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Abstract A minimal set vectorial parameterization involv-
ing vector space operations is proposed for finite 3D rotations
in structural analysis. In this approach, based on the updated
Lagrangian description, complex manipulations required to
obtain conservative descriptions and well-posed transfor-
mation matrices are avoided. In particular, slopes are used
instead of rotation parameters to compute the nonlinear rep-
resentations of the strain measures in the inertial frame of
reference. This approach is applied to a geometrically non-
linear formulation for 3D beam elements in the hypotheses of
large rotations and small strains. Numerical tests have been
carried out to validate the developed technique in the frame
structures context.

Keywords Nonlinear three-dimensional beam analysis ·
Finite elements · Finite rotations · Vectorial parameterization

1 Introduction

Considerable work has been devoted to developing models
for 3D elastic frame structures for small strains and in the
presence of large rotations. In this context, the co-rotational
is one of the classical approaches used. The motion of the
continuous medium is decomposed into a rigid body motion
followed by a pure deformation. For this reason, the finite
element is studied in the linear case where clearly drawbacks
appear. Then, the nonlinear motion is obtained by joining the
linear kinematic with a rigid body motion that is recovered by
the use of orthogonal transformation matrices. The evolution
of the co-rotational approach can be traced by referring to
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the works of Stuelpnagel [37], Belytschko and Hsieh [5],
Goldstein [15], Argyris [1], Rankin and Nour-Omid [32],
Cardona and Geradin [9], Crisfield [11], Atluri and Cazzani
[3], Geradin and Rixen [14], Ibrahimbegović et al. [19] and
Felippa [13].

The large-scale calculations required by these formu-
lations have encouraged efficient treatments of the finite
rotations. Those treatments, typically based on the rotation
vector of the Euler theorem to describe finite rotations, have
an economical definition of the rotated local reference system
because only three parameters are used. Such a minimal set
approach for the parameterization of the rotations, however,
suffers from the singularities in the transformation matri-
ces for several angles and requires complex manipulations
to overcome nonconservative descriptions. In effect, in the
use of updated Lagrangian procedures, the composition of
rotations is required while rotation vectors cannot be added
together. As a result an inverse problem must be solved to
recover admissible variations of the rotation vector or case
statements must be used in the coding. Formulations based
on finite rotation updates in incremental-iterative procedures
can be found in Ibrahimbegović and Al Mikdad [18] and
Yang et al. [40]. Recently, an algorithm where the solution
of the inverse problem is not case sensitive was set out in
Pimenta et al. [31] and Campello et al. [8].

As stated, the singularities for arbitrarily large rotations
are not just inherent in the co-rotational approach, but in all
methods based on a minimal set of parameters. The choice of
the three parameters, therefore, is usually made by consider-
ing the characteristics of a specific application, without how-
ever avoiding singularities. In the quaternion descriptions,
free singularity parameterizations can be obtained by adding
a further parameter, and subjecting the related Lagrange mul-
tiplier to a constraint equation. Besides, more nonlinear equa-
tions have to be solved while computationally expensive
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evaluations of the coefficients in the force vector and in the
tangent stiffness matrix persist.

Total Lagrangian approaches have also been developed.
In a first alternative, slopes are used instead of rotation para-
meters. In the absolute nodal coordinate formulation (see
Sopanen and Mikkola [35], Dufva et al. [12], Sugiyama et
al. [38]) the cross-section orientation of the element in the
frame of reference is defined by position vector gradients.
A similar vectorial finite element approach (Rhim and Lee
[33]) defines the cross-section in the 3D space by two vectors
that take warping into account. However, due to the use of
a cross-sectional coordinate system, the rigid cross-section
assumption is abandoned while the description of the elastic
forces becomes more complex. A second alternative is rep-
resented by the use of low-order 3D finite elements based
on definitions of relative lengths only (see [25,28]). In this
approach, strains are computed by making them linear inde-
pendent and invariant to the rigid kinematics measures.

More recently, formulations where the nonlinear rigid
motion is recovered by referring to three unit and mutually
orthogonal vectors attached to the elements have been pre-
sented. All nine components of such vectors in the global
inertial frame of reference are assumed as unknown and the
rotational degree of freedom of the element is reduced to only
three by six constraint conditions. In the works of Betsch and
Steinmann [6,7] orthonormality of the directors is enforced
by using six scalar products. In particular, three unit length
and three orthogonality conditions are imposed on the direc-
tors by using the scalar products among them and recip-
rocally, respectively. In [26] and [27], instead, three scalar
products and one cross product are used to define the con-
straint conditions. In particular, one orthogonality and two
unit length conditions are imposed by scalar products while
the complete definition of a director is obtained by referring
to a cross product. Hence, the formulation proves to be well
posed for any finite rotations.

In this paper we present a minimal set approach for the
parameterization of the rotations in the context of updated
Lagrangian descriptions. Such an approach is based on that
used in [26] and [27] for the statical and dynamical geo-
metrically nonlinear analysis of beams. Here, the use of the
internal constraint equations is replaced by the intrinsic defi-
nition of the related rotation parameters by obtaining a three
parameter description. We demonstrate that such a reduc-
tion from nine to three unknown components is well posed
under widely applicable hypotheses. The resulting formula-
tion still involves vector space operations for the description
of the finite 3D rotations while algorithmical formulation is
simple and evaluations of the coefficients in the force vector
and in the tangent stiffness matrix are inexpensive.

As regards beam element modeling, here we use a small
strain - finite displacement formulation of a two-node finite
element based on the Timoshenko beam theory. The actual

configuration of the element is rigidly translated and rotated,
and deformed according to selected linear modes. Rigid and
deformation modes are referred to the nodes at the boundaries
of the element with six unknowns per node. The nonlinear
motion is recovered by referring to three unit and mutually
orthogonal vectors attached to the nodes. As stated, three
of the nine components of such vectors in the global iner-
tial frame of reference are assumed as unknown. Afterward,
the deformative modes are summed up in the strain tensor
definition.

We note that boundary conditions on rotations are imposed
by assuming as known the related nodal slopes while applied
moments are modelled as forces following the motions. It
follows that, as will be discussed later, treatment of rota-
tional boundary conditions and external moments proves to
be slightly more complex with respect to the co-rotational
formulations. Furthermore, the incremental rotations are
restricted to the range of validity of the described parame-
trization. Overall, however, the use of the presented formu-
lation requires less implementation effort and arithmetical
operations with respect to the classical one.

The paper is set out in the following way. In Sects. 2 and
3 we describe the update treatment of rotations by slopes
and angles respectively. In Sect. 4 we define the kinematics
of the beam element and the related energetic quantities are
evaluated. Section 5 discusses some aspects related to the
variational formulation and related linearization. Section 6,
after defining the treatment of applied moments and boundary
conditions, contains the description of the nonlinear problem
and the related solution algorithm. Several numerical exam-
ples that compare the described formulations based on slopes
and angles for the rotation parametrization are presented in
Sect. 7 and final conclusions are drawn in Sect. 8. The regu-
larity of the augmented constrained problem is demonstrated
in Appendix 1.

2 Update treatment of rotations by slopes

In the following, we refer to Fig. 1 and we denote with Latin
indices i and j the values [1, . . ., 3] while δi j is the Kronecker
delta. Let gi = {gi j } and ĝi = {ĝi j } be, respectively, the
actual and the initial configuration of three unit mutually
orthogonal vectors in the inertial reference basis ki = {ki j }
= {δi j }. Matrix Ĝ links ĝi and ki vectors by ĝi = Ĝki while
G maps ĝi into gi vectors by gi = Gĝi .

Now let ḡi = {ḡi j } be an intermediate configuration of
the gi vectors and ēi = {ēi j } the related representation in the
ĝi basis. Analogously, ei = {ei j } is the counterpart of gi in
the ḡi reference. So the Ē = [ē1|ē2|ē3] and E = [e1|e2|e3]
matrices describe the tranformations ḡi = Ēĝi and gi = Eḡi ,

respectively. Note that {ēi j } or {ei j } reduce to {δi j } if basis
ḡi coincides with ĝi or gi with ḡi .
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Fig. 1 Unit base vectors: configurations and related mappings

In the approach described in the work [26] the gi j compo-
nents of the gi vectors are assumed as unknown parameters.
The nine gi j unknown components are subject to six con-
straint conditions so that the related direction cosine matrix
G = [g1|g2|g3] is orthogonal, i.e. GGT = GT G = I, with
I as identity matrix. In Appendix 1 we give the proof that
the rotational degrees of freedom are reduced to just three
and the constraint conditions are well posed for unbounded
rotations. We outlined that the imposition of the constraint
conditions on the ei j unknown components introduces the
terms related to the Lagrange multipliers. The computation
of these contributions to the internal force vector and to the
tangent stiffness matrix is simple to perform while a nodal
process is followed for the derivative of the related extended
functional with respect to the Lagrange multipliers. However
nine slopes plus six Lagrange multiplier unknowns are used
for the description of each rotated cross-section.

Here we abandon the unbounded validity for finite rota-
tions of the cited method so reducing the description to a
minimal set of parameters. In effect, under widely applicable
hypotheses on the ei incremental vectors from the updated
ēi ones, by the cited conditions

e2 · e3 = 0,

e2 · e2 − 1 = 0,

e3 · e3 − 1 = 0,

e2 × e3 = e1, (1)

here we give an explicit definition of the ei j components as a
function of the e21, e31 and e32 parameters. To demonstrate
that such a reduction is well posed we proceed in a construc-
tive manner.

Of course, by the fourth of the (1) conditions, the cross
product between the e2 and e3 directors is an explicit defini-
tion of the components e11, e12 and e13 of the e1 director for
any rotation. We assume 1 − e2

31 − e2
32 > 0 and e33 > 0 so

that

e33 =
√

1 − e2
31 − e2

32 (2)

is obtained directly by the e3 unit length condition. By the
first of (1), then, the expression

e23 = −e21e31 + e22e32

e33
(3)

is well posed. Inserting (3) into the second of (1) and defining

� = e2
33 + e2

32 − e2
21 (e

2
31 + e2

32 + e2
33) = e2

33 + e2
32 − e2

21

(4)

we have

e22 = −e21e31e32 + e33
√
�

e2
32 + e2

33

or

e22 = −e21e31e32 − e33
√
�

e2
32 + e2

33

(5)

if the further condition � > 0 is satisfied as e2
32 + e2

33 �= 0
due to e33 > 0. Apart from the choice of the two solutions
given in (5), the reduction in unknown parameters by the (1)
conditions is realized. In effect, by inserting the e33 expres-
sion of (2) in (3) and (5) we obtain the expression of the
components of the e2 and e3 vectors as a function of the e21,

e31 and e32 assumed parameters. Then, the components of
the e1 vector are also defined.

Now let θi j and π/2 + θi j be the angles between ei and
ē j vectors for i = j and i �= j, respectively. So ei j = cosθi j

for i = j while ei j = sinθi j for i �= j. Suppose that θi j ∈
(−θ∗,+θ∗) with θ∗ = arcsin(

√
2/2) = 0.785398rad =

45o. Then we verify that

0 = 1 − 2sin2θ∗ < 1 − e2
31 − e2

32 < 1,

and 0 < cosθ∗ < e33 < 1. (6)

As e3 is a unit length vector, with (4) we can write � =
1 − e2

31 − e2
21. Additionally, exploiting EET = I, we obtain

the expression � = e2
11. Then

cos2θ∗ < � < 1. (7)

We denote respectively with e+
22 and e−

22 the first and the
second solution given in (5). By referring to the θi j angles,
then

e±
22 = −sinθ21sinθ31sinθ32 ± cosθ33cosθ11

1 − sin2θ31
. (8)

By the (7) bounds, evaluations on the e±
22 coefficients give

−sin3θ∗ + cos2θ∗ < e+
22 < (sin3θ∗ + 1)/(1 − sin2θ∗),

−sin3θ∗ − 1 < e−
22 < (sin3θ∗ − cos2θ∗)/(1 − sin2θ∗). (9)
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As we can verify by the (9) inequalities we have e+
22 > 0

and e−
22 < 0. As e22 is in the range (cos(−θ∗), cos(θ∗)) the

choice e22 = e+
22 must be made.

Then, in the formulation θ∗ proves to be the singularity
value for the rotational parameters. However, as at present the
formulation is based on the updated Lagrangian procedure,
such a value is not a restricting bound.

To obtain the updated treatment of rotations we refer to
the following expression for the actual configuration of the
gi orthonormal triad at the k-th step

gi(k) = G(k)ĝi , G(k) = E(k)Ē(k). (10)

Vectors ei(k) defining E(k) in (10), as stated, represent the
incremental rotation from the ēi(k) previously computed con-
figuration. The subsequent k +1 step, afterward, refers to the

Ē(k+1) = E∗
(k)Ē(k), Ē(k+1) =

⎡
⎣ ē1(k+1) ē2(k+1) ē3(k+1)

⎤
⎦ ,

E∗
(k) =

⎡
⎣ e∗

1(k) e∗
2(k) e∗

3(k)

⎤
⎦ (11)

updated configuration with the e∗
i(k) established configuration

of ei . The process is initialized by Ē(0) = I.
As we can see, simple products are used recursively to

compose as many successive rotations as necessary. In par-
ticular, the Ē matrix takes into account the previously com-
puted rotations of the ĝi in the ḡi frame while ei vec-
tors map ḡi in the actual gi frame. In fact, we note that
the updated values of rotational parameters are directly the
Ē12, Ē13 and Ē23 coefficients of the (11) updated rotational
matrix.

In the k-th step, vectors ei(k) are completely defined as a
function of the e21(k), e31(k) and e32(k) unknown parameters
by the previously described expressions. In a continuation
procedure, besides, the range |θi j | < θ∗ covers the possi-
ble incremental rotation so that the rotations in between two
successively established configurations remain moderate. In
particular, by simple algebraic manipulations of the previ-
ous expressions of the ei j components, the recursive exact
evaluations

h = 1/(1 − e2
31), c1 =

√
1 − e2

21 − e2
31,

c3 =
√

1 − e2
31 − e2

32,

e11 = c1,

e33 = c3,

e22 = −(e21e31e32 − c1c3)h,
e23 = −(e21e31c3 + c1e32)h,
e12 = −(e31e32c1 + e21c3)h,
e13 = −(e31c1c3 − e21e32)h,

are used. Also their second and fourth order approximations
are tested in the numerical analyses.

We note that the asymptotic extrapolations of rotation
matrix components are computationally less expensive than
their exact expressions. Furthermore, to obtain an accurate
description of the equilibrium points and an efficient behav-
iour of the continuation process, the updated configurations
typically are not very distant.

3 Update treatment of rotations by angles

The treatment of rotations is now based on the recursive com-
position

gi(k) = R(k)R̄(k)ĝi , (12)

where R(k) = R(ψ (k)) with ψi components of ψ being
the unknown rotation parameters. Following the description
given before, R(k) is the incremental rotation matrix which
maps the updated frame ḡi(k) into the actual frame gi(k) while
R̄(k) = R̄(k)(ψ̄ (k))maps the initial frame ĝi into the updated
frame ēi(k).

Based on the rotation vector ψ = ϕφ, φTφ = 1, of the
Euler theorem to describe finite rotations, a representation of
rotation operators is:

T(ψ) = I + sinϕ

ϕ
� + 1 − cosϕ

ϕ2 �2, (13)

where, if the trigonometric functions are expanded in Taylor
series, we obtain the exponential map

exp(�) = I +� + 1

2
�2 + · · · . (14)

In (13) and (14), � denotes the skew symmetric tensor
obtained by the components of vector ψ :

� = Skew(ψ) =
⎡
⎣

0 −ψ3 ψ2

ψ3 0 −ψ1

−ψ2 ψ1 0

⎤
⎦ . (15)

The ψ = axial(�) is the converse operation of (15) that
extracts the ψ vector from the skew symmetric tensor �.

In the use of the G = RR̄ composition of rotation oper-
ators, however, we stress that ψG �= ψ + ψ̄ successive
rotations cannot be obtained by simply adding their corre-
sponding rotation vectors. Then, for a given (ψ̄, R̄) rotation,
admissible (ψG , G) rotations are obtained if

ψG = R−1(G). (16)

The inverse problem (16) is defined as the operation of obtain-
ing the ψG rotation vector based on the knowledge of the G
rotation matrix. Such an operation can be obtained by the no
ill-conditioning Spurrier algorithm [36]. The procedure, as
presented in Simo and Vu-Quoc [34], is summarized here:
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Fig. 2 Total Lagrangian co-rotational formulation: element kinematics and coordinate systems

1. a = max(G11,G22,G33,G11 + G22 + G33);
2. case a = G11 + G22 + G33:

i. q̄ = (1 + G11 + G22 + G33)
1/2/2;

ii. qi = −∑
jk

ei jk G jk/4q̄, i = 1, . . ., 3;

3. case a �= G11 + G22 + G33, a = Gii :

i. qi = [Gii/2 + (1 − G11 − G22 − G33)/4]1/2;
ii. q̄ = (Gkj − G jk)/4qi , q j = (G ji + Gi j )/4qi ,

qk = (Gki + Gik)/4qi ;

4. calculate (ϕG, ψG ) through:

i. ϕG = 2 arccos q̄;
ii. ψGi = qiϕG/sin(ϕG/2);

where i, j and k are the cyclic permutation of 1, 2 and
3, respectively, and ei jk is the related permutation symbol.
Computation 4.ii., finally, requires a further case depending
to avoid numerical instabilities. Here the second order expan-
sionϕG/sin(ϕG/2) = 2+ϕ2

G/12 is used when |ϕG | < 0.001.
In a highly simplified and computationally inexpensive

approach to the successive composition of rotations, we can
assume that the incremental R(k)(ψ) operator in the compo-
sition (12) produces admissible rotations in the step. Explic-
itly, the following expressions for the coefficients of the R(ψ)
incremental matrix are given by:

ϕ =
√
ψ2

1 + ψ2
2 + ψ2

3 ,

s = sinϕ/ϕ, c = (1 − cosϕ)/ϕ2,

R11 = 1 − c (ψ2
3 + ψ2

2 ),

R12 = −s ψ3 + c ψ2ψ1,

R13 = s ψ2 + c ψ3ψ1,

R21 = s ψ3 + c ψ2ψ1,

R22 = 1 − c (ψ2
3 + ψ2

1 ),

R23 = −s ψ1 + c ψ3ψ2,

R31 = −s ψ2 + c ψ3ψ1,

R32 = s ψ1 + c ψ3ψ2,

R33 = 1 − c (ψ2
2 + ψ2

1 ).

Second and fourth order approximations of the exponential
map are also used in the tests. By referring to the established
configuration ψ∗

(k), afterwards, the updated configuration is
realized in the subsequent k + 1 step as

G = R∗
(k)R̄(k), ψG = R−1(G), R̄(k+1) = T(ψG). (17)

The process is initialized by R̄(0) = I.
As stated, an algorithm where the solution of the inverse

problem is not case sensitive can be found in [31] and [8].
The representation of the rotation operator is then given by

T(ψ) = I + 4

4 + ϕ2 (� + 1

2
�2), (18)

in contrast to (13) while the updated configuration is com-
puted in the k + 1 step by using

123



382 Comput Mech (2013) 52:377–399

G = R∗
(k)R̄(k), ψG = 4

4 − ψ∗T ψ̄
(ψ∗ + ψ̄ + 1

2
ψ∗ × ψ̄),

R̄(k+1) = T(ψG) (19)

and R̄(0) = I. The coefficients of the R(ψ) incremental
matrix are now obtained by using the (18) representation:

ϕ =
√
ψ2

1 + ψ2
2 + ψ2

3 ,

h = 2/(4 + ϕ2),

R11 = 1 − (ψ2
3 + ψ2

2 )h,
R12 = (ψ2ψ1 − 2ψ3)h,
R13 = (ψ3ψ1 + 2ψ2)h,
R21 = (ψ2ψ1 + 2ψ3)h,
R22 = 1 − (ψ2

3 + ψ2
1 )h,

R23 = (ψ3ψ2 − 2ψ1)h,
R31 = (ψ3ψ1 − 2ψ2)h,
R32 = (ψ3ψ2 + 2ψ1)h,
R33 = 1 − (ψ2

2 + ψ2
1 )h.

As before, also second and fourth order approximations of
the (18) map are used in the numerical tests.

Note that expressions of the incremental rotation given in
the previous section are computationally slightly less expen-
sive than those given in this section because the three com-
ponents e21, e31 and e32 are assumed directly as unknowns.
Such an advantage increases if more terms are added in the
related expansions. In the slopes based formulation, further-
more, poor expansions can only compromise the approx-
imation of the solution points while in the angles based
formulations the admissibility of the incremental rotations
is also compromised. An inverse problem to be solved or

case statements, finally, are not present in the coding of the
slopes based formulation.

4 Kinematics and energetic quantities of the beam
element

Let ξ1 be the referential coordinate along the beam element
centerline −h1/2 ≤ ξ1 ≤ +h1/2. In the following, we
denote with n and m respectively the nodes in ξ1 = −h1/2
and ξ1 = +h1/2. Along the beam centerline we define the
displacement vector u(ξ1) = {ui (ξ1)} and the three ortho-
normal vectors g1(ξ1) = {g1i (ξ1)}, g2(ξ1) = {g2i (ξ1)} and
g3(ξ1) = {g3i (ξ1)} in the global inertial frame of reference
ki . Director vectors g2 and g3 are along the principal axes
of inertia of the cross-section ξ2 and ξ3, respectively. The
initial unit vector in the ξi element direction, as before, will
be denoted by ĝi (see Fig. 2).

In the beam element, global displacement vector u(ξ1)

is composed of rigid and deformation components. In par-
ticular, we refer to the ū = {ūi (ξ1)} rigid displacements
defined in the initial frame of reference while the deforma-
tion ũ(ξ1) = {ũi (ξ1)} displacements and ϕ̃(ξ1) = {ϕ̃i (ξ1)}
rotations are defined in the local rigidly rotated frame of ref-
erence. The deformation kinematics is assumed by the linear
interpolations

ũ1 = εξ1, ũ2 = γ2ξ1, ũ3 = γ3ξ1 (20)

for displacements and

ϕ̃1 = θξ1, ϕ̃2 = χ3ξ1, ϕ̃3 = χ2ξ1 (21)

for torque and flexural rotations.

Fig. 3 Example 1: problem definition; equilibrium paths and deformed configurations for Ne=12
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Table 1 Example 1: computational characteristics for the A and S based parametrization algorithms

Ne 8 12 16

N̄ i t
λ(1)

40.8 51.0 61.0 40.8 51.0 61.0 40.8 51.0 61.0

A1-parametrization
Second order approximation

Steps 273 79 261 74 259 73
Nm 3.960 4.633 3.958 4.622 3.961 4.616
t 0.906 0.281 1.235 0.390 1.468 0.499

Fourth order approximation
Steps 273 80 44 261 74 43 259 73 42
Nm 3.960 4.650 4.773 3.958 4.622 4.767 3.961 4.616 4.762
t 0.999 0.359 0.203 1.297 0.438 0.281 1.687 0.546 0.328

Exact representation
Steps 273 80 44 261 76 43 259 74 42
Nm 3.960 4.638 4.795 3.958 4.618 4.767 3.958 4.622 4.738
t 1.295 0.491 0.281 1.738 0.606 0.374 2.263 0.770 0.481
A2-parametrization

Second order approximation
Steps 273 79 261 74 259 73
Nm 3.960 4.633 3.958 4.622 3.961 4.616
t 0.843 0.266 1.156 0.375 1.437 0.468

Fourth order approximation
Steps 273 80 43 261 66 43 259 65 38
Nm 3.960 4.650 4.744 3.958 4.561 4.814 3.961 4.554 4.957
t 0.937 0.296 0.187 1.250 0.385 0.265 1.640 0.471 0.274

Exact representation
Steps 273 80 43 261 66 43 259 65 43
Nm 3.960 4.650 4.744 3.958 4.561 4.767 3.961 4.554 4.767
t 1.203 0.421 0.250 1.562 0.484 0.343 2.031 0.640 0.437
S-parametrization

Second order approximation
Steps 278 72 262 73 259 68
Nm 3.964 4.625 3.962 4.644 3.961 4.603
t 0.718 0.218 0.984 0.328 1.235 0.390

Fourth order approximation
Steps 280 80 41 263 72 40 260 70 39
Nm 3.964 4.671 4.854 3.962 4.654 4.825 3.962 4.649 4.795
t 0.823 0.265 0.140 1.093 0.371 0.218 1.422 0.451 0.246

Exact representation
Steps 280 79 41 263 74 40 260 72 39
Nm 3.964 4.671 4.854 3.962 4.654 4.825 3.962 4.649 4.795
t 1.031 0.328 0.156 1.328 0.438 0.250 1.781 0.557 0.344

Based on the above definitions and by referring to the
o
gi =

gi (0) definitions, local rotations and director components are
now linked by the vectorial operations

g1(ξ1) = o
g1 + ϕ̃2(ξ1)

o
g2 − ϕ̃3(ξ1)

o
g3,

g2(ξ1) = −ϕ̃2(ξ1)
o
g1 + o

g2 + ϕ̃1(ξ1)
o
g3,

g3(ξ1) = ϕ̃3(ξ)
o
g1 − ϕ̃1(ξ1)

o
g2 + o

g3. (22)

We note that the first order accuracy of the (22) represen-
tations leads to local evaluations consistent with the small
strains hypotheses. By evaluating (22) relations for ξ1 =
−h1/2 and ξ1 = h1/2, respectively in the n and m nodes,
we have

o
gi = (

n
gi + m

gi )/2 (23)

and, by using orthonormality of the directors,

θ = (
n
g3 · m

g2 − n
g2 · m

g3)/2h1,

χ2 = −(n
g2 · m

g1 − n
g1 · m

g2)/2h1,

χ3 = (
n
g3 · m

g1 − n
g1 · m

g3)/2h1. (24)

Furthermore, by defining
o
ui = ui (0) we now obtain rigid

and deformation components in the initial frame of reference
by

ūi (ξ1) = o
ui + ξ1(

o
gi1 − ĝi1) (25)
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Table 2 Example 1: no imperfection case: normalized buckling loads
for increasing aspect ratio values obtained by exact S-representation

J3/J2 γb

Ne=8 Ne=16 Ne=32

0.0002 0.9951 0.9985 0.9994

0.05 0.9225 0.9252 0.9259

0.1 0.8441 0.8459 0.8463

0.15 0.7574 0.7580 0.7581

0.2 0.6603 0.6592 0.6590

0.25 0.5498 0.5462 0.5454

0.3 0.4200 0.4122 0.4102

0.33 0.3270 0.3137 0.3102

0.35 0.2533 0.2309 0.2244

0.36 0.2102 0.1760 0.1641

0.365 0.1863 0.1394 0.1162

0.367 0.1763 0.1210 0.07677

0.3675 0.1737 0.1159 0.001505

Fig. 4 Example 1, no imperfection case: normalized buckling loads
versus cross section aspect ratio

and

ũi (ξ1) = ξ1(ε
o
g1i + γ2

o
g2i + γ3

o
g3i ), (26)

respectively. Then, in the vectorial notation, the motion of
the ξ1 point is described as

u = o
u + ξ1(

o
g1 − ĝ1)+ ξ1(ε

o
g1 + γ2

o
g2 + γ3

o
g3). (27)

Also here, by evaluating relation (27) for nodal coordinates
ξ1 = −h1/2, ξ1 = h1/2, and by using orthonormality of the
directors, we deduce that

o
u = (

n
u + m

u)/2 (28)

is the central point displacement and

ε = [o
g1 · (mu − n

u)− h1 + h1
o
g11]/h1,

γ2 = [o
g2 · (mu − n

u)+ h1
o
g21]/h1,

γ3 = [o
g3 · (mu − n

u)+ h1
o
g31]/h1, (29)

are the expressions of the axial and shear deformations as a
function of nodal displacement and director components.

As can be seen, n and m nodal components of displace-
ment vector u and director vectors gi completely define the
kinematics of the beam element. In particular, the (20) and
(21) linearized deformations are defined by expressions (24)
and (29) while the (27) nonlinear motion of the centerline

is described by the displacement vector
o
u in (28) and the

director vectors
o
gi in (23).

For the evaluation of the energetic quantities of the beam
element, we consider the referential coordinates (ξi ) in the
element. We denote with uP (ξ j ) = {u Pi (ξ j )} the displace-
ment of the generic point P in the element represented in the
global reference frame. Then we can refer respectively to the
expression

ūP = o
u + ξ1(

o
g1 − ĝ1)+ ξ2(

o
g2 − ĝ2)+ ξ3(

o
g3 − ĝ3) (30)

for the rigid and to expression

ũP = ũ1
o
g1 + ũ2

o
g2 + ũ3

o
g3 + (ϕ̃3ξ2 − ϕ̃2ξ3)

o
g1

+ϕ̃1(ξ2
o
g3 − ξ3

o
g2) (31)

for the deformation components of the motion uP = ūP +
ũP .

In the hypotheses of elastic materials, the energetic quan-
tities involved are the internal and external energy

U = 1

2

∫

V

εP : σ P dV, W =
∫

V

p · uP dV, (32)

respectively. In (32) we denote with V the volume of beam
element, p the vector of external loads while εP and σ P

are the infinitesimal strain and stress tensors in the body,
respectively.

The estimation of the internal energy can be carried out
by extracting the contributions due to the deformation from

the uP motion. Then, the projection of ũP in (31) in the
o
gi

directions gives the infinitesimal displacements:

ũ = ũP · o
g1 = ξ1(ε + χ2ξ2 − χ3ξ3),

ṽ = ũP · o
g2 = ξ1(γ2 − θξ3),

w̃ = ũP · o
g3 = ξ1(γ3 + θξ2). (33)
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Fig. 5 Example 2: problem definition; equilibrium paths and deformed configurations for Ne=24

By using this deformation kinematics, we define the follow-
ing infinitesimal strain components of the εP tensor:

ε11 = ε + χ2ξ2 − χ3ξ3, ε12 = 1

2
(γ2 − ωθ),

ε13 = 1

2
(γ3 + ωθ), (34)

and ε23 = 0. In (34) shearing contributions due to the tor-
sional mode are modelled by a ω = ω(ξ2, ξ3) function while
those due to the flexural modes are omitted to overcome lock-
ing effects.

Extensional components ε22 and ε33 are then obtained by
imposing the statical assumptions σ22 = σ33 = 0 on the σ P

stress tensor. Then we have

ε22 = ε33 = − λ

2(λ+ μ)
ε11, (35)

whereλ andμ are the Lamé coefficients. By using the expres-
sions (35), the remaining stress components are:

σ11 = 2με11+λ(ε11 + ε22+ε33)=2μ+ 3λ

λ+ μ
με11 = Eε11,

σ12 = 2με12 = 2Gε12,

σ13 = 2με13 = 2Gε13 (36)

and σ23 = 0. In (36), E and G are the Young and shear
moduli, respectively.

By integrating the internal energy contribution over the
section area we have:

∫

A

εP : σ P d A =
∫

A

(Eε2
11 + 4Gε2

12 + 4Gε2
13)d A

= E(Aε2 + J3χ
2
2 + J2χ

2
3 )

+G[A(γ 2
2 + γ 2

3 )+ 2θ2
∫

A

ω2d A

+2(γ3 − γ2)θ

∫

A

ωd A], (37)

where J2 and J3 are the second moments of area about the
related principal axes. Besides, by assuming

∫
A ωd A = 0

and Jω = 2
∫

A ω
2d A is the St-Venant torsion constant, we

can write:

U = 1

2

h1/2∫

−h1/2

∫

A

εP : σ P d A

= 1

2
h1[E(Aε2 + J3χ

2
2 + J2χ

2
3 )

+G(Aγ 2
2 + Aγ 2

3 + Jωθ
2)]. (38)

Note that coupling axial-torsional terms and the warping
effect of the cross-section are not taken into account. In effect,
here the tests are carried out to prove the computational effec-
tiveness of the finite rotations treatment. Better models for
taking into account the torsional effects in the beam, how-
ever, can also be considered (Mohri et al. [29,30], can be
referred to for details of this).

External work W is defined in (32) by the (30) and (31)
expressions of the displacement vector. Note that as the kine-
matics of the element being modelled as a 3D body, only
external forces must be assigned.
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Table 3 Example 2: computational characteristics for the A and S based parametrization algorithms

Ne 8 16 24

N̄ i t
λ(1)

40.20 50.25 60.25 40.20 50.25 60.25 40.20 50.25 60.25

A1-parametrization

Second order approximation

Steps 545 158 508 146 548 149

Nm 3.980 4.861 3.978 4.870 3.980 4.846

t 1.688 0.562 2.859 1.046 4.531 1.562

Fourth order approximation

Steps 545 158 88 508 147 87 548 147 80

Nm 3.980 4.861 5.295 3.978 4.871 5.218 3.980 4.871 5.412

t 1.937 0.671 0.422 3.312 1.171 0.750 5.218 1.703 1.015

Exact representation

Steps 545 158 88 494 147 83 548 147 79

Nm 3.980 4.861 5.273 3.977 4.871 5.361 3.980 4.871 5.418

t 2.526 0.998 0.573 4.223 1.558 1.051 6.775 2.247 1.345

A2-parametrization

Second order approximation

Steps 545 158 507 146 548 149

Nm 3.980 4.861 3.978 4.870 3.980 4.853

t 1.640 0.532 2.794 1.010 4.484 1.453

Fourth order approximation

Steps 545 159 89 508 147 87 548 146 79

Nm 3.980 4.862 5.303 3.978 4.871 5.310 3.980 4.870 5.506

t 1.828 0.596 0.406 3.009 1.156 0.718 5.078 1.656 0.909

Exact representation

Steps 545 159 89 508 147 87 548 146 79

Nm 3.980 4.862 5.303 3.978 4.871 5.310 3.980 4.870 5.506

t 2.312 0.828 0.516 3.968 1.453 0.921 6.250 2.078 1.296

S-parametrization

Second order approximation

Steps 489 161 456 158 454 167

Nm 3.978 4.888 3.976 4.886 3.976 4.802

t 1.281 0.484 2.187 0.921 3.156 1.390

Fourth order approximation

Steps 495 166 87 460 161 84 459 160 85

Nm 3.978 4.861 5.138 3.976 4.857 5.333 3.976 4.894 5.202

t 1.437 0.558 0.312 2.515 1.063 0.640 3.625 1.526 0.852

Exact representation

Steps 495 166 87 460 162 88 459 160 92

Nm 3.978 4.861 5.138 3.976 4.858 5.307 3.976 4.894 5.155

t 1.796 0.750 0.391 3.078 1.312 0.766 4.531 1.921 1.119

5 Variational formulation and linearization

In this section, we summarize the derivation of the used vari-
ational formulation and related consistent linearization. This
is done mainly to facilitate understanding the derivation of the
stiffness matrix. Although a multiplicative approach is here

exploited, also the necessary linear transformation to define
additive representation is established. For detailed exposi-
tions, the reader is referred to the relevant cited literature.

We denote respectively by εT = {ε, γ2, γ3} and θT =
{θ, χ2, χ3} the deformation and the curvature vector while,
if not specified, quantities refer to the central point of the
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Fig. 6 Example 3: problem definition; equilibrium paths and deformed configurations for Ne=18

element. By defining the dv = (
m
v − n

v)/h1 discrete coun-
terpart of the derivative of v with respect to the reference
coordinate ξ1, from the (29) expressions we have

ε = GT du + GT k1 − k1 = GT dx − k1, (39)

where x is the position vector of the centroid point. By indi-
cating with v× the skew-symmetric matrix formed by the
component of v, from the (22) vectorial operation we can

write
m
G = G(I +

m
ϕ̃×) and

n
G = G(I +

n
ϕ̃×), where ϕ̃ is a

material incremental rotation. Then, relation dG = Gdϕ̃×
leads to the following expression

θ× = dϕ̃× = GT dG. (40)

As we can see, the classical definitions of material deforma-
tion and curvature are obtained in (39) and (40), respectively.

Because rotation operator belongs to the Lie group of
proper orthogonal linear transformations SO(3) = {G :
R3 → R3 | GT G = I, detG = +1}, admissible variations
are to performed by

δG = δϕ×G, (41)

where δϕ is the spatial component of the angular variation.
Then, by (39) we have

δε = (δϕ×G)T dx + GT dδx = GT (dδx + dx×δϕ), (42)

while (40) implies

δθ× = (δϕ×G)T dG + GT dδG

= GT δϕT×dG + GT [dδϕ×G + δϕ×dG]
= GT dδϕ×G, (43)

and therefore

δθ = GT dδϕ. (44)

In the previous calculations, classical vectorial relations and
transformations between spatial and material descriptions
have been used. We note that, by Eqs. (42) and (44), variations
of the given deformation and curvature vectors in terms of
spatial angular variation follow the conventional definitions.
If n and m respectively denote the internal stress resultants
energy conjugated to the δε and δθ virtual strain measures,
the expression for the internal virtual work is written as

δU = h1[nT δε + mT δθ ]. (45)

We note that (42) and (44) definitions use ϕ as pri-
mary variable to describe rotations and δU = f(x,G)T

{dδx, δϕ∗, dδϕ} results, where f is the internal force vec-
tor. By referring to the G = RR̄ composition of rotation
operators, above expressions are consistent when the multi-
plicative representation

R(k+1) = exp(�ϕ(k)× )R(k), ϕ(k+1) = R−1(R(k+1)) (46)

is used in relation to the �ϕ incremental rotation. The (46)
update procedure must be performed for each iterative step
k of the solution process. In effect, at the converged point
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Table 4 Example 3: computational characteristics for the A and S based parametrization algorithms

Ne 6 12 18

N̄ i t
λ(1)

450 570 690 450 570 690 450 570 690

A1-parametrization

Second order approximation

Steps 1081 327 949 350 998 356

Nm 3.998 4.936 3.997 4.926 3.998 4.902

t 2.688 1.000 4.188 1.875 6.375 2.781

Fourth order approximation

Steps 1106 329 186 952 321 202 1024 345 235

Nm 3.996 4.936 5.608 3.993 4.935 5.703 3.995 4.916 5.434

t 2.894 1.125 0.687 4.843 1.968 1.484 8.613 3.140 2.328

Exact representation

Steps 1076 329 181 1017 345 217 998 362 228

Nm 3.999 4.936 5.669 3.999 4.936 5.548 3.999 4.906 5.482

t 4.002 1.541 0.951 6.726 2.838 1.984 9.564 5.151 2.969

A2-parametrization

Second order approximation

Steps 1081 327 949 350 998 354

Nm 3.998 4.936 3.997 4.926 3.998 4.938

t 2.578 0.953 4.115 1.806 6.257 2.745

Fourth order approximation

Steps 1036 313 181 952 341 210 998 364 239

Nm 3.999 4.936 5.696 3.993 4.962 5.529 3.998 4.893 5.406

t 2.765 1.015 0.631 4.750 2.078 1.406 7.109 3.094 2.265

Exact representation

Steps 1036 313 181 952 341 210 998 374 234

Nm 3.999 4.936 5.696 3.993 4.962 5.529 3.998 4.893 5.466

t 3.500 1.312 0.890 5.766 2.562 1.781 8.781 4.016 2.812

S-parametrization

Second order approximation

Steps 1014 373 1009 395 1027 388

Nm 4.000 4.917 3.997 4.896 3.998 4.938

t 2.171 0.884 3.843 1.746 5.609 2.546

Fourth order approximation

Steps 1023 364 231 1010 372 255 1028 375 265

Nm 3.999 4.931 5.466 3.998 4.907 5.298 3.998 4.935 5.254

t 2.437 0.977 0.596 4.313 1.905 1.262 6.313 2.875 2.090

Exact representation

Steps 1023 362 243 1010 375 258 1028 385 274

Nm 3.999 4.931 5.440 3.998 4.907 5.469 3.998 4.935 5.255

t 3.015 1.296 0.874 5.375 2.431 1.739 7.921 3.637 2.738

�ϕ → 0, �R = exp(�ϕ×) → I results and variation of the
(46) representation agrees with the consistent variation (41).
The kind of representation used to define the �R operator
may influence only the convergence behaviour of the iterative
scheme. When an expression

δϕ = A(ψ)δψ (47)

between δϕ angular and δψ rotation vector variations con-
sistent with the (41) relation is given, the different form of
the material virtual strains

δε = GT (dδx + dx×A(ψ)δψ), δθ = GT d[A(ψ)δψ]
(48)
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Fig. 7 Example 3: equilibrium path and director component values for the first and second revolution

is used. Expressions (48) are now connected with the additive
representation

ψ (k+1) = ψ (k) +�ψ (k), R(k+1) = exp(ψ (k+1)
× ) (49)

where�ψ is the incremental rotation vector. Essentially, by
the (47) relation the configuration space is simplified to a
linear vector space. The ψ rotation vector is used as primary
variable while δU = f(x,ψ)T {dδx, δψ, dδψ} is the form of
the internal virtual work.

We use now the symbol dα to denote operator d/dα |α=0 .

In the multiplicative approach the consistent linearization of
the virtual work leads to

Lin(f) = f + dαf
[
exp(α�ϕ×)G, x + α�x

]
(50)

while, in the additive approach, we have

Lin(f) = f + dαf (ψ + α�ψ, x + α�x) . (51)

The tangent stiffness matrix related to the (50) linearization is
unsymmetric although inexpensive calculations are required
to compute its coefficients. In contrast, the (51) lineariza-
tion provides symmetric but very complex tangent stiffness
matrices. In effect, seconde derivative of the A(ψ) opera-
tor is involved in the linerization process which would be
extremely complicated to calculate. Additionally, we remark
that simplifications can be operated on the (51) lineariza-
tion in the additive approach. In such cases, the continu-
ation method with the resulting approximate tangent stiff-
ness matrix has not difficulties in computing the equilibrium
points. However, exact values of the tangent stiffness are
required for locating the bifurcation points on the equilib-
rium path.

We now discuss of the used S parametrization in the multi-
plicative approach. By referring to the G = EĒ composition,
let components r1 = −e32, r2 = e31 and r3 = −e21 of r be
the three rotation parameters retained to describe the rotation
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Fig. 8 Example 4: problem definition; equilibrium paths and deformed configurations for Ne=48

operator E. Here the multiplicative representation assumes
the form

E(k+1) = �E(k)E(k),

r(k+1)T =
{
−E (k+1)

23 , E (k+1)
13 ,−E (k+1)

12 ,
}

(52)

in relation to the �r incremental rotation vector. As said
above, the representation used to define the incremental rota-
tion operator may influence only the convergence behav-
iour of the iterative scheme. The main requirement is that,
at the solution point �r → 0, variation of the (52) repre-
sentation agrees with the consistent variation (41), as δE =
dαE(0 + αδr) = δr×E verifies. The linearization of the vir-
tual work leads now to

{dδu, δr, dδr}T dαf
[
E(α�r)G,u + α�u

]

= {dδu, δr, dδr}T K{d�u,�r, d�r}
= h1

[
dαnT

�δε + dαmT
�δθ

]

+h1

[
nT dαδε� + mT dαδθ�

]
, (53)

where K is the tangent stiffness matrix and subscript �
denotes perturbation V�(v + α�v). The first and second
terms in (53) define the material Km and geometric Kg stiff-
ness matrix, respectively.

Defining the material stiffness Cε and Cθ respectively by
Cε = Diag(E A,G A,G A) and Cθ = Diag(G Jω, E J2, E J3),

we can write directly

dαn� = Cεdαε� = CεGT (d�u + du×�r), (54)

and

dαm� = Cθdαθ� = CθGT d�r. (55)

Then, the material stiffness matrix is symmetric with coeffi-
cients defined by

Km
dδu,d�u = GCεGT , Km

dδu,�r = GCεGT du×, Km
dδu,d�r = 0,

Km
δr,d�u = duT×GCεGT , Km

δr,�r = duT×GCεGT du×, Km
δr,d�r = 0,

Km
dδr,d�u = 0, Km

dδr,�r = 0, Km
dδr,d�r = GCθGT .

(56)

To calculate the geometric stiffness term we first linearize δε
and δθ by

dαδε� = dαGT
�(dδu + du×δr)+ GT dαu×�δr

= (�r×G)T (dδu + du×δr)+ GT d�u×δr (57)

and

dαδθ� = dαGT
�dδr = (�r×G)T dδr. (58)

By inserting (57) and (58) expressions in the geometric stiff-
ness terms of (53), after some manipulations, we have

nT dαδε� = dδuT (Gn)T×�r + δrT dδuT×(Gn)T×�r

+δrT (Gn)×d�u (59)

and

mT dαδθ� = dδrT (Gm)T×�r. (60)

Finally, the geometric stiffness matrix is unsymmetric with
coefficients given by

Kg
dδu,d�u = 0,Kg

dδu,�r = (Gn)T×, Kg
dδu,d�r = 0,

Kg
δr,d�u = (Gn)×, Kg

δr,�r=duT×(Gn)T×, Kg
δr,d�r=0,

Kg
dδr,d�u = 0, Kg

dδr,�r = (Gm)T×, Kg
dδr,d�r = 0.

(61)

123



Comput Mech (2013) 52:377–399 391

Table 5 Example 4: computational characteristics for the A and S based parametrization algorithms

Ne 24 36 48

N̄ i t
λ(1)

420 540 640 420 540 640 420 540 640

A1-parametrization

Second order approximation

Steps 365 140 358 134 337 134

Nm 3.962 4.614 3.964 4.604 3.976 4.604

t 3.078 1.328 4.344 1.953 5.469 2.500

Fourth order approximation

Steps 365 140 98 358 134 113 337 134 98

Nm 3.962 4.614 4.500 3.964 4.604 4.372 3.976 4.604 4.520

t 3.515 1.546 1.078 5.046 2.250 1.734 6.312 2.906 2.140

Exact representation

Steps 365 140 104 358 134 113 337 134 98

Nm 3.962 4.614 4.481 3.964 4.604 3.976 4.604 4.520

t 4.510 2.050 1.492 6.545 2.887 2.296 8.137 3.789 2.739

A2-parametrization

Second order approximation

Steps 365 141 358 134 337 134

Nm 3.962 4.617 3.964 4.604 3.976 4.604

t 2.940 1.298 4.268 1.859 5.396 2.477

Fourth order approximation

Steps 365 140 114 358 134 113 337 134 99

Nm 3.962 4.614 4.254 3.964 4.604 4.381 3.976 4.604 4.515

t 3.406 1.500 1.015 4.921 2.125 1.709 6.109 2.874 2.015

Exact representation

Steps 365 140 114 358 134 111 337 134 99

Nm 3.962 4.614 4.254 3.964 4.604 4.396 3.976 4.604 4.515

t 4.171 1.890 1.406 6.031 2.656 2.095 7.500 3.484 2.546

S-parametrization

Second order approximation

Steps 362 152 370 149 352 138

Nm 3.981 4.579 3.981 4.503 3.980 4.630

t 2.563 1.209 3.781 1.712 4.765 2.203

Fourth order approximation

Steps 350 148 109 372 143 106 354 140 101

Nm 3.980 4.608 4.367 3.981 4.566 4.406 3.980 4.600 4.475

t 2.765 1.343 0.969 4.375 1.922 1.359 5.469 2.515 1.781

Exact representation

Steps 350 148 120 370 143 112 354 140 99

Nm 3.980 4.608 4.200 3.981 4.566 4.281 3.980 4.600 4.479

t 3.484 1.718 1.275 4.859 2.359 1.782 6.843 3.125 2.193

If an additive approach is used, as said the linear trans-
formation δϕ = A(r)δr is to be established. From the (41)
relation, this is done by imposing dαG(r+αδr) = δϕ×G(r)
or, equivalently

dαE(r + αδr) = δϕ×E(r). (62)

Because in the parametrization the E23, E13 and E12 coef-
ficients of E compose directly the rotation vector r, we can
write

dα[E(r + αδr)]23 = dα(e32 + αδe32) = −δr1 = δϕ3e31 − δϕ1e33,

dα[E(r + αδr)]13 = dα(e31 + αδe31) = δr2 = −δϕ3e32 + δϕ2e33,
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Fig. 9 Example 5: problem definition and equilibrium paths

dα[E(r + αδr)]12 = dα(e21 + αδe21) = −δr3 = −δϕ3e22 + δϕ2e23.

(63)

Then, we obtain

δr =
⎡
⎣

e33 0 −e31

0 e33 −e32

0 −e23 e22

⎤
⎦ δϕ = A(r)−1δϕ. (64)

The inverse relation of (64), by the e11 = e22e33 − e23e32

evaluation used in the parametrization, leads to the searched
expression

δϕ = 1

e11e33

⎡
⎣

e11 e31e23 e31e33

0 e22e33 e32e33

0 e23e33 e2
33

⎤
⎦ δr = A(r)δr. (65)

From (64) and (65) it is clearly seen that A(r)−1 and A(r)
operators are well defined in the assigned range of validity
of the parametrization and that A(r) reduces to I as r goes to
zero.

6 Applied moments, boundary conditions and solution
scheme

In this section, after describing the treatment of the given
external moments and boundary conditions, the system of
the nonlinear equations and the adopted solution scheme are
discussed.

As remarked in the previuos section, only the external
work of forces can be defined in the described formulation
so moments can be modelled as forces following the motion

of points of the beam element. In particular, let vector
n
m be

the spatially fixed moment applied in the n node and
n
gi the

related nodal basis. We also refer to the three points Pi on
n
gi at a fixed unit distance from the n node. Displacements of
these points, therefore, are defined by referring to the (30)
rigid motion as u(1) = ū(1, 0, 0), u(2) = ū(0, 1, 0) and
u(3) = ū(0, 0, 1). Then, we have

u(i) = n
u + n

gi − ĝi , (66)

where
n
u is the displacement vector of the n node while the

presence of the ĝi vectors will not have any influence.
We denote now by p(i) three force vectors applied to the

related Pi points. The force—
∑

i p(i) is also applied to the n
node to zeroing the resultant force vector. By (66), then, we
compute the external work as

Wm =
∑

i

pT
(i)(u(i) − n

u) =
∑

i

pT
(i)(

n
gi − ĝi ). (67)

The variation of the functional Wm is carried out on the
n
gi

vectors by considering p(i) as constants. Then, after variation
of (67) with respect to the rotational parameters chosen to

represent the
n
gi j components, we define the p(i) force vectors

by

p(i) = −1

2

∑

jk

ei jk p j
n
gk,

∑

i

n
gi × p(i) = n

m. (68)

As can be observed in (68), applied forces are such that the

resulting moment in the n node is the given
n
m vector. Sim-

ple algebraic manipulations, finally, lead to the pi = n
m

T n
gi
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Table 6 Example 5: computational characteristics for the A and S based parametrization algorithms

Ne 64 80 96

N̄ i t
λ(1)

41.0 51.5 61.5 41.0 51.5 61.5 41.0 51.5 61.5

A1-parametrization, second order approximation

A1-parametrization, second order approximation

Steps 626 368 624 248 600 257

Nm 4.021 4.893 4.019 4.927 4.020 4.934

t 13.56 9.695 16.75 8.188 19.31 10.14

A1-parametrization, fourth order approximation

Steps 672 215 98 605 192 99 553 186 91

Nm 4.015 4.986 5.554 4.017 4.990 5.490 4.020 4.989 5.609

t 16.96 6.718 3.444 18.93 7.484 4.246 20.79 8.671 4.765

Exact representation

Steps 666 203 91 610 189 81 555 186 78

Nm 4.015 4.985 5.648 4.016 4.984 5.716 4.020 4.989 5.692

t 20.53 7.743 3.937 23.40 9.073 4.413 25.53 10.59 5.101

A2-parametrization, second order approximation

A2-parametrization, second order approximation

Steps 750 278 623 315 602 311

Nm 4.027 4.921 4.022 4.879 4.023 4.864

t 16.03 7.250 16.56 10.13 19.17 11.96

A2-parametrization, fourth order approximation

Steps 680 217 168 582 198 95 546 191 80

Nm 4.015 4.982 4.966 4.019 4.985 5.694 4.020 4.990 5.925

t 16.46 6.609 5.046 17.64 7.500 4.155 19.76 8.625 4.313

Exact representation

Steps 655 204 75 591 196 82 577 190 77

Nm 4.015 4.971 5.760 4.019 4.969 5.524 4.017 4.974 5.675

t 18.60 7.140 3.063 21.23 8.578 4.001 23.84 9.969 4.625

S-parametrization, second order approximation

S-parametrization, second order approximation

Steps 783 342 692 279 657 255

Nm 4.011 5.088 4.013 5.018 4.014 4.957

t 13.95 7.734 15.34 7.828 17.43 8.406

S-parametrization, fourth order approximation

Steps 682 232 133 617 213 102 570 208 93

Nm 4.015 4.991 5.526 4.018 4.995 5.745 4.019 5.000 5.779

t 13.92 5.875 3.735 15.67 6.796 3.750 17.39 7.875 4.197

Exact representation

Steps 682 225 92 617 211 90 570 205 86

Nm 4.015 4.987 5.745 4.018 5.000 5.726 4.019 4.995 5.660

t 16.76 6.828 2.900 18.92 8.016 3.896 20.93 9.343 4.443

components. We note that, the definitions given in (67) and
(68) imply that the external force vectors are a function of
the assumed unknowns.

We emphasize that boundary conditions assigned to rota-
tions are imposed directly because the three chosen parame-
ters fully characterize the rigid configuration of the beam

section for both slopes and angles based formulations. For

the slopes based formulations, in particular, let
n
αi ki be the

imposed rotation at the n node with an angle αi about the
ki reference axis. By simple geometrical considerations
the following relations between the fixed angle values and
the the rotation parameters
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Fig. 10 Example 5: deformed
configurations for Ne=96

sin
n
α1 =k3 × n

g3 · k1 = −n
g32,

sin
n
α2 =k3 × n

g3 · k2 = n
g31,

sin
n
α3 =k2 × n

g2 · k3 = −n
g21,

(69)

are obtained. In effect, ki ×gi is the value sinαi with αi being
the angle formed by ki and gi . Subsequent projection on the
choice ki axis gives the imposed sinαi value. As an example,
let a support allow the rotation about the directions k2 and
k3 but not about k1. Such a condition, imposed at the n node,
is described in terms of the chosen rotational parameters by
n
g32 = 0. By the (69) expressions, finally, appears that no
singularities occur in the boundary conditions imposition.

The definition of equilibrium equations is based on the
stationary problem for the functional

�(u, r) = U (u, r)− W (u, r), (70)

with internal energy U and external work W. For each
described two-node element, the three components ui are
the nodal displacements while ri are the three nodal rotation
parameters. In particular, for the slopes or the angles based
descriptions respectively, components ri represent the e21,

e31 and e32 slope or the ψ1, ψ2 and ψ3 angle parameters.

After discretization and inclusion of the boundary condi-
tions, the δ� variation of the functional leads to a system
of nonlinear equations in the unknown vector q. Therefore,
by denoting with N(q) the internal force vector, the nonlinear
equations are expressed by

N(q)− λP = 0. (71)

In (71), P and λ are the external force vector and the external
force parameter, respectively.

A predictor–corrector scheme as described in [23] for the
equilibrium path individualization is used in the analysis.
It is characterized by a predictor step obtained by the lin-
ear extrapolation of the previously computed q(k) and q(k−1)

vectors when k > 0, while the first order asymptotic extrap-
olation is used when k = 0. Furthermore, the corrector is
accomplished by a Newton method based corrector scheme
with minimization of the distance between the approximate
and equilibrium points as a constraint equation.

The length μ(k) of the extrapolation parameter in the
k-th predictor–corrector step is chosen as a function of
the iterations N it

(k−1) performed in the previous corrector
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step and a N̄ i t target iteration count. Evaluation μ(k) =
μ(k−1) N̄ i t/N it

(k−1) is adopted to save computational costs in
the analysis because high μ(k) values can be reached. How-
ever, restriction μ(k)/μ(k−1) ≤ 2 is imposed in the code to
avoid excessively long predictor steps.

The corrector process computes the increments of the l-
th approximation of the force parameter �λ(l) and vector
of discretization parameters �q(l). It is stopped when the
convergence criterion

ε(l) = ‖�q(l)‖
‖q(l)‖ < 10−8 (72)

is satisfied. If divergence in corrector iterations occurs, a new
predictor–corrector step is performed with the length μ(k)
halved.

Detection of the bifurcation points along the equilibrium
path traced by the used continuation method is obtained
by the algorithm described in [24]. Basically, the algorithm
begins the bifurcation points computation once their pres-
ence has been pointed out within a predictor–corrector step.
The computation is initialized by solving a linear eigenvalues
problem defined on the linear extrapolation. Then, the bifur-
cation points are exactly determined by solving the complete
nonlinear system constituted by the equilibrium equation and
the eigenvalue problem. Finally, the introduction of one fur-
ther suitable equation makes the consequent augmented sys-
tem well-posed.

7 Numerical examples

Some numerical tests have been carried out with the sug-
gested algorithms. The described formulations based on
slopes and angles for the parametrization of rotations, respec-
tively S-parametrization and A-parametrization, have been
compared. In particular, A1-parametrization refers to the
use of rotation matrix (13) while A2-parametrization refers
to the use of expression (18). predictor–corrector steps are
characterized by the use of Newton’s method as correc-
tor with several N̄ i t target iteration counts. Tables report
the number (steps) of predictor–corrector steps, the (Nm)
mean value of the number of Newton’s iterations in the
steps and the (t) CPU time (s) spent in the whole analy-
sis.

In all tests the initial solution point is (q(0), λ(0)) = (0, 0)
while λ(1) initial λ-increments are assigned. Traversing a
given displacement component or load parameter value is
adopted as the stopping criteria of the continuation analy-
sis. Divergence of the correction iteration is pointed out here
by condition ε(l) > ε(l−1) for l > 1. A maximum num-
ber of iterations (Nmax) are also permitted in the correc-
tor step. In particular, Nmax=10 is assigned to indicate that
the iteration process becomes very slow. Several refinement

levels of the mesh obtained by using Ne elements are also
tested.

When compared to reference results, similar equilibrium
states computed by the described treatments of the finite rota-
tions and beam element model are obtained. Additionally, the
differences between the computed equilibrium paths com-
puted by S and A like parametrizations are negligible. In
effect, whereas the treatment of the rotations is different, the
beam finite element used is the same. Finally, at present, we
are primarily concerned with comparing the number of arith-
metical operations and simplicity in programming rather than
discretization error.

In the tests, due to the different range of validity of the
approximation, N̄ i t =4,5 for the second order and N̄ i t =4,5,6
for the fourth order extrapolations and the exact representa-
tions of the rotation map is used. From the resulting behav-
iour of the Newton’s iterations, however, we note that N̄ i t =6
is a limit value for the predictor steps evaluation. In effect,
for such a value, Nm ≤5 denotes that several divergences in
the corrector steps or excessively long predictor steps occur
before the analysis is completed.

7.1 Example 1: lateral buckling of a narrow cantilever beam

The narrow cantilever beam shown in Fig. 3 was analysed
by meshes of 8, 12 and 16 elements. The numerical results
obtained in Kouhia [20] and Battini and Pacoste [4] can be
taken as reference. The λ−wc vertical load parameter − lat-
eral tip displacement curves were computed and displayed
as a ratio of γo = √

E J3G Jω/L2 and L , L = 100, respec-
tively. The analyses were stopped when the value λ = 12 was
reached. Significant deformed configurations are also shown.
Computational performances are reported in Table 1 in the
cases of second order, fourth order and exact representations
of the rotation map.

If the imperfection is removed, bifurcation points appear
along the equlibrium path. The λb buckling loads are now
calculated for increasing J3/J2 values of the aspect ratio of
the cross section. The γb = 4.0126γo/λb values are reported
in Table 2 and refer to meshes of 8, 16 and 32 elements
in the cases of exact S-representations of the rotation map.
Furthermore, to take into account high values of the aspect
ratio, the torsion constant is calculated from the five term
approximation

Jω = 1

3
h2h3

3

{
1 − 192

π5

h3

h2

4∑

n=1

1

(2n − 1)5
tanh

[
π

2

h2

h3
(2n − 1)

]}
.

(73)

To compute accurate buckling load values over a large
range of the aspect ratio, a numerical integration on the exact
buckling load formula was carried out in Hodges and Peters
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[16], while finite element approaches with an additive and
a multiplicative representation in the update procedure was
used in [9] and Lee et al. [22], respectively. In particular,
to avoid complexity in the formulation, in [9] the second
derivative of the A(ψ) operator is neglected in the stiffness
matrix definition.

The γb values here computed by using the 32 elements
mesh are compared with the cited results in Fig. 4. When the
pre-buckling deflections are negligible there are no signifi-
cant differences in the buckling loads depending on which
approach is used. The prebuckling deformations will become
large as the value J3/J2 increases. In these cases, the approx-
imation A(ψ) = I operated for the second derivative in the
tangent matrix calculation is not longer valid and the related
detection of the critical points is not accurate.

7.2 Example 2: right-angled frame under an end load

The nonlinear solution path of the L frame shown in Fig. 5
is analysed. This example, first proposed by Argyris et al.
in [2], has been analysed with nonlinear shell elements in
Wriggers and Gruttmann [39]. The finite dimension connec-
tion between the members of the frame was modelled in [4]
with both a rigid and disregard connections. The λ−wc hor-
izontal load parameter − lateral tip displacement of the free
end curves was computed until the λ = 4 value and dis-
played. Significant deformed configurations are also shown
in Fig. 5. The analysis refers to a total number of 8, 16 and
24 elements used in the frame. Computational characteristics
are reported in Table 3.

7.3 Example 3: right-angled frame under end moments

In this example the right angle frame depicted in Fig. 6
is analysed. Appreciable large rotations with a significant
amount of twist are considered. The loading is given by a
pair of concentrated moments applied at the supports. Due
to the symmetry, only half of the frame is modelled. At the
support only translation along x1 and rotation around x3 are
allowed. The λ−wc moment parameter − apex displacement
in the x3 direction diagram and several deformed configura-
tions are plotted. The results are in agreement with those
found in [4] and [40]. Equilibrium points and computational
performances, reported respectively in Fig. 6 and in Table 4,
refer to meshes with 6, 12 and 18 elements for the half of the
frame.

By using S parametrization and Ne=18, the test is also
carried out by removing the imperfection load after the first
buckling phase as in [34]. In the analysis, therefore, the
equilibrium curve traverses the negative critical point and
completes a second revolution of the frame about the line
connecting its hinged ends. Applied moment versus lateral
displacement curves are shown in Fig. 7 for the first and sec-

Table 7 Example 5, F = 0 case: free-end displacements under end
moment obtained by exact S-representation and analytic solution

M Ne=16 Ne=32 Ne=64 analytic

uc1 Displacement component

7.85398 −0.996709 −0.996805 −0.996829 −0.996837

15.7080 −3.64152 −3.63572 −3.63428 −3.63380

23.5619 −7.03299 −7.00739 −7.00105 −6.99895

31.4159 −10.0651 −10.0161 −10.0040 −10

39.2699 −11.8578 −11.8150 −11.8042 −11.8006

47.1239 −12.0931 −12.1160 −12.1206 −12.1221

54.9779 −11.1136 −11.2458 −11.2762 −11.2862

62.8319 −9.73029 −9.93494 −9.98389 −10

70.6858 −8.81297 −8.94916 −8.97697 −8.99965

78.5398 −8.84544 −8.74068 −8.72941 −8.72676

86.3938 −9.67332 −9.28178 −9.20529 −9.18153

94.2478 −10.6132 −10.1484 −10.0364 −10

uc2 Displacement component

7.85398 3.73096 3.72966 3.72934 3.72923

15.7080 6.37462 6.36830 6.36672 6.36620

23.5619 7.25105 7.24666 7.24556 7.24519

31.4159 6.33447 6.35846 6.36428 6.36620

39.2699 4.23987 4.32097 4.34062 4.34711

47.1239 1.94968 2.07987 2.11157 2.12207

54.9779 0.388318 0.496124 0.523567 0.532747

62.8319 0.0235037 0.0013368 0.0000817 0

70.6858 0.678260 0.471916 0.428262 0.414359

78.5398 1.66023 1.36578 1.29605 1.27324

86.3938 2.17235 2.04060 1.99275 1.97596

94.2478 1.80994 2.08786 2.11565 2.12207

ond revolution. Afterward computed solution points traverse
the positive critical point and describe the same first post-
buckling behaviour as previously computed. In the S formu-
lation, then, there is no difficulty in subjecting the frame to
any number of revolutions. A symmetrical intersection of the
moment axis is, furthermore, obtained. Again in Fig. 7, the
curves λ − gi j components of the director gb

1 at the hinged
point and gc

2 and gc
3 at the apex are shown.

7.4 Example 4: deep circular arch under vertical load

This test concerns the deep arch problem shown in Fig. 8.
This example was analysed in [34] and Kouhia and Mikkola
[21] for the two-dimensional and in Cardona and Huespe
[10] for the 3D behaviour. Meshes with 24, 36 and 48 equal
elements for the whole arch are employed. The frame is sub-
jected to point loads, respectively λ along the x2 and ελ along
the x3 direction, in the apex. The arch is fully clamped at one
end and only the in plane x1x2 rotation is permitted at the
other end.

123



Comput Mech (2013) 52:377–399 397

The analysis is stopped when the vertical deflection of the
apex value vc = 200 is traversing. The λ - vc equilibrium
path and some deformed configurations are shown in Fig. 8.
As usual, computational performances are reported in Table
5 for Newton corrector and several imposed N̄ i t iterations.

7.5 Example 5: beam bent to a helical form

The cantilever beam shown in Fig. 9 was analysed by meshes
of 32, 64 and 96 elements. This example, introduced by
Ibrahimbegović [17] and also analysed in [4], illustrates the
effects of the simultaneous application of a bending moment
and a transversal load. In particular, the beam is subjected to
a concentrated moment M = 120πλk3 and an out-of-plane
force F = 30λk3 applied at its free end.

In the cited works the out-of-plane x3-displacement oscil-
lates around a zero value, while each passing through zero
corresponds to a deformed shape which is entirely situated in
the plane x1x2. Not all rotation parametrizations are able to
trace the true equlibrium path. As noted in [4], attention must
be paid to the external moment definition because different
parameterisations of rotations will imply different physical
definitions of M.As a consequence, the results obtained using
different types of parameterisation will be completely differ-
ent.

Here we adopt the applied moments definition given in
Sec. 5 for both S and A like parametrizations while gi vec-
tors are computed by the related rotation maps. It follows
that, also in this test, almost identical equilibrium states com-
puted by the described treatments of the finite rotations are
obtained.

The M -wc moment value - out-of-plane tip displacement
curves were computed and also shown in Fig. 9. The analyses
were stopped when the value M = 300 was reached. Sig-
nificant deformed configurations in the specified points of
Fig. 9 are shown in Fig. 10. Computational performances are
reported in Table 6 for second order, fourth order and exact
representations of the rotation maps.

In the F = 0 case, the only non-trivial deformation
component is the flexural one. According to the classical
Euler formula, this bending deformation is constant along
the beam. The analytic solution for the free-end rotation and
displacement components can be obtained respectively as

αc3 = M L

E J3
(74)

and

uc1 = L − L

αc3/2
sin
αc3

2
cos

αc3

2
, uc2 = L

αc3/2
(sin

αc3

2
)2,

(75)

where L = 10. In Table 7 the free-end displacements
obtained by the analytic solution and the numerical exact

S-representation are compared. In particular, numerical
results are obtained by using �λ(k) = 0 as constraint equa-
tion and μ(k) = 1 as extrapolation length for any k-th
predictor–corrector step. Initial solution point is computed
for the M = 2.5π/10 bending moment value while results
refer to each ten steps. The solution for the rotation and
uc3 = 0 values are not reported because identical to the
analytic one for each of the used meshes. Then, by Table
7, we can see that the presented formulation is capable of
representing the classical solution of Euler.

8 Conclusions

In the hypothesis of large displacements and rotations and
small strains, a technique to analyse the behaviour of 3D
finite element beam frames has been presented. By utilizing
vectorial operations, the approach is based on an updated
Lagrangian description of rotations. The described formula-
tion does not use angle measures and we have validated that
it is capable to follow any finite rotations.

The treatment of rotational boundary conditions and exter-
nal moments proves to be slightly more complex with respect
to the co-rotational formulations. Furthermore, the incremen-
tal rotations are restricted to the range of validity of the
described parametrization. However, computationally, effi-
cient expressions in the equations of the nonlinear system
are obtained. Furthermore, case statements are not present
in the coding of the presented formulation. In the numerical
tests a similar number of predictor–corrector steps to com-
plete the analysis for both S and A like parametrizations was
used. Hence, fewer arithmetical operations and less imple-
mentation effort with respect to the classical one is required.

Overall, the proposed formulation shows simplicity of the
analysis while computational effectiveness and algorithmic
reliability are retained.

9 Appendix 1: Regularity of the augmented constrained
problem

The nine gi, j unknown components of the gi vectors are
subject to six constraint conditions. We demonstrate here that
the rotational degrees of freedom are reduced just to three. Of
course, six conditions being imposed, the degrees of freedom
are at least three. To show also that the degrees of freedom
are at most three we refer to the definitions i− = i − 1 and
i+ = i + 1 for the cyclic sequence of the Latin indices.

The constraint equations are

g2 · g2 − 1 = 0,

g3 · g3 − 1 = 0,

g2 · g3 = 0,
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g2 × g3 = g1, (76)

where the related Jacobian matrix is denoted by H.We show
that nullity(H) is at most three in the solution point. The open
mapping theorem then gives the result. The Jacobian matrix
of the system (76) is

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 g2,1 g2,2 g2,3 0 0 0
0 0 0 0 0 0 g3,1 g3,2 g3,3

0 0 0 g3,1 g3,2 g3,3 g2,1 g2,2 g2,3

1 0 0 0 −g3,3 g3,2 0 g2,3 −g2,2

0 1 0 g3,3 0 −g3,1 −g2,3 0 g2,1

0 0 1 −g3,2 g3,1 0 g2,2 −g2,1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.(77)

Then, in the solution point and for a given known vector
z, we must verify that six of the nine yi, j components of the
unknown vector y are uniquely determinable from the system
Hy = z.

From the last three rows of the system, as we can see in
(77), the y1,i unknowns are easy to calculate. Therefore the
system is reduced to the form

⎡
⎣

g2,1 g2,2 g2,3 0 0 0
0 0 0 g3,1 g3,2 g3,3

g3,1 g3,2 g3,3 g2,1 g2,2 g2,3

⎤
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y2,1

y2,2

y2,3

y3,1

y3,2

y3,3

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
⎧
⎨
⎩

z2

z3

z2,3

⎫
⎬
⎭ . (78)

For at least one i and one j is g2,i �= 0 and g3, j �= 0,
respectively. Then, from the first two rows of (78) we obtain

y2,i = (z2 − g2,i−y2,i− − g2,i+y2,i+)/g2,i ,

y3,i = (z3 − g3, j−y3, j− − g3, j+y3, j+)/g3, j .
(79)

By inserting (79) in the third row of system (78) and multi-
plying by g2,i g3, j it follows that

[g2,i g3,i− − g2,i−g3,i ]g3, j y2,i−
+[g2,i g3,i+ − g2,i+g3,i ]g3, j y2,i+
+[g2, j−g3, j − g2, j g3, j−]g2,i y3, j−
+[g2, j+g3, j − g2, j g3, j+]g2,i y3, j+

= c1g3, j y2,i− + c2g3, j y2,i+
+c3g2,i y3, j− + c4g2,i y3, j+ = z̄, (80)

with coefficients c1, . . ., c4 and z̄.
At the solution, the last three equations in (76) give

g2,k g3,k+ − g2,k+g3,k = g1,k−. (81)

In particular, (81) with

k = i− ⇒ g2,i−g3,i − g2,i g3,i− = g1,i+
⇒ c1 = −g1,i+;

k = i ⇒ g2,i g3,i+ − g2,i+g3,i = g1,i−
⇒ c2 = g1,i−;

k = j− ⇒ g2, j−g3, j − g2, j g3, j− = g1, j+

⇒ c3 = g1, j+;
k = j ⇒ g2, j g3, j+ − g2, j+g3, j = g1, j−

⇒ c4 = −g1, j−;

so (80) becomes

−g1,i+g3, j y2,i− + g1,i−g3, j y2,i+ + g1, j+g2,i y3, j−
−g1, j−g2,i y3, j+ = z̄. (82)

In the case of i �= j, as all components of g1 are present at
least one coefficient in (82) is not zero and an unknown is
definite.

The case i = j implies that if g1,i− �= 0 or g1,i+ �= 0, as
before, an unknown is definite. Otherwise, if g1,i− = g1,i+ =
0 we have that g1,i �= 0. Then, from (81) with k = i+ we
have

g2,i+g3,i− − g2,i−g3,i+ = g1,i �= 0, (83)

while with k = i and k = i− is

g2,i g3,i+ − g2,i+g3,i = g1,i− = 0 (84)

and

g2,i−g3,i − g2,i g3,i− = g1,i+ = 0, (85)

respectively. But, by computing g3,i+ and g3,i− from (84)
and (85) respectively, and inserting this in (83) we have

g2,i+
g2,i−g3,i

g2,i
− g2,i−

g2,i+g3,i

g2,i
�= 0, (86)

that is, the false condition

g3,i (g2,i+g2,i− − g2,i−g2,i+) �= 0. (87)
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19. Ibrahimbegović A, Shakourzadeh H, Batoz JL, Guo YQ (1996)
On the role of geometrically exact and second-order theories in
buckling and post-buckling analysis of three-dimensional beam
structures. Comput Struct 61:1101–1114

20. Kouhia R (1991) On kinematical relations of spatial framed struc-
tures. Comput Struct 40:1185–1191

21. Kouhia R, Mikkola M (1989) Tracing the equilibrium path beyond
simple critical points. Int J Numer Methods Eng 28:2923–2941

22. Lee H, Jung DW, Jeong JH, Im S (1994) Finite element analysis of
lateral buckling for beam structures. Comput Struct 53:1357–1371

23. Lopez S (2000) An effective parametrization for asymptotic extrap-
olations. Comput Methods Appl Mech Eng 189:297–311

24. Lopez S (2002) Detection of bifurcation points along a curve traced
by a continuation method. Int J Numer Methods Eng 53:983–1004

25. Lopez S (2010) Structural dynamical analysis by a lengths-based
description of the small strains in the finite displacements regime.
Nonlinear Dyn 59:29–44

26. Lopez S (2010) A three-dimensional beam element undergoing
finite rotations based on slopes and distance measures. Internal
report 53. Dipartimento di Modellistica per l’Ingegneria, Università
della Calabria, Rende

27. Lopez S (2012) Relaxed representations and improving stability
in time-stepping analysis of three-dimensional structural nonlinear
dynamics. Nonlinear Dyn 69:705–720

28. Lopez S, La Sala G (2010) A finite element approach to statical and
dynamical analysis of geometrically nonlinear structures. Finite
Elem Anal Des 46:1093–1105

29. Mohri F, Azrar L, Potier-Ferry M (2001) Flexuraltorsional post-
buckling analysis of thin-walled elements with open sections. Thin
Walled Struct 39:907–938

30. Mohri F, Damil N (2008) Large torsion finite element model for
thin-walled beams. Comput Struct 86:671–683

31. Pimenta PM, Campello EMB, Wriggers P (2008) An exact con-
serving algorithm for nonlinear dynamics with rotational DOFs
and general hyperelasticity. Part 1: rods. Comput Mech 42:
715–732

32. Rankin CC, Nour-Omid B (1988) The use of projectors to improve
finite element performance. Comput Struct 30:257–267

33. Rhim J, Lee W (1998) A vectorial approach to computational mod-
elling of beams undergoing finite rotations. Int J Numer Methods
Eng 41:527–540

34. Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod
model. Part II: computational aspects. Comput Methods Appl Mech
Eng 58:79–116

35. Sopanen JT, Mikkola AM (2003) Description of elastic forces in
absolute nodal coordinate formulation. Nonlinear Dyn 34:53–74

36. Spurrier RA (1978) Comments on singularity-free extraction of a
quaternion from a director-cosine matrix. J Spacecr 15:255–256

37. Stuelpnagel J (1964) On the parameterization of the three-
dimensional rotation group. SIAM Rev 6:422–430

38. Sugiyama H, Gerstmayr J, Shabana AA (2006) Deformation modes
in the finite element absolute nodal coordinate formulation. J Sound
Vib 298:1129–1149

39. Wriggers P, Gruttmann F (1993) Thin shells with finite rotations
formulated in Biot stresses: theory and finite element formulation.
Int J Numer Methods Eng 36:2049–2071

40. Yang YB, Lin SP, Chen CS (2007) Rigid body concept for geo-
metric nonlinear analysis of 3D frames, plates and shells based on
the updated Lagrangian formulation. Comput Methods Appl Mech
Eng 196:1178–1192

123


	Three-dimensional finite rotations treatment based on a minimal set parameterization and vector space operations in beam elements
	Abstract 
	1 Introduction
	2 Update treatment of rotations by slopes
	3 Update treatment of rotations by angles
	4 Kinematics and energetic quantities of the beam element
	5 Variational formulation and linearization
	6 Applied moments, boundary conditions and solution scheme
	7 Numerical examples
	7.1 Example 1: lateral buckling of a narrow cantilever beam
	7.2 Example 2: right-angled frame under an end load
	7.3 Example 3: right-angled frame under end moments
	7.4 Example 4: deep circular arch under vertical load
	7.5 Example 5: beam bent to a helical form

	8 Conclusions
	9 Appendix 1: Regularity of the augmented constrained problem
	References


