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Abstract In the context of the study of structures coupled
with internal liquids, we present in this article a theoretical
work to treat the coupling between the structure elasticity
and the surface tension phenomenon, which has not been
the object of specific studies before (according to the authors
knowledge). Considering an incompressible and inviscid liq-
uid in an elastic container, an energy approach is used to
obtain a variational formulation of the small amplitude vibra-
tions of the coupled problem around the nonlinear static
equilibrium position. The incompressibility of the liquid sup-
posed inviscid and the contact condition at the fluid-structure
interface are introduced by Lagrange multipliers. Gravita-
tional forces and surface tensions are both taken into account
considering their associated potential energies.

Keywords Variational formulation · Least action
principle · Fluid structure interaction · Hydroelasticity ·
Wall contact condition · Incompressibility · Sloshing ·
Surface tension

1 Introduction

The motion of liquids contained in satellites, probes or
space stations can influence the vibrational behavior of
the main structure, and disturb the stabilization procedures
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or the trajectory controller. This liquid sloshing phenom-
enon has been studied for many years [1,10,14,16], and
the estimation of the inner liquid eigenmodes and eigenfre-
quencies, right from the design phase, is still an important
topic.

In previous works, the effect of the gravity on the vibra-
tions of a coupled fluid-structure system [18] and the effect
of capillary forces on the liquid sloshing in a rigid container
[9] have been studied independently. The aim of this work
is to establish a unified formulation taking into account the
structure elasticity, the gravity effects and the capillary forces
considering an inviscid and incompressible liquid.

Since the coupled local equations of the problem are not
known a priori, we propose to use an energy method. This
approach also allows to take into account the fluid incom-
pressibility or the contact condition at the fluid-structure
interface with Lagrange multipliers [4]. A similar idea of
starting with an augmented Lagrangian approach to FSI, and
then formally (i.e., using variational arguments) eliminating
the Lagrange multipliers to obtain an appropriately coupled
FSI problem only in terms of the primal variables was pro-
posed in [2,3]. In [2] and [12] the resultant formulation was
applied to the simulation of wind turbine FSI using FEM
for aerodynamics and isogeometric analysis [13] for struc-
tural mechanics. It should here be emphasized that the primal
variable which is retained for the fluid will be only the dis-
placement field of the free surface. For the liquid domain, we
will use a potential displacement field.

Using the Hamilton’s principle of least action, the varia-
tional formulation of the non linear static problem is first
presented (Sect. 3). Then, the dynamic equations of the
system and its linearization using the fluid and structure dis-
placements are presented (Sect. 4). In Sect. 5, the fluid poten-
tial displacement is introduced to eliminate the Lagrange
multipliers (Sects. 6, 7). Finally, a discretization by the
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finite element method gives the matrix equation of the system
(Sect. 8).

2 Notations

We first use the fluid and structure displacements to describe
the system, three different states can be distinguished (see
Fig. 1):

The natural state which is a virtual configuration: no forces
are applied on the fluid-structure system. The free surface
is horizontal. Elements related to this configuration are
indexed by the sign 0.
The equilibrium state is the reference state which is deter-
mined by the static study (Sect. 3) and the elements
related to this state are indexed by the sign ∗. By applying
forces associated to a potential energy, the system reaches
its equilibrium shape. The fluid and structure displace-
ments corresponding to this transformation are respec-
tively written UF∗ and US∗ . Due to surface tensions, the
free surface at the equilibrium state is curved (it forms a
meniscus).
The dynamical state is the state at all time t : a shaking
force f is applied on the structure (surface Σ f ).1 For sake
of brevity, we suppose here that the applied force is in equi-
librium. The fluid and structure displacements are written
UF and US .

The volume of fluid ΩF is delimited by the free surface Γ

and the fluid-structure interface Σ . Let γ be the intersection
between Γ and Σ, γ is also called the triple line. The fluid
position is given by the vector field X with X = X0 + UF

and X0 is the position of the fluid at its natural state. The
solid domain is written ΩS and the solid–gas interface is
ΣG . nΣ and nΓ are the outward unit normals to the fluid
on Σ and Γ . On the triple line, we will use the basis illus-
trated by Fig. 2: tγ is tangent to γ , νΣ and νΓ are the unit
vectors tangent to Σ and Γ such that tγ = νΣ ∧ nΣ and
tγ = nΓ ∧ νΓ .

3 Static study

Let L be the Lagrangian of the system defined by: L =
T −V + Wext , where T is the kinetic energy, V the potential
energy and Wext is the work done by the external load f

on Σ f . We first consider the static problem in which T and
Wext are null. The potential energy is composed of the gravi-
tational potential energy of the fluid Eg , the elastic potential
energy of the structure Eelas and the surface energies written

1 f is supposed to be a dead load.

Eσtot . Let Q = (UF ,US) be the displacement unknown of
the problem, δq = (δuF , δuS) a small variation of Q (kine-
matically admissible). From the principle of minimum total
potential energy, a mechanical system shall find an equilib-
rium position which minimizes its total potential energy. The
physically admissible solution Q∗ is such that the variation
of L is null for any δq:

∂L
∂Q

∣
∣
∣
∣
Q=Q∗

(δq) = 0, ∀δq (1)

In the rest, we will use the notation δQ[ L ]∗(δq) to repre-
sent the derivative of L with respect to Q in the direction δq

around the equilibrium state Q∗. Moreover, the variation in
(1) will be done under constraints using Lagrange multipliers
added to the Lagrangian. The first constraint is the incom-
pressibility of the liquid introduced by the term I. Similarly,
the coupling between the structure and the fluid will be taken
into account by the term C such that:

L = −
(

Eelas + Eg + Eσtot

)

+ C + I (2)

In sects. 3.1–3.5, we determine the first order variation of
those energies in order to express the variational formulation
of the static problem in Sect. 3.6.

3.1 Gravitational potential energy of the fluid

By definition, the gravitational potential energy is given by:

E pes(U
F ) = ρF g

∫

ΩF

Z dΩF = ρF g
∫

Ω0
F

Z det(F ) dΩ0
F

(3)

where Z = X · iz and iz is the vertical unit vector ori-
ented upwards. ρF is the mass density and g the gravity
constant.2 As the incompressibility condition is enforced in
the Lagrangian via a constraint, the mass conservation will
be taken into account considering that ρF is constant. F is
the deformation gradient and the Jacobian of this transforma-
tion is given by J = det(F ). The small variation of a volume
dΩF is given by (see [7, Chap. 9]):

δ [dΩF ](δuF ) = div(δuF )dΩF

Moreover, noting that δ [ Z ] (δuF ) = δuF · iz , the first var-
iation of the gravitational potential energy in direction δuF

is given by:

δUF

[

E pes
]

(δuF ) = ρF g
∫

ΩF

div(Z δuF ) dΩF (4)

2 g can be assimilated to the gravity on earth or to the acceleration of
the system’s frame of reference.
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Fig. 1 Representation of the different states

Using the Green formulae:

δ
[

E pes
]

(δuF ) = ρF g
∫

Γ ∪Σ

ZδuF · n dS (5)

where n is the outward unit normal to the volume ΩF .

3.2 Elastic potential energy of the structure

The first variation of the elastic potential energy of the struc-
ture Eelas in direction δuS is classically given by:

δUS [Eelas] (δuS) =
∫

ΩS

Tr
[

σ (US) ε(δuS)
]

dΩS (6)

where ε is the linearized strain tensor, and σ the Cauchy’s
strain tensor.

3.3 Surface energies

Let S be the interface between two media (one of them is
condensed), the surface energy associated to S is a potential
energy proportional to the area of S written AS [20]:

ES = σSAS (7)

where σS is the capillary coefficient of S (supposed to be
constant in this article). For a displacement field U defined
on S, the first variation of the surface energy in direction δu

can be written [7]:

δU [ES] (δu) = σS

∫

S

divS(δu)dS (8)

Writing δu� the part of δu tangent to S and δu⊥ the normal
component of δu, we have δu = δu� + δu⊥ and:

divS(δu) = divS(δu�) + (δu · n)divS(n) + n · ∇S(δu · n)

n is the unit surface normal of S and ∇S the surface gradient
along S.3 ∇S being tangent to the surface S, the last term is
null. By definition, we will write divS(n) = 2H where H
is the local mean curvature of S. Finally, applying the Green
formula on (8):

δ [ES] (δu) = σS

∮

∂S

δu · νdS + σS

∫

S

2H δu · ndS (9)

where ∂S is the boundary of S. Let t be the tangent vector
of ∂S, ν is such that the basis (t, ν,n) is the Darboux frame
(see Fig. 2). Let EΣ, EΣG and EΓ be the energies respec-
tively associated to the interfaces Σ,ΣG and Γ with the
constant surface energy densities σL , σG and σ . The sum of
these energies is equal to the energy Eσtot in expression (2).
Considering the energies EΓ , EΣ, EΣG and (9), we chose to
associate the energy EΓ and the terms on the boundary of the
free surface γ to the fluid displacement UF . The terms cor-
responding to the normal displacement of the energies EΣ

and EΣG are associated to the structure displacement US .
We have:

δUF

[

Eσtot

]

(δuF ) = δ
[

σAΓ + σLAΣ + σGAΣG

]

(δuF )

δUS

[

Eσtot

]

(δuS) = δ
[

σGAΣG + σLAΣ

]

(δuS)

3 For a scalar field k, the surface gradient ∇S can be defined by ∇Sk =
∇k − (∇k · n)n. The surface divergence divS can be expressed, for a
vector field v defined on S, by divS = ∇ · v − nT[D(v)]n, where D(v)

is the tensor of partial derivatives of vector v.
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Fig. 2 Local basis (also called the Darboux frame) illustrated with the
triple line γ

with:

δ [EΓ ] (δuF ) = σ

∮

γ

δuF · νΓ dγ + · · ·

· · · σ

∫

Γ

2HΓ δuF · nΓ dΓ

δ [EΣ ] (δuF ) = σL

∮

γ

δuF · νΣ dγ

δ
[

EΣG

]

(δuF ) = −σG

∮

γ

δuF · νΣ dγ

(10)

δ
[

EΣG

]

(δuS) = σG

∫

ΣG

2HΣG δuS · nΣG dΣG

δ [EΣ ] (δuS) = σL

∫

Σ

2HΣ δuS · nΣ dΣ

(11)

3.4 Incompressibilty

For a displacement field UF defined on the fluid domain
Ω F

0 , the incompressibility can be expressed by the relation
J (UF ) = 1. We deduce from this relation the incompress-
ibility term I:

I(Λ,UF ) =
∫

Ω F
0

Λ(J − 1) dΩ0
F (12)

where Λ is the Lagrange multiplier associated to the incom-
pressibility and we denote by δλ its virtual fluctuation. Using
the expression of the variation of J given by (3.1) we have:

δUF [ I ] (δuF ) =
∫

Ω F

Λ div(δuF ) dΩF (13)

Integrating by part this expression we have:

δ [ I ] (δuF ) =
∫

Γ ∪Σ

Λ δuF · n dS −
∫

Ω F

∇Λ · δuF dΩF

(14)

The variation of I with respect to Λ in direction δλ is given
by:

δΛ [ I ] (δλ) =
∫

Ω F
0

δλ (J − 1) dΩ0
F (15)

3.5 Wall contact condition

3.5.1 At the interface Σ

For virtual displacements δuF and δuS , we will consider that
the coupling term on the interface Σ will be such that:

δUS ,UF [ CΣ ] (δuS, δuF ) =
∫

Σ

M (δuS − δuF ) · nΣdΣ

(16)

where M is a Lagrange multiplier, homogeneous to a pres-
sure. The part involved in the fluid equation (taking δuS = 0)
is the opposite of the one involved in the structure equation
(reciprocal action). One of the interests here is to uncouple
the fluid and structure displacements by relaxing the contact
condition through the operator CΣ . US and UF are indepen-
dents on Σ which simplifies the derivations.

3.5.2 On the triple line γ

The first variation of the surface energy Eσtot in Sect. 3.3
illustrates the different works done by the surface forces on
the interfaces Γ,Σ and ΣG and by the line forces on the triple
lineγ (see (10) and (11)). Taking νΓ = cos(θ)νΣ+sin(θ)nΣ

(cf. Fig. 2), the projection of those line forces on νΣ gives
the Young’s relation σG − σL = σ cos(θ) where θ is the
contact angle. Then, by projecting on nΣ , we notice that the
liquid applies on the solid a force per unit length f N

F/S , whose
magnitude is σ sin(θ), pulling on γ in direction nΣ :

f N
F/S = −σ sin(θ) nΣ (17)

In [6], the authors show, by using a microscopic scale model
showing the molecular attraction between the liquid and the
solid on the triple line “layer”, that the normal force exerted
by the solid on the liquid can be represented at a macroscopic
scale by a force per unit length f N

S/F = σ sin(θ) nΣ . This
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force compensates the effect of f N
F/S . We notice the singu-

larity coming from the classic theory of elastic solids in three
dimensions: a line force would be accompanied by infinite
deformations. The explicit expression for the local micro-
scopic deformation of the substrate is given in [21]. In the
resolution of the static problem, the elastic deformation due
to f N

F/S would be negligible due to the high Young’s modulus
of the container. To take into account the contact condition
(16) at the triple line we introduce another coupling term Cγ

such that C = CΣ + Cγ :

δ
[

Cγ

]

(δuS, δuF ) =
∮

γ

Mγ (δuS − δuF ) · nΣ dγ (18)

Here, the Lagrange multiplier Mγ is homogeneous to a force
per unit length.

3.6 Variational formulation

L is a function of the variables (UF ,US,Λ, M, Mγ ). Let
C0

UF ×C0
US and CUF ×CUS be the spaces of admissible func-

tions (UF ,US) respectively defined on Ω0
F ∪ Ω0

S and ΩF ∪
ΩS . The Lagrangian is given by (2) and the static problem
writes:

∃(UF∗ ,US∗ ,Λ∗, M∗, M∗
γ ) ∈ C0

UF × C0
US × R

3,

∀(δuF , δuS, δλ, δμ, δμγ ) ∈ C0
UF × C0

US × R
3

δUF [ L ]∗ (δuF ) = 0
δUS [ L ]∗ (δuS) = 0

δΛ [ L ]∗ (δλ) = 0
δM [ L ]∗ (δμ) = 0

δMγ [ L ]∗ (δμγ ) = 0

(19)

The first two equations correspond to the fluid and structure
equation, the last three corresponding to the constraints taken
into account. The variational formulation (20) of the static
problem is non linear (UF∗ and US∗ can take large values). It
is possible to solve the complete problem, however, we will
neglect in the rest of the article the deformation of the struc-
ture due to gravity effects and the pre-stress stiffness will be
defined on Σ0 considering that Σ∗ and Σ0 are superimposed
(US∗ = 0). Thus, the static study meet the one presented in
[8] which is solved using the iterative method of Newton–
Raphson to find the free surface shape Γ ∗. We do not present
this method here and we consider that the free surface at the
equilibrium state and UF∗ are known.

From the fluid equation it is possible to express the
Lagrange multipliers Λ∗, M∗, and M∗

γ . The first variation

of the energies we consider in direction δuF around the state
ΩF is given by (5), (10), (11), (14), (16) and (18). Taking
UF = UF∗ in these expressions, we deduce the variation of
L around the static equilibrium Ω∗

F and the first relation of
(19) gives:

−
∫

Ω F∗

∇Λ∗ · δuF dΩ F

+
∫

Γ ∗

(

Λ∗ − ρF g Z∗ − σ2H∗
Γ

)

n∗
Γ · δuF dΓ

+
∫

Σ∗

(

Λ∗ − ρF g Z∗ − M∗)n∗
Σ · δuF dΣ

+
∮

γ ∗

(

−σ sin(θ) − M∗
γ

)

n∗
Σ · δuF dγ = 0 (20)

With test functions null on the boundary of the fluid domain
∂Ω F∗ we obtain:

∇Λ∗ = 0 ⇒ Λ∗constant on Ω F∗ (21)

Then, using (21) in (20) and taking respectively test functions
δuF null on Σ∗ and γ ∗, Γ ∗ and γ ∗ we have:

Λ∗ = ρF g Z∗ + σ2H∗
Γ on Γ ∗ (22a)

M∗ = Λ∗ − ρF g Z∗ on Σ∗ (22b)

M∗
γ = −σ sin(θ) on γ ∗ (22c)

Considering the relation on the free surface Γ ∗, the expres-
sion ρF g Z∗ + σ2H∗

Γ is constant, which corresponds to the
Laplace–Young equation that is generally written:

P − PG = σ2H∗
Γ on Γ ∗ (23)

where P is the pressure in the fluid at the free surface and
PG the external gas pressure. Then we have Λ∗ −ρF g Z∗ =
P − PG on Γ ∗ and we deduce the following expressions:

Λ∗ = Pz=0 − PG on Γ ∗ (24a)

M∗ = P − PG on Σ∗ (24b)

The Lagrange multiplier M∗ can be interpreted as the hydro-
static pressure on Σ∗.

4 Dynamic analysis

4.1 Nonlinear formulation

Let S be the action of the system:

S =
t2∫

t1

Ldt (25)

where t1 and t2 are fixed instants. The generalization of (20)
in dynamics is given by the Hamilton’s principle of least
action: a mechanical system shall follow the trajectory which
minimizes its total action. The real path Q taken by the sys-
tem between times t1 and t2 is determined by a variational
approach. S is a function of Q and the velocity unknown
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Q̇. The physically admissible path of motion is such that the
variation of S is null for any perturbation:

δ[S(Q, Q̇) ](δq, δ̇q) = 0 ∀ (δq, δ̇q) (26)

with δq(t1) = δq(t2) = 0. Similarly to the static study, we
include the constitutive law of the fluid and the contact con-
dition at the fluid structure interface in L. We consider in this
part the kinetic energies of the fluid E F

C and the structure E S
C

and we have: L =
(

E F
C + E S

C

)

−
(

E pes + Eσtot

)

+I +C +
Wext . Thus, the principle of least action yields:

δ [ S ] (δuF , ˙δuF ) = 0 (a)

δ [ S ] (δuS, ˙δuS) = 0 (b)

δ [ S ] (δλ) = 0 (c)
δ [ S ] (δμ) = 0 (d)

δ [ S ] (δμγ ) = 0 (e)

(27)

4.2 Linearization

As we only consider small vibrations around the equilib-
rium state, we linearize system (27) by writing variables
(UF ,US,Λ, M, Mγ ) as:

(UF ,US,Λ, M, Mγ ) = (UF∗ ,US∗ ,Λ∗, M∗, M∗
γ ) + · · ·

· · · (uF ,uS, λ, μ,μγ )

(28)

where (uF ,uS, λ, μ,μγ ) represent small perturbations. The
linearization of relation (26) is given by its expansion around
the static state:

δ [ S ] (δq, δ̇q) = δ [ S ]∗ (δq, δ̇q)
︸ ︷︷ ︸

A

+ · · ·

· · · ∂
[

δ [ S ] (δ̇q)
]∗

∂Q̇
(q̇) + ∂

[

δ [ S ] (δq)
]∗

∂Q
(q) (29)

Considering the problem (19), the Eq. (29) can be simplified
since A is null. In Sect. 4.2 we determine the linearization of
the kinetic energies and of the energies presented in Sect. 3
in order to express the dynamical Eq. (27).

We introduce in the rest of this article the normal varia-
tion vector τ defined for any displacement u. Considering a
surface element dS and its normal vector n, we have4:

τ (u) dS = δ [n dS] (u) (30)

4 By definition we have: τ (u) = (∇ · u)n − tD(u)n.

4.2.1 Kinetic energy

By definition, the kinetic energy of the fluid E F
C is given by:

E F
C = 1

2

∫

ΩF

ρF (U̇F )2 dΩF (31)

Only the variation of this energy with respect to the velocity
U̇F appears in (29). This gives the classical expression of the
kinetic energy linearized around a fixed position Ω∗

F :

∂
[

δ
[

E F
C

]

( ˙δuF )
]∗

∂U̇F
(u̇F ) =

∫

Ω∗
F

ρF u̇F · ˙δuF dΩF (32)

The expression of the kinetic energy of the structure is iden-
tical, with ρS the solid density we have:

∂
[

δ
[

E S
C

]

( ˙δuS)
]∗

∂U̇S
(u̇S) =

∫

Ω∗
S

ρSu̇S · ˙δuSdΩS (33)

4.2.2 Gravity potential energy

The non linear expression (5) depends on UF and its linear-
ization is given by:

∂
[

δ
[

E pes
]

(δuF )
]∗

∂UF
(uF ) = δ

⎡

⎣ρF g
∫

Γ ∪Σ

ZδuF · ndS

⎤

⎦

∗
(uF )

= K
g
Γ (uF , δuF )+K

g
Σ(uF , δuF )

(34)

where K
g
Γ (uF , δuF ) and K

g
Σ(uF , δuF ) are respectively

defined on Γ ∗ and Σ∗ such that:

K
g
Γ (uF , δuF ) =

∫

Γ ∗
ρF g(uF · iz)δu

F · n∗
Γ dΓ

+
∫

Γ ∗
ρF gZ∗δuF · τ ∗

Γ (uF )dΓ (35a)

K
g
Σ(uF , δuF ) =

∫

Σ∗
ρF g(uF · iz)δu

F · n∗
Σ dΣ

+
∫

Σ∗
ρF gZ∗δuF · τ ∗

Σ(uF )dΣ (35b)

4.2.3 Elastic potential energy

The linearization of the first variation of the elastic potential
energy introduced in Sect. 3.2 is given by:

∂
[

δ [Eelas] (δuS)
]∗

∂US
(uS)=(K E + KG) (uS, δuS) (36)

where K E is the classically used elastic stiffness of the struc-
ture and KG is the geometric stiffness linked to the prestress
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applied on the structure by the fluid. These stiffnesses are
given by:

K E (uS, δuS) =
∫

Ω∗
S

Tr
[

C ε(uS) ε(δuS)
]

dΩS (37)

KG(uS, δuS) =
∫

Ω∗
S

Tr
[

D(uS) σ 0(D(δuS))T
]

dΩS

(38)

where σ0 is the stress tensor at initial state (the domain Ω∗
S

is superposed to Ω0
S), C is the fourth order tensor that char-

acterizes the elasticity of the structure.5

4.2.4 Surface energies

The energy EΓ only depends on UF , then from (10) we have:

∂

[

δ [EΓ ] (δuF )

]∗

∂UF
(uF ) = δ

⎡

⎣σ

∫

Γ

divS(δuF ) dγ

⎤

⎦

∗
(uF )

= σ

∮

γ ∗
δuF · δ

[

νΓ dγ
]∗

(uF ) + · · ·

· · · σ

∫

Γ ∗
δuF · δ [2HΓ nΓ dΓ ]∗ (uF ) = Kσ

Γ (uF , δuF )

(39)

The energies EΣG and EΣ depend on UF and US (see
Sect. 3.3). We will write:

∂
[

δ
[

EΣG

]

(δuF )
]∗

∂UF
(uF ) = −σG

∮

γ ∗
δuF · δ

[

νΣ dγ
]∗

(uF )

∂
[

δ [EΣ ] (δuF )
]∗

∂UF
(uF ) = σL

∮

γ ∗
δuF · δ

[

νΣ dγ
]∗

(uF )

∂
[

δ
[

EΣG

]

(δuS)
]∗

∂US
(uS)

= σG

∫

Σ∗
G

δuS · δ
[

2HΣG nΣG dΣG
]∗

(uS) (40a)

∂
[

δ [EΣ ] (δuS)
]∗

∂US
(uS)

= σL

∫

Σ∗
δuS · δ [2HΣ nΣ dΣ]∗ (uS) (40b)

5 Let us remark that in case of a non linear initial deformation, an addi-
tional stiffness term must be inserted [19].

4.2.5 Incompressibility

The incompressibility I is a function of Λ and UF . The first
variation according to each variable is given in (14) and (15).
Using the relation ∇Λ∗ = 0 obtained in the static study and
the fact that δ[Λ](λ) = λ we have:

∂
[

δ [ I ] (δuF )
]∗

∂UF
(uF ) + ∂

[

δ [ I ] (δuF )
]∗

∂Λ
(λ)

=
∫

Γ ∗∪Σ∗
Λ∗ δuF · τ ∗

S(u
F )dS + · · ·

· · ·
∫

Γ ∗∪Σ∗
λ δuF · n∗

SdS −
∫

Ω∗
F

∇λ · δuF dΩF (41)

We introduce KΛ
Γ and KΛ

Σ such that:

KΛ
Γ (uF , δuF ) =

∫

Γ ∗
Λ∗ δuF · τ ∗

Γ (uF )dΓ (42)

KΛ
Σ(uF , δuF ) =

∫

Σ∗
Λ∗ δuF · τ ∗

Σ(uF )dΣ (43)

Moreover, the linearization of δ [ I ] (δλ) writes:

∂
[

δ [ I ] (δλ)
]∗

∂UF
(uF ) =

∫

Ω∗
F

δλ div(uF )dΩ (44)

As only I depends on Λ, (44) corresponds to the linearized
relation (c) of (27).

4.2.6 Wall contact condition

At the interface Σ

We consider at first the fluid equation (δuS = 0), the energy
introducing the coupling writes:

δ [ CΣ ] (δuF ) = −
∫

Σ

M δuF · nΣdΣ (45)

The linearization of this energy is done considering small dis-
placement of the fluid around the interface Σ∗ (the interface
follows fluid particles, see Fig. 3):

∂
[

δ [ CΣ ] (δuF )
]∗

∂UF
(uF ) = −

∫

Σ∗
M∗ δuF · τ ∗

Σ(uF )dΣ

(46)

CΣ also depends on M , writing μF the small pressure fluc-
tuations corresponding to a fluid displacement we have:

∂
[

δ [ CΣ ] (δuF )
]∗

∂ M
(μF ) = −

∫

Σ∗
μF δuF · n∗

ΣdΣ (47)
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Fig. 3 Interfaces Σ∗ and Σ , point Pi and its representation after a fluid
displacement (P) and a structure displacement (P

′
)

In the structure equation we write μS the pressure fluctu-
ation corresponding to small displacement of the structure
around Σ∗. The linearization of the coupling term is then
given by:

∂
[

δ [ CΣ ] (δuS)
]∗

∂US
(uS) + ∂

[

δ [ CΣ ] (δuS)
]∗

∂ M
(μS)

=
∫

Σ∗
M∗ δuS · τ ∗

Σ(uS)dΣ +
∫

Σ∗
μS δuS · n∗

ΣdΣ (48)

In Fig. 3 the surfaces Σ and Σ∗ are represented. Let P be a
point that belongs toΣ and displacementsuF anduS are such
that PiP = uF and PiP

′ = uS . The Lagrange multiplier
M∗ represents the static pressure, μS the pressure difference
between Pi and P

′
, and μF the pressure difference between

Pi and P . The relation between those two pressures is given
by the expansion of the pressure around P [17]:

μS = μF + ∇M∗ · (uS − uF ) (49)

μF and μS can be interpreted as the Lagrangian pres-
sure fluctuation following the liquid or the solid. Finally,
the linearization of δ [CΣ ] (δμ) is obtained considering
relations (47) and (48) written for displacements uF ,uS ,
and δμ:

∂
[

δ [ CΣ ] (δμ)
]∗

∂UF
(uF ) + ∂

[

δ [ CΣ ] (δμ)
]∗

∂US
(uS)

=
∫

Σ∗
δμ
(

uS − uF
) · n∗

ΣdΣ (50)

Since only CΣ depends on M , then (50) corresponds to the
linearized relation (d) of (27).

On the triple line γ

The same approach is used to linearize terms associated to
Cγ :

∂
[

δ
[

Cγ

]

(δuF )
]∗

∂UF
(uF ) = −

∮

γ ∗
M∗

γ δuF · δ
[

nΣdγ
]∗

(uF )

∂
[

δ
[

Cγ

]

(δuF )
]∗

∂ Mγ

(μF
γ ) = −

∮

γ ∗
μF

γ δuF · n∗
Σdγ (51)

For the structure equation:

∂
[

δ
[

Cγ

]

(δuS)
]∗

∂US
(uS) =

∮

γ ∗
M∗

γ δuS · δ
[

nΣdγ
]∗

(uS)

∂
[

δ
[

Cγ

]

(δuS)
]∗

∂ Mγ

(μS
γ ) =

∮

γ ∗
μS

γ δuS · n∗
Σdγ (52)

with

μS
γ = μF

γ + ∇M∗
γ · (uS − uF ) (53)

As M∗
γ is constant we have μS

γ = μF
γ . The linearization of

δ
[

Cγ

]

(δμγ ), which corresponds to the linearized relation
(d) of (27), is obtained considering (51) and (52) written for
displacements uF ,uS , and δμγ :

∂
[

δ
[

Cγ

]

(δμγ )
]∗

∂UF
(uF ) + ∂

[

δ
[

Cγ

]

(δμγ )
]∗

∂US
(uS)

=
∫

γ ∗
δμγ

(

uS − uF
) · n∗

Σdγ (54)

We now write the fluid and structure equations (relations
(a) and (b) of (27)). The new variables of this problem are
(uF ,uS, λ, μ,μγ ). We consider the fluid equation to express
the Lagrange multipliers (λ,μ,μγ ) as a function of the fluid
and structure displacements. Using the relations (24) and the
linearized energies, we directly write:

t2∫

t1

⎡

⎢
⎣

∫

Ω∗
F

(

− ρF üF − ∇λ
)

· δuF dΩF

+
∫

Γ ∗

(

− ρF g(uF · iz)−σδ [2HΓ ]∗ (uF )+λ
)

δuF · n∗
Γ dΓ

+
∫

Σ∗

(

− ρF g (uF · iz) + λ − μF

)

δuF · n∗
ΣdΣ

+
∮

γ ∗
μF

γ δuF · n∗
Σdγ

⎤

⎥
⎦ dt = 0 (55)
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where the kinetic energy has been modified using an integra-
tion by part:
∫

Ω∗
F

ρF u̇F · ˙
δuF dΩF = −

∫

Ω∗
F

ρF üF · δuF dΩF

+
⎡

⎢
⎣

∫

Ω∗
F

ρF u̇F · δuF

⎤

⎥
⎦

t2

t1
︸ ︷︷ ︸

= 0

As δuF (t1) = δuF (t2) = 0, the last term is null. Consider-
ing test functions null on the boundary of the fluid domain
∂Ω F∗ we have:

∇λ = −ρF üF on Ω∗
F (56)

Taking the curl of this expression, we notice that the
linearized liquid displacements uF are irrotational since
curl(uF ) = 0.6 Using (56) in (55) and considering test func-
tions null on Γ ∗ and γ ∗ we have:

μF = λ − ρF g (uF · iz) on Σ∗ (57)

Similarly, the free surface equation is obtained considering
test function null on Σ∗ and γ ∗:

λ = ρF g (uF · iz) + σδ [2HΓ ]∗ (uF ) on Γ ∗ (58)

Finally, from (58), (57) and (56) we deduce that μF
γ = 0.

Indeed, we supposed that the contact angle is constant, oth-
erwise, the lineic force magnitude would depend on the fluid
displacement and μF

γ = δ [σ sin θ ] (uF ).

5 Elimination of the Lagrange multipliers

The irrotational displacement of the fluid will be described
by a potential displacement ϕ such that uF = ∇ϕ on Ω∗

F .
ϕ is defined up to an additional constant. Introducing this
new variable instead of uF , it is now possible to eliminate
the Lagrange multipliers. However, as we will see later, it
is convenient to keep the unknown uF on the fluid domain
boundary (Σ,Γ, γ ). From (56) we then deduce an expression
of λ:

λ = −ρF ϕ̈ + π(uS) (59)

where π(uS) is a scalar and a linear function of uS . Consid-
ering expression (59), this Lagrange multiplier can be assim-
ilated to the eulerian pressure fluctuation [17]. The unicity of
π is ensured by an unicity condition written l(ϕ) = 0 where
l is a linear form such that l(1) �= 0.

6 From (56), curl(üF ) = 0 and with appropriate zero initial condition
we will consider that curl(uF ) = 0.

λ and μF are functions of uF and uS and we now want
to eliminate those Lagrange multipliers writing a reduced
Lagrangian L that only depends on (UF ,US). This change
of variable yields a formulation in terms of (uF ,uS, ϕ, π ).
Suppressing the Lagrange multipliers, we suppress equations
(c), (d) and (e) of (27). This new problem is equivalent if we
consider the incompressibility condition div(uF ) = 0 in Ω∗

F
and the boundary condition uF ·n∗

Σ = uS ·n∗
Σ on Σ∗. Then

the new linearized problem writes:

∂
[

δ [ S ] (δuF )
]∗

∂UF
(uF ) = 0 ∀ δuF ∈ CU F (a)

∂
[

δ [ S ] (δuS)
]∗

∂US
(uS) = 0 ∀ δuS ∈ CU S (b)

div(uF ) = 0 on Ω∗
F (c)

uF · n∗
Σ = uS · n∗

Σ = 0 on Σ∗ (d)

(60)

Now we need to reformulate the incompressibility and cou-
pling terms I and C that depend on the Lagrange multipliers.
From (14), the first variation of I is given by:

δ [ I ] (δuF ) =
∫

ΩF

Λ div(δuF )dΩF

+
∫

Ω0
F

δ [Λ] (δuF ) (J − 1) dΩ0
F (61)

Then its linearization writes:

∂
[

δ [ I ] (δuF )
]∗

∂UF
(uF ) + ∂

[

δ [ I ] (δuF )
]∗

∂US
(uS)

=
∫

Ω∗
F

(

δ [ Λ ]∗ (uF ,uS)
)

div(δuF )dΩF

+
∫

Γ ∗∪Σ∗
Λ∗ δuF · τ ∗

S(uF )dS

+
∫

Ω∗
F

δ [ Λ ]∗ (δuF ) div(uF )dΩF

δ [ Λ ]∗ (uF ,uS) corresponds to the linearization of Λ

around the reference state and is equal to λ(uF ,uS). In
comparison with (41), this new expression has an addi-
tional term that contains the constitutive law of the fluid
div(uF ) and corresponds to its weak form. This additional
term yields the equation of the fluid in δϕ. Using (59) and
δ [ Λ ]∗ (δuF ) = −ρFδϕ̈ we have:
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∂
[

δ [ I ] (δuF )
]∗

∂UF
(uF ) + ∂

[

δ [ I ] (δuF )
]∗

∂US
(uS)

= 2
∫

Ω∗
F

ρF∇ϕ · ∇ ¨δϕdΩF+
∫

Γ ∗∪Σ∗
Λ∗ δuF · τ ∗

S(u
F )dS

+
∫

Γ ∗∪Σ∗
(−ρF ϕ̈+π)δuF · n∗dS

−
∫

Γ ∗
ρF ¨δϕ uF · n∗

Γ dΓ −
∫

Σ∗
ρF ¨δϕ uS · n∗

ΣdΣ (62)

The coupling term C corresponding to the boundary con-
dition is obtained for the fluid equation simply replacing
relations (57) and (24) in (46) and (47). For the structure
equation, the coupling term appears in the form given by
(48). Considering the relation (49), M∗ is given by (24) and
noting that ∇M∗ = −ρF g iz we have:

μS = −ρF ϕ̈ + π − ρF g (uS · iz) (63)

Finally, the kinetic energy of the fluid (32) is defined on Ω∗
F ,

and can be written using the potential displacement as:

∂
[

δ
[

E F
C

]

(δuF )
]∗

∂UF
(uF ) =

∫

Ω∗
F

∇ϕ̇ · ∇ ˙δϕdΩ∗
F

6 Linearized fluid dynamic formulation

Relation (a) of the problem (60) gives two formulations
corresponding to the two variables used to describe the
fluid movement (uF , ϕ). Introducing Cϕ , the admissible
space of functions δϕ, ϕ is in C∗

ϕ defined by C∗
ϕ =

{

ϕ ∈ Cϕ / l(ϕ) = 0, l(1) �= 0
}

and, for all δϕ in Cϕ :
∫

Ω∗
F

∇ϕ · ∇ ¨δϕ dΩF

︸ ︷︷ ︸

F (ϕ, ¨δϕ)

−
∫

Γ ∗
uF · n∗

Γ
¨δϕ dΓ

︸ ︷︷ ︸

B(uF , ¨δϕ)

− · · ·

· · ·
∫

Σ∗
uS · n∗

Σ
¨δϕ dΣ

︸ ︷︷ ︸

C(uS, ¨δϕ)

= 0 (64)

F is the operator associated to the kinetic energy and B repre-
sents the coupling between ϕ and uF on the free surface Γ ∗.
C is the fluid structure coupling operator at the interface Σ∗.
We notice that only the second derivative of the test function
δϕ appears in (64), it is then possible to replace ¨δϕ by δϕ,
this operation corresponds to a double time-integration with
zero initial conditions. Then considering the terms in δuF

we write the second variational equation of the fluid using
the operators previously introduced and introducing the two
following operators:

Kθ
γ (uF , δuF ) = σ

∮

γ ∗
δuF · δ

[

νΓ dγ
]∗

(uF ) (65)

RΓ (δuF ) =
∫

Γ ∗
δuF · n∗

Γ dΓ

where Kθ
γ (uF , δuF ) is a stiffness contact angle defined on

the triple line. For all test functions δuF in C∗
UF where C∗

UF =
{uF ∈ CUF / uS · n∗

Σ = uF · n∗
Σ on Σ∗}:

(

K
g
Γ + Kσ

Γ − KΛ
Γ

)

(uF , δuF )

−Kθ
γ (uF , δuF ) + B(ϕ̈, δuF ) − πRΓ (δuF ) = 0 (66)

7 Linearized structure dynamic formulation

The structure equation is given by the relation (b) of (60) and
can be written using (33), (36), (40) and (48) (M∗, M∗

γ and

μS are given by (24) and (63)). For all test functions δuS in
C∗

US where C∗
US = {uS ∈ CUS / uS · n∗

Σ = uF · n∗
Σ on Σ∗}:

M S(üS, δuS)

+
(

K E+KG+K
σL
Σ +K

σG
ΣG

+K
g
Σ − KΛ

Σ+Kθ
γ

)

(uS, δuS)

+C(ϕ̈, δuS) − πRΣ(δuS) = f ext (δu
S) (67)

where f ext is the external work of the force f for a displace-
ment δuS and we have:

f ext (δu
S) =

∫

Σ∗
f

f · δuSdΣ f (68)

M S(ü
S, δuS) =

∫

Ω∗
S

üS · δuSdΩS (69)

K
g
Σ(üS, δuS) =

∫

Σ∗
ρF g Z∗δuS · τ ∗

ΣdΣ

+
∫

Σ∗
ρF g (uS · iz)δu

S · n∗
ΣdΣ

KΛ
Σ(üS, δuS) =

∫

Σ∗
Λ∗δuS · τ ∗

ΣdΣ

RΣ(δuS) =
∫

Σ∗
δuS · n∗

ΣdΣ

K
σL
Σ (uS, δuS) = σL

∫

Σ∗
δuS · δ [2HΣnΣdΣ]∗ (uS)

+ σL

∮

γ ∗
δuS · δ

[

νΣ dγ
]∗

(uS)

K
σG
ΣG

(uS, δuS) = σG

∫

Σ∗
G

δuS · δ
[

2HΣG nΣ dΓ
]∗

(uS)
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− σG

∮

γ ∗
δuS · δ

[

νΣ dγ
]∗

(uS)

A function ϕ in Cϕ can be uniquely written as ϕ = ϕ∗ + c
whereϕ∗ is inC∗

ϕ and c is a constant defined by c = l(ϕ)/ l(1).
Then we have: Cϕ = C∗

ϕ ⊕R and from the formulation (64) it
is possible to write two separated equations considering test
functions δϕ in C∗

ϕ :

F (ϕ, δϕ) − B(uF , δϕ) − C(uS, δϕ) = 0 ∀δϕ ∈ C∗
ϕ (70)

and in R (writing them δπ ):

δπ
(

RΓ (δuF ) + RΣ(δuS)
)

= 0 ∀δπ ∈ R (71)

Let K F and K S be the stiffnesses associated to the fluid and
the structure, we have K F = K

g
Γ + Kσ

Γ − KΛ
Γ − Kθ

γ and

K S = K E + KG + K
σL
Σ + K

σG
ΣG

+ K
g
Σ − KΛ

Σ + Kθ
γ .

Finally, the system to solve is given by (66), (67), (70) and
(71):

∃(uF , uS , ϕ, π) ∈ C∗
UF × C∗

US × C∗
ϕ × R,

∀(δϕ, δuF , δuS , δπ) ∈ C∗
UF × C∗

US × C∗
ϕ × R

F (ϕ, δϕ) − B(uF , δϕ) − C(uS , δϕ) = 0
K F (uF , δuF ) + B(ϕ̈, δuF ) − πRΓ (δuF ) = 0

KS(uS , δuS) + MS(üS , δuS) + · · ·
· · · C(ϕ̈, δuS) − πRΣ(δuS) = f ext

δπ
(

RΓ (δuF ) + RΣ(δuS)
)

= 0

(72)

From (69), it is obvious that M S is symmetric. To show the
symmetry of K F and K S let us first consider the generic
bilinear operator Ak

S(v,w) defined on a surface S and for
any scalar function k:

Ak
S(v,w) =

∫

S

(v · ∇k)w · n dS +
∫

S

k w · τ S(v) dS (73)

where v and w are two vectors defined on S. Let ∂S be the
boundary of S, we will use the Darboux frame (n, νS, t S)
introduced by Fig. 2 where t S is tangent to ∂S and oriented
with the right hand rule. It can be shown that [9]:

Ak
S(v,w) − Ak

S(w, v) =
∮

γ

k (w ∧ v) · t S dS (74)

The operator KF is given for vector fields δuF and uF

defined on Γ ∗ by K F (uF , δuF ) =
(

K
g
Γ + Kσ

Γ − KΛ
Γ −

Kθ
γ

)

(uF , δuF ). Operators K
g
Γ ,Kσ

Γ and KΛ
Γ are given by

(35a), (39), (42) and (65). We introduce the operator K̂σ
Γ

such that K̂σ
Γ (uF , δuF ) = (Kσ

Γ − Kθ
γ )(uF , δuF ):

K̂σ
Γ (uF , δuF ) = σ

∫

Γ ∗
δu · δ [2HΓ nΓ dΓ ]∗ (u) (75)

K
g
Γ ,Kσ

Γ and KΛ
Γ , and thus K F , can be written using

Ak
S : K

g
Γ = A

ρF gZ∗
Γ ∗ , K̂σ

Γ = K
σ2H∗

Γ

Γ ∗ and KΛ
Γ = AΛ∗

Γ ∗ .

Then:

K F (uF , δuF ) = Ak
S

∣
∣
∣

S≡Γ

k=ρF gZ+σ2HΓ −Λ
(uF , δuF ) (76)

and from (74) we have:

K F (uF , δuF ) − K F (uF , δuF )

=
∮

γ ∗

(

ρF gZ∗ + σ2H∗
Γ − Λ∗) (δuF ∧ uF

)

· tγ dγ

(77)

Using relation (24), expression (77) is null which shows that
K F is symmetric. We notice in [9], that the authors give an
expression of Kσ

Γ which is symmetric, this operator is pro-
portional to the second variation of the surface Γ .

For vector fields δu and u defined on Ω∗
F ∪ Ω∗

S , the oper-

ator KS is given by K S(u, δu) =
(

K E + KG + K
σL
Σ +

K
σG
ΣG

+ K
g
Σ − KΛ

Σ + Kθ
γ

)

(u, δu). We first notice that con-

sidering (37) and (38), K E and KG have symmetrical forms.
Moreover, KσL

Σ and K
σG
ΣG

are proportional to the second var-
iation of surfaces Σ and ΣG and are symmetric. We now
need to show the symmetry of the operator K I given by
K I = K

g
Σ − KΛ

Σ + Kθ
γ for vector fields δu and u defined

on Ω∗
F ∪ Ω∗

S . Then we have:

K I (u, δu) =
(

K
g
Σ − KΛ

Σ − K̂σ
Γ

︸ ︷︷ ︸

K1
I

+ K̂σ
Γ + Kθ

γ
︸ ︷︷ ︸

K2
I

)

(u, δu)

K2
I is equal to Kσ

Γ and is symmetric. Considering Σ∗ its
boundary γ ∗ oriented along −tγ , we have:

K I (u, δu) − K I (δu,u)

=
∮

γ ∗

(

−ρF gZ∗ − σ2H∗
Γ + Λ∗) (δu ∧ u) · tγ dγ = 0

The operator K I is symmetric, and because in (67), K S

(u, δu) is defined on Ω∗
S we take δu = δuS and u = uS .

K S(uF , δuF ) is symmetric as a sum of symmetric operators.

8 Numerical resolution

To numerically solve this variational problem we first con-
sider the discretization of each operators by the classical
Finite Element Method, uS, uF and Φ being the nodal
unknowns of uS,uF and ϕ. The same notations is used for
the matrices associated to these operators. The matrix equa-
tion associated with (72) writes:
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⎡

⎢
⎢
⎣

KS 0 0 −RΣ

0 KF 0 −RΓ

−CT −BT F 0
−RΣ

T −RΓ
T 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

uS

uF

Φ

π

⎞

⎟
⎟
⎠

+

⎡

⎢
⎢
⎣

MS 0 C 0
0 0 B 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

üS

üF

Φ̈

π̈

⎞

⎟
⎟
⎠

= Fe

(78)

Where Fe = (fT
ext, 0, 0, 0)

T. Because ϕ and δϕ are in C∗
ϕ , we

now need to impose a linear arbitrary relation between the
elements of Φ. We chose to suppress the first degree of free-
dom and we write Φ2, C2, F22 and B2 the truncated vector
and matrices [17]. Introducing KG, MG, CG, RG, uG and fG

defined by:

KG =
[

KS 0
0 KF

]

MG =
[

MS 0
0 0

]

CG =
[

B2

C2

]

RG =
[

RΣ

RΓ

]

uG =
[

uS

uF

]

fG =
[

fext
0

]

the problem (78) writes
⎡

⎣

KG 0 −RG
−CT

G F22 0
RT

G 0 0

⎤

⎦

⎛

⎝

uG

Φ2
π

⎞

⎠+
⎡

⎣

MG CG 0
0 0 0
0 0 0

⎤

⎦

⎛

⎝

üG

Φ̈2
π̈

⎞

⎠=
⎛

⎝

fG

0
0

⎞

⎠

(79)

The condition uF · n∗
Σ = uS · n∗

Σ on γ ∗ still needs to be
taken into account (the field uF doesn’t appear on Σ∗). This
operation constraints the degrees of freedom of uG. It is then
possible to build a matrix Q such that uG = Qu� and u� is
the vector of unknowns taking into account that constraint.
The problem (79) writes:
⎡

⎣

K� 0 −R�
−CT� F22 0
RT� 0 0

⎤

⎦

⎛

⎝

u�
Φ2

π

⎞

⎠+
⎡

⎣

M� C� 0
0 0 0
0 0 0

⎤

⎦

⎛

⎝

ü�
Φ̈2

π̈

⎞

⎠=
⎛

⎝

f�
0
0

⎞

⎠

with K� = QTKGQ, M� = QTMGQ, C� = QTCG, R� =
QTRG and f� = QTfG. Finally, the particular choice of the
unicity condition allows us to eliminate the variable Φ2 as
F22 is inversible: Φ2 = F−1

22 C�Tu�. This operation leads to
the final system to solve:
[

K� −R�
−RT� 0

](

u�
π

)

+
[

M� + C�F−1
22 C�T 0

0 0

](

ü�
π̈

)

=
(

f̈�
0

)

K� and M� are associated to symmetric operators and because
F22 is symmetric and inversible, F−1

22 is symmetric. Then, we
can easily deduce from this expression the eigenvalue prob-
lem that gives the real eigenmodes and eigenvalues of the
coupled system.

9 Conclusion

An energy approach has been used to establish the non lin-
ear variational formulation for an elastic structure contain-
ing an incompressible and inviscid liquid. The originality

of the present work is to take into account the surface ten-
sion phenomenon and its effect on the structure deformations
and on the fluid sloshing. The linearization of this formula-
tion, around the (nonlinear) equilibrium position of the sys-
tem, is presented. We notice that this formulation is coherent
with the ones presented in [18] and [9], respectively when
the surface tensions and the structure deformations are not
taken into account. A numerical resolution strategy using a
finite element discretization yields the symmetrical matrix
equation of the linearized coupled problem. Applications to
satellite tanks and bladder tanks are in progress and will be
presented in future papers. Following the initiated works to
introduce the viscous dissipation in our conservative mod-
els [15], this new formulation is a promising framework to
take into account the damping sources involving both the
viscosity and the capillarity at the liquid free surface [11].
A non constant dynamic contact angle between the liquid
free surface and the tank wall can be naturally represented
by considering the dynamic evolution μF

γ of the Lagrange

multiplier Mγ : μF
γ = δ[sin θ ](uF ), where θ is a function

of uF that can be sometimes highly nonlinear [5]. Moreover,
the presence of the lineic capillary force on the structure wall
creates a singularity in the structure equations. Its modeliza-
tion in the case of a three dimensional structure model is an
open problem that will be the subject of future investigations.
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