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Abstract The problem of quasistatic and rate-independ-
ent evolution of elastic-plastic-brittle delamination at small
strains is considered. Delamination processes for linear elas-
tic bodies glued by an adhesive to each other or to a rigid
outer surface are studied. The energy amounts dissipated in
fracture Mode I (opening) and Mode II (shear) at an inter-
face may be different. A concept of internal parameters is
used here on the delaminating interfaces, involving a couple
of scalar damage variable and a plastic tangential slip with
kinematic-type hardening. The so-called energetic solution
concept is employed. An inelastic process at an interface is
devised in such a way that the dissipated energy depends only
on the rates of internal parameters and therefore the model
is associative. A fully implicit time discretization is com-
bined with a spatial discretization of elastic bodies by the
BEM to solve the delamination problem. The BEM is used
in the solution of the respective boundary value problems,
for each subdomain separately, to compute the correspond-
ing total potential energy. Sample problems are analysed by
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a collocation BEM code to illustrate the capabilities of the
numerical procedure developed.
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1 Introduction

Applications of layered structures are numerous and con-
tinuously increasing an example being the massive use of
composite materials in aeronautical industry at present. Usu-
ally the interfaces between these rather bulk laminas con-
sist of very thin adhesive layers. For efficient computations,
these adhesive layers may be approximated by zero thick-
ness interface layers. There are many situations where an
adhesive layer is found to be partially or fully damaged. This
process is frequently referred to as delamination or debond-
ing of adjacent material laminas. In this work the description
of the damage is based on a scalar damage quantity (variable,
cf. [14]), which is defined at interfaces and takes values from
the interval [0, 1], with zero value meaning no adhesion due
to the total damage of the adhesive while the unit value mean-
ing complete operation of the adhesive without any damage.
During a damage evolution the damage variable decays in
time, and it is assumed that a specific amount of energy has
to be released (dissipated). This simplified approach, moti-
vated essentially by Griffith [15], is often inadequate as it
is observed experimentally that considerably more energy is
usually needed to perform delamination in shear Mode II than
in opening Mode I [1,19,24,42]. Motivated by the micro-
scopical idea of interface plasticity [24,42], an extra inelas-
tic parameter is introduced [36,37], which describes some
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plastic slip that may occur in the tangent direction of an inter-
face before its debonding.

An alternative approach to model fracture-mode-sensitive
delamination uses only the delamination variable but makes
the dissipated energy directly dependent on the so-called
fracture mode mixity angle, cf. (10)–(11) below. This
approach has frequently been used in engineering mod-
els [40,41] but, it does not seem amenable to a rigorous
mathematical analysis. In the present work we consider the
delamination as a unidirectional process, i.e. no healing (or
reconstruction) of adhesive is allowed, which covers most of
engineering applications.

The goal of this article is to present and analyse from an
engineering as well as numerical implementation viewpoint
some basic features of the delamination model devised in
[36,37] with different dissipated energies in Modes I and II.
In particular, in Sect. 2 we briefly present the energetic
approach employed. In Sect. 3, we concisely introduce the
present model, while some engineering insight on this model
is provided. Then, in Sect. 4, the numerical implementation of
the model is presented. Finally, in Sect. 5, two-dimensional
simulations are developed, showing that the model is suit-
able for solving realistic problems of delamination between
elastic layers.

2 Theoretical background

2.1 Problem definition

Let us consider an assemblage of N elastic bodies, each of
them defined by a reference domain�i (i = 1, . . . , N ), with
the Lipschitz boundary �i = ∂�i , see Fig. 1.We denote by
�i j = ∂�i ∩ ∂� j the (possibly empty) interface boundary
between �i and � j (i, j = 1, . . . , N ),which may undergo
delamination. We also consider possible delamination on
some parts of the outer boundary �0i , which is assumed
to be in adhesive (unilateral) contact with a fixed rigid sur-
face, Fig. 1. The union of these parts is denoted as �0 =
⋃

1≤i≤N �0i . We will denote�C :=⋃1≤i< j≤N �i j ∪�0. We
assume that the rest of the outer boundary ∂� is the union
of two disjoint subsets �D and �N, where Dirichlet (pre-
scribed displacements uD = uD(t)) and Neumann boundary
conditions (prescribed tractions pN = pN(t)) are imposed,
respectively. For the sake of simplicity of the following con-
siderations, vanishing tractions pN = 0 will be considered
hereinafter, except for Sects. 4.2, 4.3 and 5.1.2. The intersec-
tion of the closures of �C and �D is assumed to be the empty
set, i.e. �C ∩ �D=∅. Any �i j is considered as an infinitely
thin adhesive layer, represented by springs distributed contin-
uously, similarly to the Winkler spring model, with distinct
normal and tangential elastic stiffnesses of values ranging
from zero to infinity. Both the elastic subdomains and the

Fig. 1 Schematic illustration of the geometry and notation for a
two-dimensional case of two bonded subdomains, i.e. N=2

adhesive layers are assumed to store energy, which is given
by a stored energy functional E (t, u, z) a function of time t ,
the displacements u and the inelastic (internal) parameters
collected in z. It is considered that two elastic subdomains
�i and � j , may debond along the interface �i j . During this
process the material of the adhesive can be damaged and
plastified. The onset and growth of the damage and plasti-
fication, represented by the z variables, does not depend on
some internal time scale and therefore the process is consid-
ered as rate-independent. The damage and plastification of
the adhesive layer are accompanied by a release of stored
energy. The dissipation potential R(ż), with ż := dz

dt , for
a rate-independent process can be represented by a degree-
1 homogeneous functional [31]. The processes described in
this work are assumed to be quasistatic, i.e. no inertia effects
are taken into account. The rate-independent evolution we
have in mind is governed by the following system of dou-
bly nonlinear degenerate abstract static/evolution inclusions,
referred sometimes as Biot’s equations generalizing the orig-
inal work [5,6]:

∂uE (t, u, z) � 0 and ∂R
(
ż
)+ ∂zE (t, u, z) � 0, (1)

where the symbol “∂” refers to a (partial) subdifferential,
relying on that R(·), E (t, ·, z), and E (t, u, ·) are convex
functionals. The first optimality condition of Eq. (1) repre-
sents the minimum energy principle, while the latter one, the
minimum dissipation potential principle [36].

For the sake of simplicity, throughout this work, we will
restrict ourselves to the two-dimensional case, i.e. �i ⊂ R

2

will be planar domains, i = 1, . . . , N , and �i j will be one-
dimensional surfaces.

2.2 Energetic solutions

A fruitful concept of a certain weak solution to the doubly
nonlinear inclusion with degree-1 homogeneous dissipation
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potential R, called energetic solution, was developed by
Mielke et al. [32,33]. In the convex case, this concept is essen-
tially equivalent to conventional weak-solution concept,
while in our case where E (t, ·, ·) is non-convex this con-
cept represents a certain generalization; cf. [27] for a survey
on the concept of energetic solutions and [28] for comparison
with other concepts.

The process (u(t), z(t)), t ∈ [0, T ] is called an energetic
solution to the initial-value problem (1), if it satisfies the
following three conditions:

(i) The energy equality:

E (T, u(T ), z(T ))
︸ ︷︷ ︸

stored energy

at time t = T

+ DissR(z; [0, T ])
︸ ︷︷ ︸

energy dissipated

during [0, T ]

(2)

=
T∫

0

E ′
t (t, u, z) dt

︸ ︷︷ ︸

work done by

mechanical load

+ E (0, u0, z0)

︸ ︷︷ ︸

stored energy

at time t = 0

,

where

DissR(z; [0, T ]) := sup
N∑

j=1

R(z(t j )− z(t j−1)), (3)

with the supremum taken over all partitions 0 ≤ t0 < t1
< · · · < tN−1 ≤ tN ≤ T .
(ii) Stability inequality for any t ∈ [0, T ]:

E (t, u, z) ≤ E (t, ũ, z̃)+ R(z̃−z) for any (ũ, z̃), (4)

(iii) The initial conditions: u(0) = u0 and z(0) = z0.

In Eq. (2), E ′
t is the partial derivative of E with respect to

time t .

3 Model of interface damage and plasticity

In this section we present the specific model adopted, in order
to simulate the nonlinear inelastic behaviour of an adhesive
layer, by defining a suitable stored energy functional as well
as a dissipation potential. The present plastic-type model with
kinematic-type hardening [16,39] for the delamination prob-
lem, was devised essentially in [36] without any mathemat-
ical or computational justification, and further scrutinized
in [37]. Beside the displacement u, two internal parameters
are used in order to describe the nonlinear behaviour of the

adhesive: the damage variable ζ and the plastic tangential
slip variable π , which together constitute the pair of inelastic
variables z = (ζ, π).

3.1 Stored energy

Stored energy E includes the elastic bulk contribution and
the additional adhesive-surface contribution:

E (t, u, z) = Eel(t, u)+ Eadh(u, z) (5)

with

Eel(t, u) =
{∑N

i=1

∫
�i

Ci e(u):e(u) dx, if u|�D = uD(t),
∞ elsewhere.

(6)

where Ci is the elastic moduli tensor in �i , and

Eadh(u, z) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�C

(
ζ
(κn

2
[[u]]2

n+ κt

2

([[u]]t−π
)2
)

+ κH

2
π2 + κ0

r

∣
∣∂sζ

∣
∣r
)

dS

if 0 ≤ ζ ≤ 1 and
[[u]]n ≥ 0 on �C,

∞ elsewhere,

(7)

where κn > 0 and κt > 0 are the phenomenological elastic
constants describing the stiffnesses of the linearly elastically
responding adhesive in the normal and tangential directions,
respectively, κ0 > 0 is the so-called factor of influence of
damage [29], [[u]] = [[u]]nν + [[u]]tτ with [[u]]n = [[u]] · ν
and [[u]]t = [[u]] ·τ, ν and τ being unit normal and tangential
vectors to �C, and ∂s is the tangential derivative defined on
�C. For �0 the outward normal ν is typically taken. Constant
parameter κH stands for the plastic modulus of kinematic
hardening. Here we used the notation [[u]] for the differences
of displacements from both sides of �C. We also assume
r > 1. The last term in Eq. (7), although bearing a physical
interpretation [2], is here introduced mainly for mathemat-
ical reasons in order to facilitate a proof of convergence;
for further details see [37], but in specific simulations one
may expect reasonable numerical results even if this term is
neglected by setting κ0 = 0. The constraint [[u]]n ≥ 0 in
Eq. (7) is actually the Signorini non-penetration condition of
unilateral contact [22].

3.2 Dissipation potential

A suitable functional for the dissipation potential, describing
both inelastic processes of damage and plastic slip in the
adhesive layer, and actually being a degree-1 homogeneous
functional, is defined as:
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R(ż) = R(ζ̇ , π̇) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

�C

G Ic

∣
∣ζ̇
∣
∣+ σt,yield

∣
∣π̇
∣
∣dS

if ζ̇ ≤ 0 a.e. on �C,

∞ otherwise.

(8)

Parameter G Ic > 0 is the minimal energy required for
complete damage (debonding) of a unit area of the interface.
In particular, we assume it represents the interface fracture
energy in Mode I. Parameter σt,yield > 0 is the interface
yield shear stress for initiation of tangential plastic slip along
the interface. The constraint ζ̇ ≤ 0 in (8) makes the evolu-
tion of ζ irreversible, i.e. the model does not permit healing,
which means that a debond appeared at some point can not
be restored.

Note that, except trivial case when uD is constant in time,
E ′

t in 2 would not be well defined. One way how to avoid
this drawback, well consistent with BEM, is to restrict the
displacement only on �C, assuming that �C and �D are not
touching each other. The restricted displacement u|�C will
be denoted by uC; in fact, in the case of �i j , it is a couple
of traces of u from both sides of �i j . As u does not occur in
Eq. (8) and thus it is fully nondissipative, Eq. (4) implies that
u minimizes E (t, ·, z) and thus, in fact, uC and z determines
u at a given time t . Thus, E can be considered as a function
of uC instead of u, which makes E ′

t (t, uC, z) well defined if
uD is smooth in time. On the other hand, we will not distin-
guish between [[u]] and [[uC]]. We will use this convention
through the rest of this article.

3.3 Engineering analysis of the traction-relative
displacement law

In the case of a linear elastic-perfectly brittle interface model
[40,41], the interface failure criterion is connected to the
energy release rate (ERR) concept. It can be shown [9,23]
that the energy stored in the adhesive at the crack tip equals
the ERR of a mixed mode crack propagating along a linear
elastic interface, and can be evaluated as:

G = GI + GII = κn[[u]]2
n

2
+ κt[[u]]2

t

2
. (9)

The so-called fracture mode mixity angles, denoted as
ψG , ψu , or ψσ , can be defined in terms of ERR as,

tan2 ψG = GII

GI
, (10)

as well as in terms of relative displacements and tractions,
respectively,

tanψu = [[u]]t

[[u]]n
and tanψσ = σt

σn
= κt[[u]]t

κn[[u]]n
. (11)

(a)

(b)

Fig. 2 Schematic illustration of the traction-relative displacement law
in the model. a pure normal (opening) mode and b pure tangential
(shear) mode, considering ζ0 = 1 and π0 = 0. Contribution of the
delamination-gradient term is neglected, i.e. κ0=0

Thus, the following relations hold:

| tanψσ | =
√
κt

κn
tanψG and | tanψu | =

√
κn

κt
tanψG . (12)

It is assumed that a crack propagates along a linear elastic-
perfectly brittle interface if the ERR G reaches the fracture
energy Gc (cf. [40,41]), that means:

κn[[u]]2
n

2
+ κt[[u]]2

t

2
= Gc. (13)

A strong dependence of Gc on the fracture mode mixity
has been observed in extensive experiments [1,12,19,24]. In
accordance with other experimental observations [21,42], the
associated plastic zones in the adjacent bulk, near the crack
tip, are larger in Mode II than in Mode I and these plastic
phenomena are localized in a relatively narrow plastic zone
in the bulk in the interface vicinity. In order to provide a
better representation of these experimental results, a plastic
tangential slip variableπ has been introduced at the interface,
which allows us, firstly, to distinguish between fracture Mode
I and II in the sense that some additional dissipated energy
is associated to interface fracture in Mode II, and secondly
to simulate these narrow plastic zones. In such a case we can
model an inelastic behaviour in the tangential response of the
interface, while the response in the normal direction remains
linear elastic, as shown in Fig. 2. An engineering insight into
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the present interface constitutive law can be summarized by
the two conditions which activate the two inelastic processes
included in the formulation [37]. The first one is the activation
criterion for damage initiation which, for the case of κ0 = 0,
reads as

1

2

(
κn[[u]]2

n + κt ([[u]]t−π)2
)

= G Ic , (14)

where the left hand side represents the elastic energy stored
in the adhesive. The second one concerns the evolution of
π which is triggered when |σt − κHπ | reaches the activation
threshold σt,yield, and then,

|ζκt([[u]]t−π)− κHπ | = σt,yield. (15)

A more detailed analysis of the model may be found in [37].
The model produces the desired results if

1

2

√
2κtG Ic < σt,yield ≤ √2κtG Ic . (16)

The upper bound of yield stress is necessary for making pos-
sible to initiate plastic slip before the total interface damage,
while the lower one is required to avoid plastic slip evolution
at some point which has already been debonded.

Thus, the ERR of a mixed mode crack for the present
model is defined by the:

G = κn[[u]]2
n

2
+ κt ([[u]]t−π)2

2
+ σt,yield|π | + κHπ

2

2
, (17)

where it may be seen that, referring to Eq. (9), ERR is here
augmented by terms concerning inelastic slip π .

In the following we will try to determine the dependence of
Gc on the fracture mode mixity angleψu similarly as in [43].
To accomplish this task, first we eliminate the plastic slip π ,
which in our kinematic-hardening model may be written, for
π > 0, as:

π = κt

κt + κH

(

[[u]]t − σt,yield

κt

)

. (18)

Substituting Eq. (18) into the damage initiation criterion of
Eq. (14), leads to the relation,

1

2

(

κn[[u]]2
n+κt

(
κH

κH+κt

)2 (

[[u]]t+σt,yield

κH

)2
)

=G Ic (19)

when some interface plasticity occurs, i.e. [[u]]t ≥ σt,yield
κt

.
In a similar way as in Eq. (13), which is valid if no plas-

ticity has occurred, Eq. (19) defines the relation between the
two components of the relative displacement at the crack tip
leading to the crack growth, if some plasticity has already
appeared. This relation can be written in a parameterized
form through the use of a parametric angle φ, as:

[[u]]n =
√

2G Ic

κn
cosφ,

[[u]]t =
√

2G Ic

κt

κt + κH

κH
sin φ − σt,yield

κH
, (20)

for arcsin
σt,yield√
2κtGIc

≤ φ ≤ π
2 . Before plasticity occurs, i.e.

for 0 ≤ φ ≤ arcsin
σt,yield√
2κtGIc

, the analogous parameterization

writes as

[[u]]n =
√

2GIc
κn

cosφ,

[[u]]t =
√

2GIc
κt

sin φ, (21)

and angle φ coincides with the fracture mode mixity angle
ψG defined in Eq. (10). Parameterization of Eq. (20), defines

an ellipse whose center is at the point
(

0,−σt,yield
κH

)
, which

continuously switches from the ellipse with the center at the
origin of coordinates Eq. (21), which corresponds to a state
of zero plasticity.

The relation Gc = Gc(ψu), for the case of non-zero inter-
face plasticity, can be obtained by substitution of Eqs. (20),
(19) and (18) into Eq. (17), leading after some algebra to:

G Ic

(

1 + κt

κH

sin2 φ

)

− σ 2
t,yield

2κH

= Gc(φ). (22)

Finally, finding the relation between the angles φ and ψu

tanψu =
√
κn

κt

κt+κH

κH

tan φ −
√

κn

2G Ic

σt , yield

κH

1

cosφ
, (23)

we obtain the desired relation φ = φ(ψu) to be substi-
tuted into Eq. (22). However, an explicit relation of Gc(ψu)

is rather cumbersome. Nevertheless, according to plots pre-
sented in [43] the functional dependence of Gc(ψu) qual-
itatively represents the expected behaviour in view of the
previous experimental results [1,12,19,24].

4 Numerical implementation

The theoretical framework, briefly presented up to this
point, provides an implementable and efficient numerical
scheme. An emerging global minimization problem, inherent
in Eq. (4) may be defined by an implicit time discretization.
By discretizing the time incremental formulation in space
by some appropriate method, the problem may be casted in a
standard algebraic form. Since the problem may be (and here
is) formulated on the boundary, as all nonlinear processes
considered occur exclusively on the boundary �C only, a
boundary element method seems to be a natural approach
especially if the bulk equations can efficiently be solved,
which is in particular the case of isotropic linear elastic
materials considered in this article. Such a formulation was
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developed in [37], using the collocation BEM but without
providing a thorough description of the numerical imple-
mentation. A related symmetric Galerkin SGBEM formula-
tion can be found in [43] and a FEM implementation in [36].
A preliminary comparison with the SGBEM formulation has
shown an excellent agreement in a few specific case studies.
An advantage of the present approach with respect to a related
FEM approach is that no bulk discretization is required here,
and in the analysis and optimization procedures we directly
work with a relatively small number of variables associated
to boundaries in particular to �C.

4.1 Minimization problem

Making an implicit time discretization by adopting, for sim-
plicity, an equidistant partition of [0, T ] with a fixed time-
step τ > 0, assuming T/τ ∈ N, Eq. (4) leads to a recursive
minimization problem:

minimize F k(uC, z) = E (kτ, uC, z)+ R(z−zk−1)

subject to BI uC≥0, 0≤ζ≤ζ k−1,

}

(24)

to be solved successively for k = 1, . . . , T/τ , starting from
u0 and z0. Operator BI represents the non-penetration Sig-
norini conditions, while the further constraint in (24) refers
to the non-negativity and irreversibility of damage parameter
evolution. According to the convention of Sect. 3.2, only uC,
the displacement at interfaces (or adhesive contact zones),
appears in Eq. (24) making clear that only this part of the
displacement field is a minimizer of the problem.

We denote by (uk
C, zk) some (generally not unique) solu-

tion to the problem (24).
In order to numerically solve the emerging minimization

problems (24), we have utilized and test in this work sev-
eral algorithms, such as the L-BFGS-B [8] for general large
scale simply bounded problems, the GLPK routines for lin-
ear programming problems [25] as well as a conjugate gra-
dient based algorithm with constraints, see [11], for solving
quadratic programming problems. Notably, the minimization
problem appears to have an L1-type non-smooth term with
respect to the plastic tangent slip variable π , see Eq. (8). In
order to overcome this difficulty we take advantage of gra-
dient projection algorithm presented in [13] for such kind of
non-smoothness.

4.1.1 Alternate minimization algorithm

The functional F k in Eq. (24) is not convex and as such
leads to a difficult minimization problem. In order to over-
come this difficulty we utilize a special technique, orig-
inally proposed in [7], called as alternate minimization
algorithm (AMA). The AMA procedure, in our case, con-
sists in splitting the original nonconvex minimization prob-
lem to two distinct convex problems with respect to the

Table 1 Pseudocode of the alternate minimization algorithm

(1) Set j = 0 and ζ 0 = ζ k−1

(2) Repeat
(a) Set j = j + 1
(b) Solve for u j

C and π j :
minimize (u j

C, π
j ) → E (t, u j

C, ζ
j−1, π j )

+R(ζ j−1 − ζ k−1, π j − πk−1)

subject to BI u j
C≥0

(c) Solve for ζ j :
minimize ζ j → E (t, u j

C, z j )+ R(z j −zk−1)

subject to ζ k−1 ≥ ζ j ≥ 0
(d) If ‖ ζ j −ζ j−1 ‖< ε exit loop

(3) Set uk
C = u j

C and zk = z j

Table 2 Pseudocode of the energy-based backtracking algorithm

(1) Set k = 1 and ζ 0 = ζ0
(2) Repeat

(a) Determine ζ k using the alternating minimization
algorithm for time tk and the initial value ζ 0

(b) Set ζ 0 = ζ k

(c) If the two-sided energy estimate holds:
∫ kτ
(k−1)τ E ′

t (t, uC, z) dt ≤ E (kτ, uk
C, zk)+ R(zk−zk−1)

−E ((k−1)τ, uk−1
C , zk−1) ≤ ∫ kτ

(k−1)τ E ′
t (t, uC, z) dt

set k = k + 1
(d) Else set k = k − 1
(e) Until k > T/τ

kinematical variables (u, π ) and to damage variable ζ ,
respectively. Convergence is succeeded through an iterative
procedure by alternation of this two convex problems. A
flowchart of AMA may be seen in Table 1. It is worth men-
tioning that the individual subproblems emerging by using
such alternation consist of a nonsmooth quadratic program-
ming problem, step (2-b), and a linear programming prob-
lem, step (2-c) of Table 1, respectively, for which we may use
appropriate specialized algorithms such as those mentioned
above.

4.1.2 Back-tracking technique

The above AMA procedure does not necessarily lead to
a globally minimizing solution which is, however, one of
the main condition behind the energetic-solution concept, as
shown in Sect. 2. In order to execute the global minimization
more successfully at particular time levels we use heuristic
back-tracking algorithm (BTA), devised and tested on this
kind of problems in [3,4,31,36,37]. The BTA technique is
based on checking a two-sided energy estimate, the integral
expression in Table 2, where also some pseudo-code of BTA
is given. This two-sided inequality has been constructed by
use of the energy stability condition Eq. (4) and a full deduc-
tion of it can be found in [27,30,36]. The upper and lower
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energy estimates are given as time integrals of the power
while (uC, z) and (uC, z) are piecewise constant interpolants
in time defined by

uC(t) = uk
C for t ∈ ((k−1)τ, kτ

]
, (25a)

uC(t) = uk−1
C for t ∈ [(k−1)τ, kτ

)
. (25b)

Similar notation concerns also z and z. A thorough deduction
of the boundary forms for these integrals of power, amenable
into the boundary element context, is given in Sects. 4.2 and
4.3. Although there is no proof that BTA converges to the
global minimum, definitely it leads to solutions of lower
energy than those obtained if we used AMA only.

4.2 Boundary element method

The boundary element method is closely related to the map
between the prescribed boundary conditions in displace-
ments or tractions and the unknown boundary displacements
or tractions. In pure Dirichlet and Neumann boundary-value
problems (BVPs), these maps are called Steklov–Poincaré
and Poincaré–Steklov maps [20,38], respectively, and BEM
can be considered as an approach to discretize these maps.
In the present computational procedure, the role of the BEM
analysis, applied to each subdomain �i separately (which,
in fact, makes this problem very suitable for parallel com-
puters), is to solve the corresponding BVPs on each �i . For
this goal, we numerically solve the Somigliana displacement
identity [35,38]

ci
ml(ξ)u

i
m(ξ)+

∫

−
�i

ui
m(x)T

i
ml(x, ξ) dSx

=
∫

�i

pi
m(x)U

i
ml(x, ξ) dSx , (26)

where ξ ∈ �i = ∂�i and ui
m(x) and pi

m(x) denote the m-
component of the displacement and traction vector, respec-
tively. The superscript i used in this section refers to a sub-
domain�i in difference to previous and next sections where
it denotes time step. The weakly singular integral kernel
Ui

ml(x, ξ), two-point tensor field, given by the Kelvin fun-
damental solution (free-space Green’s function) represents
the displacement at x in the m-direction originated by a unit
point force at ξ in the l-direction in the unbounded elas-
tic medium whose material properties coincide with those of
�i . The strongly singular integral kernel T i

ml(x, ξ), two-point
tensor field, represents the corresponding tractions at x in the
m-direction. The coefficient-tensor ci

ml(ξ) of the free-term is
a function of the local geometry of the boundary �i at ξ , and
may be evaluated by a closed analytical formula for isotropic
elastic solids [26]. The symbol

∫− in Eq. (26) stands for the
Cauchy principal value of an integral.

Consider a discretization of the boundary �i by a bound-
ary element mesh, which is also used to define a suitable
discretization of boundary displacements ui (x) and tractions
pi (x) by interpolations of their nodal values. By imposing
(collocating) the Somigliana identity (26) at all boundary
nodes (called collocation points) we set the BEM system of
linear equations for �i . The solution of this system defines
the unknown nodal values of displacements and tractions
along �i representing a part of arrays of all nodal values
denoted as ui and pi , respectively. The arrays ui and pi also
include the known nodal values of displacements and trac-
tions along �i given by the prescribed boundary conditions.
The BEM system obtained from Eq. (26) is usually written as
Hi ui = Gi pi [35]. In our computer implementation of BEM,
we employ straight elements with continuous and piecewise
linear interpolation for displacements and possibly discon-
tinuous piecewise linear interpolation for tractions.

Then, to compute an approximation of the elastic energy,
Eel in Eq. (6), stored in each bulk �i , by using the obtained
approximations of boundary displacements ui

m and of the
corresponding boundary tractions pi

m along�i , we utilize the
following general relation [17], assuming zero body forces:

E�i (t, ui ) :=

⎧
⎪⎨

⎪⎩

1

2

∫

�i

ui pi (ui ) dS if ui=ui
D(t)on�i

D,

∞ elsewhere,

(27)

while the corresponding total potential energy is

��i (t, ui ) = E�i (t, ui )−
∫

�i
N

ui pi
N(t) dS. (28)

Notice that both Eq. (27) and (28) provide pure boundary
expressions of energy. If Eel in Eq. (5) is replaced by the sum
of potential energies ��i for all subdomains, the functional
E defined by Eq. (5) will represent the total potential energy
of the whole problem.

We will also need to compute integrals of time derivatives
of energy, appearing in Table 2, were it is presupposed that
displacements on the adhesive contact boundary part uC are
defined in time steps k and k − 1. In order to do such calcu-
lations we need to separate the problem into three different
subproblems, in each of them either the adhesive contact
or prescribed Dirichlet or Neumann data are defined on the
boundary. This separation to subproblems may also serve to
express and solve the minimization problem, considering the
integral on �C only.

4.3 Boundary forms of the total potential energy
for a single domain

Consider the BVP for a subdomain �i . In this section we
will omit index i , for the sake of simplicity. Let uη and pη,
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Fig. 3 Solution of a mixed
BVP P for a single elastic
domain given as a superposition
of the solutions of the three
subproblems PC, PD and PN

respectively, denote the displacement and traction solutions
of this BVP restricted to�η, η = C, D and N, e.g. uC = u|�C

and pD = p|�D.We assume here a mixed-type operator M
which formally assigns (pC, pD, uN) to the known bound-
ary data (uC, uD(t), pN(t)) of the original BVP P shown
in Fig. 3, and may be expressed using the following block
structure as:

⎛

⎝
pC

pD

uN

⎞

⎠ =
⎛

⎝
MCC MCD MCN

MDC MDD MDN

MNC MND MNN

⎞

⎠

⎛

⎝
uC

uD

pN

⎞

⎠ . (29)

The columns of the above defined block operator M are
associated to the subproblems Pη defined in Fig. 3. The dis-
placement solution of a subproblem Pη is denoted as uη.
From the principle of superposition the displacement solu-
tion of P may be reconstructed by the sum:

u = uC + uD + uN . (30)

The total potential energy for the mixed type BVP P can
be written in an expanded form as,

� = 1

2

∫

�C

uC pCdS+1

2

∫

�D

uD pDdS−1

2

∫

�N

uN pNdS. (31)

By substituting the unknown data for the problem P from
Eq. (29) the total potential energy writes as

�(t, uC) = 1

2

⎛

⎜
⎝

∫

�C

uCMCCuC dS+
∫

�C

uCMCDuD dS

+
∫

�C

uCMCN pN dS+
∫

�D

uDMDCuC dS

+
∫

�D

uDMDDuD dS+
∫

�D

uDMDN pN dS

−
∫

�N

pNMNCuC dS−
∫

�N

pNMNDuD dS −
∫

�N

pNMNN pN dS

⎞

⎟
⎠ .

(32)

From Eq. (32) it is clear, that since uD(t) and pN(t) are
known, the total potential energy is in fact a function of the
contact displacement uC only, in addition to be a function
of time t . We further modify Eq. (32), in order to hold the
unknown variables in the integral on�C only, by utilizing the
second Betti reciprocity relation between the elastic solutions
of PC and PN,

∫

�N

pNMNCuC dS = −
∫

�C

uCMCN pN dS, (33)
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as well as between the solutions of PC and PD,
∫

�D

uDMDCuC dS =
∫

�C

uCMCDuD dS. (34)

Then, by substituting Eqs. (33) and (34) into Eq. (32),

�(t, uC) =
∫

�C

uC

(
1

2
MCCuC+MCDuD+MCN pN

)

dS

+1

2

∫

�D

uDMDDuD dS+1

2

∫

�D

uDMDN pN dS

−1

2

∫

�N

pNMNDuD dS−1

2

∫

�N

pNMNN pN dS. (35)

The partial time derivative of the total potential energy
expression in Eq. (35) writes as

∂�

∂t
(t, uC) =

∫

�C

uC
(
MCDu̇D+MCN ṗN

)
dS

+1

2

∫

�D

˙uDMDDuD dS+1

2

∫

�D

˙uDMDN pN dS

−1

2

∫

�N

˙pNMNDuD dS−1

2

∫

�N

˙pNMNN pN dS,

(36)

where the bar with dot denotes the time derivative of the
expression below the bar. The integral corresponding to that
on the left-hand side in the two-sided inequality in Table 2,
can be evaluated using Eq. (36) as,

kτ∫

(k−1)τ

∂�

∂t
(t, uk

C)

=
∫

�C

uk
C

(
MCDuk

D+MCN pk
N

)
dS

−
∫

�C

uk
C

(
MCDuk−1

D +MCN pk−1
N

)
dS

+1

2

∫

�D

uk
DMDDuk

D dS−1

2

∫

�D

uk−1
D MDDuk−1

D dS

+1

2

∫

�D

uk
DMDN pk

N dS−1

2

∫

�D

uk−1
D MDN pk−1

N dS

−1

2

∫

�N

pk
NMNDuk

D dS+1

2

∫

�N

pk−1
N MNDuk−1

D dS

−1

2

∫

�N

pk
NMNN pk

N dS+1

2

∫

�N

pk−1
N MNN pk−1

N dS, (37)

and similarly for the integral on the right-hand side of the
two-sided inequality in Table 2,

kτ∫

(k−1)τ

∂�

∂t
(t, uk−1

C )

=
∫

�C

uk−1
C

(
MCDuk

D+MCN pk
N

)
dS

−
∫

�C

uk−1
C

(
MCDuk−1

D +MCN pk−1
N

)
dS

+1

2

∫

�D

uk
DMDDuk

D dS−1

2

∫

�D

uk−1
D MDDuk−1

D dS

+1

2

∫

�D

uk
DMDN pk

N dS−1

2

∫

�D

uk−1
D MDN pk−1

N dS

−1

2

∫

�N

pk
NMNDuk

D dS+1

2

∫

�N

pk−1
N MNDuk−1

D dS

−1

2

∫

�N

pk
NMNN pk

N dS+1

2

∫

�N

pk−1
N MNN pk−1

N dS. (38)

For the case where homogeneous boundary conditions are
prescribed on �N, i.e. pN = 0, the above equations are sim-
plified further. In such a case the total potential energy will
coincide with the elastic strain energy and Eq. (35) takes the
form,

�(t, uC) =
∫

�C

uC

(
1

2
MCCuC+MCDuD

)

dS

+1

2

∫

�D

uDMDDuD dS. (39)

In this case, the time derivative, given by Eq. (36), is written
as,

∂�

∂t
(t, uC) =

∫

�C

uC
(
MCDu̇D

)
dS+1

2

∫

�D

˙uDMDDuD dS. (40)

Furthermore, in this case (pN = 0), the lower and upper
energy estimates in the two-sided inequality are further sim-
plified as

kτ∫

(k−1)τ

∂�

∂t
(t, uk

C) =
∫

�C

uk
C

(
MCDuk

D−MCDuk−1
D

)
dS

+1

2

∫

�D

(uk
D−uk−1

D )
(
MDDuk

D+MDDuk−1
D

)
dS,

(41)
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and

kτ∫

(k−1)τ

∂�

∂t
(t, uk−1

C )

=
∫

�C

uk−1
C

(
MCDuk

D−MCDuk−1
D

)
dS

+1

2

∫

�D

(uk
D−uk−1

D )
(
MDDuk

D+MDDuk−1
D

)
dS, (42)

respectively.
The above formulation assumes the solution of each of the

three subproblems in all time steps, while the total response
results by their superposition. It is worth mentioning that for
proportional external loading, which is separable with respect
to spatial coordinates and time, that means

uD(t, x) = φ(t) uD(x) for x ∈ �D, (43a)

pN(t, x) = ψ(t) pN(x) for x ∈ �N, (43b)

the PD and PN problems need to be solved just once for the
first time step, while for the subsequent steps the solutions
will be generated by using functions φ and ψ from Eq. (43)
as appropriate multipliers.

Summarizing, expressions where the minimizer of the
total potential energy is the displacement field defined at the
adhesive contact boundary part �C have been established in
this section. Moreover, appropriate formulas for computing
the lower and upper energy estimates shown in Table 2 have
been given.

4.4 Interface elements

The interconnection of the subdomains as well as the con-
sideration of Signorini kinematical conditions is attained by
intermediate elements referred to as interface elements. A
local reference system is associated to each interface ele-
ment defining a normal and a tangential component of rel-
ative displacements. In the case of adhesive contact prob-
lems of two deformable bodies where only small changes in
the geometry are assumed and conforming meshes of elas-
tic domains are considered along the interface, it is possi-
ble to incorporate the contact constraints on a purely nodal
basis. For a general case of nodes arbitrarily distributed along
the possible contact interface between two bodies, which
can occur e.g. when automatic meshing is used for two
different bodies, further considerations must be taken into
account about the definition of Signorini contact conditions,
this case not being considered here. The mechanical proper-
ties of springs distributed continuously at the interface, are
given by their normal and tangential stiffnesses κn and κt ,
respectively, and additionally in the tangent direction also

by the so-called plastic modulus κH and the factor of influ-
ence of damage κ0. The shape functions used to approximate
the distribution of variables at interface elements are linear
and continuous for the displacements, while for the inelas-
tic variables, ζ and π , might be constant or (continuous or
discontinuous) linear. In addition to the continuous distribu-
tion of springs, the interfaces and interface elements may be
equipped by a “dissipative mechanism” whose properties are
the mode-I fracture energy G Ic and the critical stress σt,yield

used in (8).

5 Numerical examples

The above introduced formulation has been implemented in
a two-dimensional BEM code [34] using continuous piece-
wise linear boundary elements [35], and also supplied with all
the necessary modules for the EC-BEM, where the acronym
EC-BEM refers to the Energetic approach for the solution
of adhesive Contact problems by BEM. The geometry of
the problem solved is shown in Fig. 4. With reference to
Fig. 1, only one subdomain (i.e. N = 1) is used to model
in a simple way an experimental test motivated by the pull-
push shear test used in engineering practice [10]. Thus, the
debonding occurs between the domain and the rigid founda-
tion interface �C.

The length and height of the rectangular domain�, respec-
tively, are L = 250 mm and h = 12.5 mm. The length
of the initially glued part �C placed at the bottom side
of � is LC = 0.9L = 225 mm. The isotropic elastic
material of the bulk is aluminium with the Young modu-
lus E = 70 GPa and the Poisson ratio ν = 0.35. Elastic
plain strain state is considered. The material of the adhe-
sive layer is epoxy resin, with elastic properties Ea =
2.4 GPa and νa = 0.33. Assuming the thickness of the
adhesive layer ha = 0.2 mm, and following [41], the cor-
responding stiffness parameters are represented by the nor-
mal stiffness κn = Ea(1−νa)

ha(1+νa)(1−2νa)
=18 GPa/mm and the

tangential stiffness κt = κn(1−2νa)
2(1−νe)

= κn/4. The parame-
ters for the dissipation mechanisms are the mode-I fracture
energy G Ic = 0.01 J/mm2 as well as the yield shear stress
σt,yield =168 MPa. Then, σn,crit = √2κnG Ic =600 MPa and
σt,crit = √

2κtG Ic =300 MPa. Finally, the hardening slope
for plastic slip is κH = κt/9.

Fig. 4 Problem geometry and boundary conditions
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5.1 Numerical experimentation

A few sample problem cases are solved in order to illus-
trate the capabilities of the numerical procedure developed.
In Sect. 5.1.1 we experiment with a non-monotonic Dirichlet
loading, for a variety of combination of dissipation proper-
ties. In the next Sect. 5.1.2 we present results for a monotonic
Neumann loading on a modified geometry of the problem
in order to avoid the absence of a Dirichlet boundary part
especially after the total delamination of the interface. Both
examples allow us to illustrate the behaviour of the numeri-
cal solution of the present energetic formulation for delam-
ination problems, and do not aim to analyze the problem
solutions in a thorough manner. In all the numerical com-
putations, linear continuous elements have been used for the
interface displacement and plastic slip variables, also referred
to as kinematical variables (u, π ), while constant discontin-
uous elements have been assumed for the damage variable ζ .

5.1.1 Non-monotonic loading

A hard-device loading is assumed by prescribing cyclic hori-
zontal and vertical displacements, u1(t, x) = sin(7 t)w1(x),
where t ∈ [0, 1] while w1=1 mm, and u2 = 0.6u1, respec-
tively, at the right-hand side of the rectangle �, defining
the Dirichlet boundary �D. In accordance with Eq. (43a),
φ(t)= sin(7 t). All the other boundary parts are considered to
be traction free, defining the Neumann boundary �N, except
for the adhesive contact surface �C. The boundary � is dis-
cretized by 64 elements using a uniform boundary element
mesh along each side, 27 elements being used for �C. Four
combinations of properties of the dissipative mechanism of
the adhesive are considered:

(a) Absence of any dissipation, leading to a pure adhesive
contact problem,

(b) Interface plasticity is considered, the damage variable
ζ being excluded from the minimization procedure,

(c) Interface damage is considered, the plastic slip variable
π being excluded from the minimization procedure,

(d) Both interface damage and plasticity are considered.

Cases (a) and (b) are mainly included for the comparison
purposes and also in order to analyse an inelastic response
due to interface plasticity. The horizontal resultant force with
respect to the displacement on �D is plotted in Fig. 5. For the
case of an inelastic response due to a cyclic loading, a hys-
teresis cycle appears as expected. Furthermore, for these two
cases also the shear stresses with respect to the relative tan-
gential displacements at an interface point x1 = 208.33 mm
are plotted in Fig. 6, where a typical hysteretic behaviour

Fig. 5 The horizontal resultant force versus the horizontal displace-
ment on �D: (a) pure adhesive contact and (b) interface plasticity
included

Fig. 6 Stress-relative displacement behaviour computed at the inter-
face point x1 = 208.33 mm of �C: (a) pure adhesive contact and (b)
interface plasticity included

for the kinematic type hardening plasticity is successfully
computed in case (b).

More complicated behaviour is obtained for cases (c) and
(d) where interface damage is included. This may be observed
in Figs. 7 and 8 where the horizontal and vertical resultant
forces with the respective displacements at �D are depicted.
For these cases upon the first uploading a damage initially
appears, for case (c) by breaking one element that corre-
sponds to a crack opening of Lcrack = 0.037LC = 8.33
mm, while for case (d) in a following time step, by breaking
six elements simultaneously which corresponds to a crack
opening of Lcrack = 0.22LC = 50.0 mm. For the same time
step, that crack initiates in case (d) with a crack opening
of Lcrack = 50.0 mm, for case (c) after some progressive
damage propagation, a crack of the same length exists. This
behaviour is the expected one, since because of plasticity
appearance in case (d), damage delayed to appear in com-
parison with case (c) where it is assumed that an energy
may be released only due to damage. Then, after change of
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Fig. 7 The horizontal resultant force versus the horizontal displace-
ment on �D: (c) interface damage and (d) both interface damage and
plasticity

Fig. 8 The vertical resultant force versus the vertical displacement on
�D: (c) interface damage and (d) both interface damage and plasticity

the direction of loading no further damage appears, while
plasticity still evolves on the remaining glued part of �C

upon the respective uploading periods. This behavior can be
better understood from Fig. 9, where the evolution of the
accumulated dissipation with respect to the time t is shown.
In fact, t is a kind of pseudo-time or process time which can
arbitrarily be re-scaled since the considered system is rate-
independent. Finally, the evolution of stored energies in the
adhesive layer due to opening and shear are shown in Fig. 10.

5.1.2 Traction instead of displacement loading

From an engineering point of view, we are highly interested in
the case of external loading given by nonvanishing Neumann
boundary conditions. This is because in numerous experi-
ments or real applications, loading is described through exter-
nal forces, moments or tractions. For these reasons a modified
problem configuration shown in Fig. 11 is studied in this

Fig. 9 Evolution of the dissipated energies: (c) interface damage and
(d) both interface damage and plasticity

Fig. 10 Evolution of the stored energies in the adhesive for case (d)
considering both interface damage and plasticity

Fig. 11 Modified geometry and boundary conditions used for the prob-
lem with prescribed non-zero tractions

section. The length of �C is LC = 200 mm, while the homo-
geneous Neumann boundary parts �Nh on the left and right
hand side of �C have lengths equal to 0.125LC. The length
and height of � as well as the material properties are the
same as in the previous example. The left vertical side of �
is fixed, defining �D, while uniform normal tractions applied
on the right vertical side of �, defining �Nn , are increasing
in time, i.e. p1(t, x) = ψ(t)p0 and p2 = 0 therein, with
p0 > 0 being a constant and ψ(t) > 0 an increasing func-
tion, see Eq. (43b). Both interface damage and plasticity are
considered.
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Fig. 12 The horizontal resultant force on �Nn versus the horizontal
displacement of the lower right corner of �

The evolution of the horizontal resultant force on �Nn

is plotted in Fig. 12. The computational analysis, including
BTA together with the two-sided energy inequality checking,
stops at a point, marked in Fig. 12 as point (L), where after
some plasticity development the first and at the same time the
total damage of the adhesive layer occurs. A dashed line in
the same plot represents the tangent line to the initial purely
elastic part of the resultant force-displacement curve. Both
lines separate due to the appearance of some plastic slip at
�C. To capture a progressive damage propagation along �C

would require decreasing the applied load after the peak load
is achieved.

Finally, in order to analyse the pointwise behaviour of the
numerical solution at�C, in particular regarding the evolution
of plastic slip, the same problem is solved again but includ-
ing interface plasticity only, i.e. no damage at �C is possible.
Numerically computed shear stress versus the relative tan-
gential displacement at the rightmost node of �C is shown in
Fig. 13, together with the expected tangential stress-relative
displacement law of Fig. 2. An “overshooting” phenom-
enon takes place when plasticity occurs, a similar behaviour
may also be observed in Fig. 6. This phenomenon is essen-
tially associated to the time and spatial discretization of the
problem, in particular possibly due to some oscillations of the
traction solution near the crack tip, and therefore can grad-
ually be eliminated by a spatial discretization refinement as
observed in Fig. 13.

5.2 Practical application

The problem configuration shown in Fig. 4 is considered
again. A monotonic hard-device loading is assumed by pre-
scribing horizontal and vertical displacements, respectively,
as u1(t, x) = t w1(x) with w1(x) = 0.6mm and u2(t, x) =
0.6u1(t, x) at the right-hand side of the rectangle �, defining
the Dirichlet boundary �D. All the other boundary parts are

Fig. 13 Shear stress-relative tangential displacement relation as com-
puted at the rightmost point of the interface �C. For this case, only
plasticity is considered, damage being excluded

considered to be traction free, defining the Neumann bound-
ary�N, except for the adhesive contact surface�C. The prob-
lem evolution is represented as a function of the pseudo-
time t .

An advantage of the present method considering a contin-
uous distribution of springs along the interface in compari-
son with the classical fracture mechanics, which assumes a
perfect interface except for some cracked zones, is that no
special mesh refinement is needed near the crack tip and a
uniform mesh can be employed along �C, similarly as in
the Cohesive Zone Models, see [18] and further references
therein. The tractions along the adhesive layer of the present
type are bounded although traction concentrations can be
expected at the end-points of the adhesive layer, which may
correspond to crack tips, cf. [23,40]. Actually, in the present
model, these tractions are limited by the critical values of nor-
mal and tangential tractions σn,crit and σt,crit , respectively. If
the adhesive layer at �C in the present problem in Fig. 4
would be replaced by perfect bonding conditions, stress sin-
gularities would appear at both extremes of the bonded part
�C. The stress singularity at the right extreme of �C, corre-
sponding to the classical oscillatory singularity of the open
model of an interface crack between an elastic and an infi-
nitely rigid solid, cf. [44], would be more severe than that at
the left extreme. In such a case, a strongly refined mesh or
special singular elements would be needed for a proper prob-
lem discretization of the crack tip neighbourhood. It should
be mentioned here that intuitive refinement without having
rigorous local error indicators is sometimes dangerous and
may destroy convergence which is standardly guaranteed on
uniformly refined meshes only.

Nevertheless, in the present model, the fact that a local
mesh refinement at the crack tip is not needed makes easy
the modeling of damage progression with the crack tip mov-
ing along the interface. In order to check this statement, we
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(a)

(b)

Fig. 14 a Normal and b tangent tractions along the adhesive zone �C,
for the three finest uniform boundary element meshes, n the number of
boundary elements at �C

Fig. 15 Percentage difference of a the total energy, b the elastic strain
energy and c the maximum normal tractions at the adhesive zone �C,
for uniform, along the horizontal and vertical edges, boundary element
meshes

have solved the problem in Fig. 4 by using a series of uniform
boundary element meshes, the three finest meshes having 126
(60 and 3 elements along each horizontal and vertical side,
respectively), 252 and 504 elements on � (that corresponds

to 54, 108 and 216 elements on �C). The traction solutions
along�C for these three finest meshes shown in Fig. 14 corre-
spond to horizontal prescribed displacement u1 = 0.28mm,
when no damage appears although some interface plastic-
ity has evolved. A strong traction concentration at the right
extreme of �C can be observed in these plots which, how-
ever, indicate that even for the coarsest mesh (54 elements on
�C) the solution obtained is sufficiently accurate for the pur-
pose of the present study. An additional checking is shown
in Fig. 15, where the percentage differences of the computed
strain energy in the bulk, the computed total energy (that
is the sum of the stored energy and the dissipated energy
at time t, E (t, u(t), z(t))+ DissR(z; [0, t]), see (2), and the
maximum absolute value of normal tractions at�C computed
by a coarse mesh and the finest mesh (216 elements on �C)
are plotted. These plots confirm that the percentage difference
of the strain energy and of the maximum normal traction for
the mesh with 54 elements on �C is sufficiently small, in
particular it is about 1 %. Therefore, this mesh is used in the
following complete numerical study of the present problem.

Figure 16 shows the evolution of different energies com-
puted, in particular, the energy stored in the elastic bulk, in
the adhesive layer and the dissipated energy. Also the total
energy, which is actually minimized in the time stepping pro-
cedure, together with the lower and upper estimates of energy
are shown. As it can be seen in Fig. 16, the global minimiza-
tion procedure defines the end of the delamination process,
where the remaining undamaged part of the adhesive layer
is debonded, as the point where the sum of the stored energy
in the bulk and the adhesive layer is basically equal to the
energy needed to delaminate the undamaged part of the adhe-
sive layer, which is given by the dissipated energy in the last
time step. In Fig. 17, the deformed shape of the bulk, is plot-
ted for two time steps, just before and after the first damage,
respectively.

Fig. 16 Evolution of the energies
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Fig. 17 Deformed shape of the elastic domain for two time steps, just
before and after damage initiation. A scale factor of 150 has been used

(a)

(b)

Fig. 18 Normal tractions along the adhesive zone �C, just a before
and b after the first crack opening, computed by BEM as well as in the
interface elements

Figures 18 and 19 present the normal and tangential trac-
tions vector along the adhesive zone �C. A very good agree-
ment exists between the computed tractions for each sub-
domain by BEM and those computed in the adhesive layer,
although the equilibrium has not been imposed directly but

(a)

(b)

Fig. 19 Tangential tractions along the adhesive zone �C, just a before
and b after the first crack opening, computed by BEM as well as in the
interface elements

it results as a consequence of the energy minimization. Pro-
gressive extension of the traction free portion of the orig-
inal �C because of the damage propagation (ζ = 0) can
be observed in Figs. 18(b) and 19(b). It should be men-
tioned that the portion of �C which is totally damaged is
still kept as a part of the minimization procedure, where
nodal displacement values participate as unknowns in the
minimization procedure and their values are used in the
BEM solution of the pertinent BVP. For this reason, in
fact an approximation of the developed traction-free zone
is computed by BEM for each subdomain. Obviously other
algorithms might be used where after the total damage
of a portion of the adhesive layer a switch in the type
of the boundary condition (e.g. from Dirichlet to vanish-
ing Neumann boundary condition) is taken into account
along this boundary portion in the BEM computation for
each subdomain. Nevertheless, we have been interested
in the results obtained by the present simple procedure.
Normal compressive tractions computed by BEM can be
observed in Fig. 18 in zones where vanishing normal trac-
tions are obtained in the interface elements. This is due to
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(b)

(a)

Fig. 20 Evolution of a the horizontal and b vertical resultant force on
�D

the fact that the rigid obstacle undertakes these compressive
tractions.

Finally, in Fig. 20 the resultant forces acting at �D ver-
sus the pseudo-time t are shown. These two plots have some
similarities in the behaviour that may come up through the
characteristic points (A)–(E). Up to point (A) the linear elas-
tic behaviour manifests in both the solid and adhesive, at this
point a plastic slip appears. Then, at point (B) the first dam-
age appears in the first 11 boundary elements that are situated
on the right-hand side of the adhesive layer. This new crack
length results in a “jump down” of the resultant forces up to
point (C). Then, up to point (D) the damaged zone is pro-
gressively extended and finally after point (D) the remaining
adhesive zone is damaged instantaneously. The problem evo-
lution ends up at point (E), where a rigid body motion of the
elastic body takes place. The increment of the crack length
from point (B) to (C) equals 45.83 mm. In the same figures
also the linear elastic responses, obtained for the same con-
figuration taking into account only adhesive contact without
any interface damage and plasticity, are plotted in order to
facilitate the observation of the initiation of plasticity and/or
damage.

6 Conclusions

A boundary element implementation of a computational
procedure based on an energetic-solution framework for
the delamination problems has been presented. A specific
model for the adhesive interfaces, which distinguishes the
amount of energy dissipated in opening Mode I and shear
Mode II has been adopted. This model involves two inelas-
tic internal variables on delaminating surfaces, namely the
damage variable ζ and the plastic slipπ . Some details regard-
ing the formulation of the collocation BEM as well as the
optimization procedures necessary for solving the global
minimization problem, inherent in the formulation, have been
discussed. A few numerical tests have been presented in order
to analyse the behaviour of the present delamination model
and performance of the algorithms implemented in a collo-
cational BEM code.
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31. Mielke A, Roubíček T, Zeman J (2009) Complete damage in elastic
and viscoelastic media and its energetics. Comput Methods Appl
Mech Eng 199:1242–1253

32. Mielke A, Theil F (2001) On rate-independent hysteresis models.
Nonl Diff Eqns Appl (NoDEA) 11:151–189

33. Mielke A, Theil F, Levitas VI (2002) A variational formulation of
rate-independent phase transformations using an extremum princi-
ple. Arch Rational Mech Anal 162:137–177

34. Panagiotopoulos CG (2010) Open BEM project. http://www.
openbemproject.org/

35. París F, Cañas J (1997) Boundary element method fundamentals
and applications. Oxford University Press, Oxford
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