrices. Finally, only symmetric
terms for inertia should enter the principle, which guarantees
symmetric mass matrices by design.

The discretization procedure must be consistent and effi-
cient. Consistency requires at least preservation of transla-
tional inertia for a single finite element. Efficiency implies
substantial reduction of the highest eigenfrequency that lim-
its the critical time step of the explicit time integration. At
the same time lowest eigenfrequencies that define the struc-
tural response should not be strongly affected. Moreover, the
discretization scheme should not introduce new variables on
global level and conditioning of the mass matrix should be

small enough to allow a cheap iterative solution ü = M−1f .
This can be achieved by proper choice of ansatz spaces and
parameters of the principle.

3 An alternative variational formulation of dynamic
problem

The starting point for derivation of the alternative formulation
is Hamilton’s principle [7, Appendix I]. Then, independent
variables for velocity and momentum are introduced to the
functional. The penalty method is used to link displacement,
velocity and momentum in a weak sense. This gives a rise to
a parametrized Hamilton’s principle, where kinetic energy is
computed on the combination of displacement, velocity and
momentum.

The first variation of the principle may be used then as a
starting point of discretization. In addition, equivalence of a
new principle to the IBVP (2–3) is shown via Euler-Lagrange
equations.

Let us introduce notations for a scalar product in the
domain, the bilinear forms of potential and kinetic energy
and the linear from for external work, respectively

(w, z) =
∫

B

w · z dB, w, z ∈ L2(B), (4a)

Π int (u) = 1

2
a(u, u) = 1

2

∫

B

ε(u) · D ε(u) dB, (4b)

T (u̇) = 1

2
(ρu̇, u̇) = 1

2

∫

B

ρu̇ · u̇ dB, (4c)

Πext = f(u) =
∫

B

b̂ · u dB +
∫

Gs

t̂ · u d∂B. (4d)

Consider Hamilton’s principle for the problem

H(u) =
∫

I

(
T − Π int + Πext

)
dt → stat, (5a)

H(u)=
∫

I

(
1

2
(ρu̇, u̇)− 1

2
a(u, u)+f(u)

)

dt → stat. (5b)

The Hamilton’s principle imposes relations between
velocity, momenta and displacements in strong from

v = u̇ p = ρv p = ρu̇. (6)

These conditions enter in (5b) using the penalty method.
To construct the penalty term for the kinematic equation
v − u̇ = 0, the difference v − u̇ is squared and weighted
with the density ρ and a dimensionless penalty factor 1

2 C3.
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Finally, it is integrated over the domain, resulting in

v − u̇ = 0 → (v − u̇)2 = 0 → 1

2
C3ρ (v − u̇)2 = 0 →

∫

B

1

2
C3ρ (v − u̇)2 dB = 1

2
C3 (ρ(u̇ − v), u̇ − v) = 0 (7)

Analogous considerations for two other relations of (6)
lead to two terms with penalty factors C1 and C2. Summing
up all terms provides a new expression for the kinetic energy

T ◦ = 1

2
(ρu̇, u̇) + C1

2

(

ρu̇ − p, u̇ − p
ρ

)

+C2

2

(

ρv − p, v − p
ρ

)

+ C3

2
(ρ(u̇ − v), u̇ − v) . (8)

The penalized Hamilton’s principle uses T ◦ as

H◦(u, v, p) =
∫

I

(
T ◦ − Π int + Πext

)
dt → stat. (9)

The first variation of (9) gives

δH◦(u, v, p) =
∫

I

(

δp, (C1 + C2)
p
ρ

− C1u̇ − C2v
)

dt

+
∫

I

(δv, (C2 + C3) ρv − C3 ρu̇ − C2p) dt

+
∫

I

[
(δu̇, (1 + C1 + C3) ρu̇ − C3 ρv − C1p) − δΠ

]
dt

(10)

Integrating(δu̇, (1 + C1 + C3) ρu̇ − C3 ρv − C1p)

by parts in time yields

−
∫

I

(

δu,
d

dt
{(1 + C1 + C3) ρu̇ − C3 ρv − C1p}

)

dt

(11)

Substitution of (11) into (10) gives a weak formulation,
proposed herein.

The Euler-Lagrange equations of the weak form (10) com-
pose a system of equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt {(1 + C1 + C3) ρu̇ − C3 ρv − C1p}
= divσ + b̂ in I × B

σn = t̂ in I × ∂Bσ

(C1 + C2) p − C2ρv = C1ρu̇ in I × B
−C2p + (C2 + C3) ρv = C3 ρu̇ in I × B

(12)

Consider the two last equations in (12). They are a sys-
tem of two linear equations with respect to p and v. If
the determinant of the coefficient matrix is non-zero, i.e.
C1C2 + C2C3 + C1C3 �= 0, then we can solve for p and
v, leading to

v = u̇ p = ρu̇. (13)

Thus, the subsidiary conditions (6) are recovered as Euler-
Lagrange equations. Substitution of the latter in the first equa-
tion of (12) gives the equation of motion in the form (21). This
proves the equivalence of the penalized Hamilton’s principle
to the IBVP (2–3).

Note, that the form T ◦ is quadratic and symmetric with
respect to the triple [u̇, v, p]

2T ◦ =
∫

B

⎡

⎣
ρu̇
ρv
p

⎤

⎦

T⎡

⎣
1+C1+C3 −C3 −C1
−C3 C2+C3 −C2
−C1 −C2 C2 + C3

⎤

⎦

⎡

⎣
u̇
v
p
ρ

⎤

⎦ dB.

(14)

The positive definiteness of the form is verified by Sylvester’s
criterion. If leading principal minors of the matrix of the
quadratic form are all positive, than the form is positive def-
inite. These conditions reads as follows
⎧
⎨

⎩

C1 + C3 > −1
C2 + C3 > 0
C1C2 + C2C3 + C1C3 > 0.

(15)

Thus, the form fulfills the requirement for the new variational
formulation given in problem statement.

The formulation (10) can be interpreted as a parame-
trized (template) variational principle [6].The formulation
contains all canonical variational principles of a linear elasto-
dynamics as particular cases. The standard Hamiltonian’s
principle is obtained for C1 = C2 = C3 = 0. The modified
Hamiltonian’s principle is recovered for C1 = −C2 = −1
and C3 = 0. The Hellinger-Reissner principle is recovered
for C1 = C2 = 0 and C3 = −1 [7]. This implies complete-
ness of the parametrization. Moreover, the form T ◦ satisfies
the consistency conditions for a template stated in [6]. The
row sums of the matrix coefficient of the form are one, zero
and zero for the first, second and third row, respectively.

4 Discretization

In the previous section a weak formulation for elasto-
dynamics (10) was derived. This formulation has three inde-
pendent variables

[
u, v, p

]
and contains three scalar penalty

parameters (C1, C2, C3). Discretization of the free variables
can be written as

uh = NU vh = ψV ph = χP (16a)

δuh = NδU δvh = ψδV δph = χδP (16b)

Here, N contains shape functions for interpolation of nodal
displacements, given by the vector U. Matricesψ andχ inter-
polate velocity and momentum from vectors of parameters V
and P. In contrast to the displacement vector U, parameters
V and P are not necessarily nodal values. Finally, the shape
functions for variations are the same as for variables.

123



566 Comput Mech (2013) 52:563–570

Substitution of (16b) in (10) with (11) yields

δH◦,h
(u, v, p) =

∫

I

δP
(
−C1CT U̇ − C2GT V + (C1 + C2) GP

)
dt

+
∫

I

δV
(
−C3AT U̇ + (C2 + C3) YV − C2GP

)
dt

+
∫

I

δU
(
(1 + C1 + C3) MÜ − C3AV̇ − C1CṖ

)
dt

+
∫

I

δU
(
KU − Fext) dt (17)

Here, K and Fext are the stiffness matrix and the vec-
tor of external forces. Furthermore, we define the following
matrices

M =
∫

B

ρNT N dB A =
∫

B

ρNTψ dB

C =
∫

B

NTχ dB Y =
∫

B

ρψTψ dB

G =
∫

B

ψTχ dB H =
∫

B

ρ−1χTχ dB (18)

M is the CMM.
Using independence of the variations δU, δV and δP, we

obtain the following system of equations

⎧
⎨

⎩

(1 + C1 + C3) MÜ − C3AV̇ − C1CṖ + KU = Fext

(C2 + C3) YV − C2GP = C3AT U̇
−C2GT V + (C1 + C2) HP = C1CT U̇

(19)

The variables V and P can be eliminated from the equation
(19) yielding equations of motion

M◦Ü + KU = Fext, (20)

with the scaled mass matrix being M◦ = M + λ◦. The artifi-
cially added mass λ◦ is given by an expression

λ◦ = (C1 + C3)M

−
[

C3A
C1C

] [
(C2 + C3) Y −C2G
C2GT (C1 + C2) H

]−1 [
C3AT

C1CT

]

= (C1 + C3)M − C2
3

C2 + C3
AT Y−1A

+ C2
2 C2

3

(C2 + C3)2 AT Y−1GSGT Y−1A + C2
1 CSCT

− C1C2C3

C2 + C3

(
AY−1GSCT + CSGT Y−1AT

)
.

(21)

M

AY 1AT

C3

M

C1

λ
CH 1CT

Fig. 1 Linear family of mass matrices M◦ with added mass λ◦ after
(24)

with S defined as

S =
(

(C1 + C2)H − C2
2

C2 + C3
GT Y−1G

)−1

. (22)

Formula (21) provides us with the most general expression
for a three-parametric family of mass matrices. Actually, the
artificial added mass λ◦ entering (20) is a rational function of
parameters (C1, C2, C3). It is not practical to use expression
(21) directly, because of unclear influence of the individual
parameters on the mass matrix. Here, we discuss three cases
where the expression (21) substantially simplifies.

4.1 Case 1

Let us set C1 = −C2 and C3 = 0. In this case the mass
matrix λ◦ is

λ◦ = C1

(

M − C
(

GT Y−1G
)−1

CT
)

. (23)

4.2 Case 2

Let us set C2 = 0. In this case the mass matrix λ◦ is

λ◦ = C1

(
M − CH−1CT

)
+ C3

(
M − AY−1AT

)
. (24)

4.3 Case 3

Let us set C1 = C2 = 0. In this case the mass matrix λ◦ is

λ◦ = C3

(
M − AY−1AT

)
. (25)

In all the cases we obtain linear families of mass matrices,
which clarifies the meaning of penalty parameters C1 and
C3 as scaling factors for artificially added mass, see Fig. 1.

The matrices AY−1AT , CH−1CT and C
(
GT Y−1G

)−1
CT

are consistent hybrid-mixed mass matrices computed on
mixed Hamilton’s principle with variables [u̇, v], [u̇, p] and
[u̇, v, p], respectively. Such mass matrices were defined, e.g.
in [8]. Thus, the proposed families (23–25) are weighted
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sums of known consistent mass matrices and the proposed
variational formulation (10) justifies such a construction. In
addition, positive definiteness of M◦ is guaranteed if penalty
parameters C1 and C3 are positive. The structure of λ◦ given
in (23–25) explains the way the proposed mass scaling works.
The CMM and hybrid-mixed mass matrices are equal if the
ansatz space for v and p are taken equal to u. This results
in zero λ◦. If the ansatz space for v and p are chosen poorer
than for u, the hybrid-mixed mass matrices produce less iner-
tia than a CMM. Thus, the artificially added mass increases
inertia for modes orthogonal to the ansatz space for v and p.

The appropriate ansatz spaces are discussed in subsequent
subsections.

4.4 Example: 3-node membrane element

A simple example is discussed to clarify the approach. Con-
sider a 3-node membrane element with constant density
ρ. Let us stick to the case with C2 = C3 = 0, lead-
ing to M◦ = M + C1

(
M − CH−1CT

)
. We use standard

shape functions for displacements and constant functions for
momenta

N =
[

1 − ξ − η 0 ξ 0 η 0
0 1 − ξ − η 0 ξ 0 η

]

, χ =
[

1 0
0 1

]

(26)

Substitution of the latter leads to

M = ρ A0

12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT = A0

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
1 0
0 1
1 0
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

H = A0

ρ

[
1 0
0 1

]

,

(27)

λ◦ = C1
ρ A0

18

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (28)

The latter expression is identical up to a factor to the mass
scaling matrix λ presented in [3]. To obtain mass scaling
identical to [3] for a 8-node solid brick element (brick), one
should take as M in (21) a lumped matrix and χ = J0

J I3×3

with J and J0 being the Jacobian and the Jacobian in the
center of the element, I3×3 being the identity matrix.

5 Good ansatz spaces for mass scaling

Justification of existing methods is not the only goal of this
paper. Flexibility of the mass matrices (23–25) facilitates
construction of SMS that does not have some of the dis-
advantages of existing techniques. For example, some mass
scaling technique do not preserve rotational inertia of a single
element. This leads to large errors for problems where sub-
stantial rotations of a structure occurs. If the ansatz space for
velocities contains all rigid body modes (RBM), then mass
matrix (25) gives the exact values for translational and rota-
tional inertia. For 2D and 3D cases following ψ is required

ψ2D =
[

1 0−yh

0 1 xh

]

,ψ3D =
⎡

⎣
1 0 0 −yh zh 0
0 1 0 xh 0 −zh

0 0 1 0 −xh yh

⎤

⎦ . (29)

Here, xh(ξ, η, ζ ), yh(ξ, η, ζ ) and zh(ξ, η, ζ ) are approxima-
tions of element geometry obtained from the isoparametric
approach. However, such velocity shape functions ψ lead to
a mass matrix M◦ with coupled terms between x-, y- and
z- direction. This is a rather undesired property both from
numerical and physical view. The coupled terms increase
fill-in of the mass matrix, raise the cost of each individual
step of iterative solution for the accelerations and negatively
affect conditioning of the mass matrix. In order to decouple
inertia, each column of ψ should contain only one non-zero
entry. This leads to a different ansatz ψ

ψ2D =
[

1 0 yh 0
0 1 0 xh

]

,

ψ3D =
⎡

⎣
1 0 0 yh zh 0 0 0 0
0 1 0 0 0 0 xh 0 zh

0 0 1 0 0 xh 0 yh 0

⎤

⎦ . (30)

Furthermore, we use as a reference ψ with only constant
terms

ψ2D =
[

1 0
0 1

]

,ψ3D =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (31)

In the following section, some examples demonstrate the effi-
ciency of the proposed techniques.

6 Examples

The proposed family of mass matrices is obtained from novel
variational formulations and it is tested in three examples. In
the first and the second example the influence of the proposed
mass scaling techniques on eigenvalues of structures is stud-
ied. These problems are small enough so that the full spectra
can be obtained and analyzed. Efficiency of mass scaling
is estimated by the reduction of maximum frequency ωmax .

The spectrum computed for a LMM is taken as a reference.
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x

y

10.0 m

5.0 m 1.0 m

Fig. 2 Setup of FV32 NAFEMS benchmark. Material properties:
E = 200 GPa, ν = 0.3, ρ = 8, 000 kg/m3. Thickness: 0.05 m. Mesh:
16 × 8 elements

Additionally, we check the condition number of mass matri-
ces and the maximum error in lowest 10 % range of spectra,
which is important for the structural response.

In the third example we compare efficiency and accuracy
of mass scaling for a transient problem taken from [3]. A
central difference time integration scheme is used. The crit-
ical time step for different mass matrices is estimated with
power iterations [9]. For each mass matrix a time step being
0.63 of a critical time step is used. Efficiency of mass scaling
is estimated by the number of required time steps. Accuracy
is checked against solution obtained for a LMM.

6.1 Cantilevered tapered membrane: FV32

As an example of a two-dimensional problem, the eigenfre-
quency benchmark FV32 of NAFEMS [10] is considered.
Geometry, mesh and material properties of the model are
presented in Fig. 2. Boundary conditions ux = uy = 0 are
imposed along the y-axis. Bilinear 4-node elements with four
enhanced strains are used for stiffness calculation. In Fig. 3,
we show the reduction of eigenfrequencies for different val-
ues of the scaling parameter C1 for ansatz (29). Increase of
C1 decreases the maximum frequency. For C1 < 5 the max-
imum frequency of the scaled mass matrix is higher than for
the LMM. For C1 = 20 the maximum frequency is halved
and for C1 = 30 decreased by a factor of three. Compa-
rable reduction of maximum frequency can be obtained for
method from [3] with β = 2, however the error in lowest
eigenfrequencies for the proposed method is less. In Table 1
we examine performance of the proposed method for a set
of ansatz function for velocity ψ with fixed penalty value
C1 = 30. For the reference, performance of the method II
[3] is also given.

6.2 Simply supported square plate: FV52

As an example of a three-dimensional problem, the eigen-
frequency benchmark FV52 of NAFEMS [10] is considered.
Geometry and mesh of the model are shown in Fig. 4. Mate-
rial properties of the benchmark FV52 are identical to FV32.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 50 100 150 200 250 300

ω
i

ω
L

M
M

i

i, mode number

C1 5

C1 10

C1 20

C1 30
β 2

Fig. 3 Ratio of eigenfrequencies for different values of selective mass
scaling parameters. C1—proposed in paper with ψ from (29), β—
method II [3]

1.0 m

z
10.0 m

10.0 m

y

x

Fig. 4 Geometry and mesh of FV52 NAFEMS benchmark. Mate-
rial properties: E = 200 GPa, ν = 0.3, ρ = 8, 000 kg/m3. Mesh:
8 × 8 × 1 elements

Boundary conditions uz = 0 are imposed along all four lower
edges (z = −0.5). For stiffness calculation 8-node solid ele-
ments with nine enhanced strains are used. SMS is computed
with ansatz after (29). The reductions of eigenfrequencies
obtained for different values of scaling parameter are shown
in Fig. 5. The reduction of 40, 55 and 65% is obtained for
C1 = 10, 20 and 30, respectively. The accuracy of the low-
est eigenfrequencies is compared with method from [3]. For
β = 2 the error in lowest 10 % range of eigenfrequencies is
40 % against the error 13 % for C1 = 10.

6.3 Tip loaded cantilever beam

The model for a transient problem is shown in Fig. 6. Initial
zero displacements and velocities are assumed. The beam is
loaded at the tip by an abrupt force F. Structural response is
compared using the history of the tip displacement w, Fig. 7.
The deflections obtained with a LMM and the proposed SMS
are almost identical even for high value of scaling. For the
same reduction of time steps, the method [3] yield a bigger
error.

Computation with a regular LMM required 12,900 time
steps. For the number of time steps for different mass
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Table 1 Comparison of different mass scaling formulations for FV32,C1 = 30

ψ from (29) (30) (31) After [3], β = 2

ωmax , Hz 4,045 7,198 4,036 4,459
ωmax/ωLMM

max 0.35 0.63 0.35 0.39

Cond (M) 26.9 39.3 14.1 11.0

Error in lowest 10 % freq., % 38 31 56 49

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 50 100 150 200 250 300 350 400 450 500

ω
i

ω
L

M
M

i

i, mode number

C1 10

C1 20

C1 30

β 2

Fig. 5 Ratio of eigenfrequencies for different values of selective
mass scaling parameters. C1—proposed in paper with ψ from (29),
β—method II [3]
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Fig. 6 The model of tip loaded beam [3]. Material properties:
E = 207 GPa, ν = 0.0, ρ = 7, 800 kg/m3. Mesh: 50 × 3 × 1 ele-
ments

matrices the following results are obtained. The CMM
requires 21,106 time steps, which is almost twice that of
LMM. The proposed method adds inertia to the CMM (25),
therefore after mass scaling the required number of time steps
is always less than the number. Application of the ansatz ψ
from (30) does not decrease time step substantially. It is even
more than 12,900 that is obtained for the LMM, therein ansatz
(30) is not pursued further. The reason for such a poor behav-
ior is inability of this ansatz to decrease volumetric modes.
The ansatz contains full linear subspace of velocities, i.e. a
constant volumetric strain rate. The mesh of the example uses
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Fig. 7 Tip deflection w of a cantilever beam

one element through the thickness and the volumetric modes
are not constrained by neighboring elements. (31) and (29)
give comparable reduction of number of steps, e.g. 2,248 and
2,392 for C1 = 100, 717 and 719 for C1 = 1, 000, respec-
tively. For comparison, mass scaling with β = 100 from [3]
cuts down number of steps to 1,186.

The accuracy of SMS can be monitored by the kinetic
energy stored in artificially added mass T ◦ − T = 1

2 u̇λ◦u̇.

The small ratio of the artificially added kinetic energy to the
total energy indicate little change in structural response. For
the problem at hand, the ratio of that artificial energy to the
total energy is presented in Fig. 8. From the Figure is clear
that the proposed method accumulates much less artificially
added energy than the method proposed in [3].

During numerical experiments a negative feature of (29)
and (30) was found. The number of iterations for the solution
of ü = M−1f was two to three times larger compared to (31)
and [3]. Moreover, the iterative solver diverged for C1 >

100 and a direct sparse solver was used instead. Both SMS
matrices from (29) to (30) result in a bigger fill-in of the mass
matrix and worse conditioning number in comparison to (31)
and [3]. So far it is not clear which of these two features is the
key for worse convergence of an iterative solver. This issue
requires further studies.
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7 Conclusions

A new variational method for SMS has been presented. We
propose to use a new penalized Hamilton’s principle as start-
ing point of discretization. Together with appropriate ansatz
spaces for velocity and momentum, the proposed approach
results in parametric families of consistent mass matrices.
Usage of these mass matrices decreases the maximum eigen-
frequency of the system and increases the critical time step.
At the same time the lowest eigenfrequencies in the range of
interest and structural response are not significantly changed.

The main theoretical result of this work is the new para-
metric principle for elasto-dynamics. It is a modification of
Hamilton’s principle where kinematic and kinetic equations
are satisfied via a penalty method. Its discretization yields a
general expression of a mass matrix. We choose three sub-
families that are efficient for numerical implementation.

It is also shown that the mass scaling technique presented
in [3] can be obtained as a special case of the present formu-
lation and thus it is variationally justified. The main practical
result is a study of several instances of proposed mass scal-
ing. Ansatz spaces for velocity are constructed that preserve
rotational inertia. The numerical examples show that the best
results are obtained with a formulation with the velocity field
just containing the rigid body modes. This formulation also
outperforms the method presented in [3] in the investigated
examples.

Computation of problem with large rotations and with a
variable mass matrix is a possible extension of the work.
The shape functions ψ from (29) are time dependent and
artificial added mass is changing in time λ◦. This yields
an additional term in the equilibrium equation U̇. Such a
term may be significant for large mass scaling factors, oth-
erwise it can be neglected. Computation of ∂λ◦

∂t is not com-
plicated. The treatment of a similar term is explained, e.g. in
[11, p. 523]. It is also desirable to study the influence of SMS
on eigenmodes and the sensitivity of SMS to mesh distorsions
[5], which has not been done in the present work.
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