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Abstract In this paper we discuss the use of single and dou-
ble layer boundary integral equations for the numerical solu-
tion of linear elasticity problems with boundary conditions
of mixed type, and the one-equation coupling of finite and
boundary element methods to solve a free space transmission
problem. In particular we present a sufficient and necessary
condition which ensures stability of the coupled approach
for any choice of finite and boundary elements. These results
justify the coupling of collocation and Galerkin one-equa-
tion boundary element methods with finite elements as used
in many engineering and industrial applications. Hence one
may avoid the use of the symmetric formulation of boundary
integral equations, which is, although well established from
a mathematical point of view and also used in some engi-
neering applications, not so much accepted in particular in
industrial applications.

Keywords Boundary element method · Finite element
method · Elasticity

1 Introduction

The symmetric formulation of boundary integral equations
[25] and related Galerkin boundary element methods are
well established both from a mathematical and a practical
point of view, e.g., [1], in particular when considering bound-
ary value problems with boundary conditions of mixed type
[26], domain decomposition methods [9], and the coupling of
finite and boundary element methods [4]. But the symmetric
formulation requires the use of the hypersingular boundary
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integral operator, in particular the integration of hypersingu-
lar surface integrals. Although one may use integration by
parts [7,13] to rewrite Cauchy singular and hypersingular
surface integrals as weakly singular ones, such an approach
always requires the use of a Galerkin discretization. Even
there are efficient implementations by means of fast bound-
ary element methods available, e.g. fast multipole methods
[15], adaptive cross approximation [21], etc., there is still not
a big acceptance of symmetric Galerkin boundary element
methods in engineering and industrial applications.

Instead, standard boundary integral equations, either
based on a direct or indirect approach, but only using sin-
gle and double layer boundary integral operators are still
very popular in engineering and industrial applications. In
the case of mixed boundary conditions a common approach
is to reorder the degrees of freedom after discretization. The
resulting linear system combines the discrete single and dou-
ble layer boundary integral operators, i.e. boundary integral
equations of first and second kind, so it is not obvious how
to design efficient iterative solution procedures. An alterna-
tive approach is to consider a mixed formulation where the
Neumann boundary condition is formulated as a constraint in
addition to the boundary integral equation which is related to
the Dirichlet boundary. Finally, such an approach results in a
Steklov–Poincaré operator equation of the first kind, where
the numerical analysis is well established, but this approach
requires a proper choice of boundary elements for a stable
discretization, see, for example [27].

The coupling of finite and boundary element methods
is of particular interest when modeling nonlinear materi-
als in a bounded region and a linear material in an exterior
unbounded domain, see, e.g., [3,5,32]. The one-equation or
Johnson–Nédélec coupling goes back to the late seventies
[2,12] but theoretical results on the stability of the coupled
formulation, even for the simpler case of a Laplace equation,
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required the consideration of a smooth interface. Moreover,
since the double layer boundary integral operator of linear
elasticity is not compact, the theory which was developed
for the Laplace equation, could not be extended. Although
numerical examples indicate stability, there was no rigorous
proof available to establish stability of the one–equation cou-
pling of finite and boundary element methods.

In a recent paper [24], and for the case of a scalar Yuk-
awa type equation, it was shown that the Johnson–Nédélec
coupling is stable for any choice of boundary and finite ele-
ments. Alternative proofs, including a sufficient condition on
the ratio of the involved material parameters for the scalar dif-
fusion equation and the Laplace operator in the interior and
exterior domains, were given in [30]. In [17] this result was
improved, i.e. it was shown that the condition on the mate-
rial parameters is also necessary. The aim of this paper is to
extend this approach to the case of linear elasticity, see also
[6] for a related result for the Bielak–MacCamy BEM–FEM
coupling. In fact, we prove stability of the coupled scheme if
the ratio of the involved Lamé parameters in the interior and
exterior domain is bounded below by the contraction con-
stant of the double layer boundary integral operator. While
in this paper we consider the case of a free space transmission
problem, this approach can be extended to boundary value
problems in bounded domains, see [18] for the scalar case.

In the case of the diffusion equation in two space dimen-
sions, numerical experiments on the stable coupling of finite
and boundary elements are discussed in [17]. While these
investigations involve the determination of several involved
constants, which may be computed either analytically or
numerically, related numerical experiments for three-dimen-
sional linear elasticity problems are more challenging. Since
we do not expect any new insight, we do not present any
numerical experiments in the present paper. However, a com-
parison of different formulations for the coupling of finite and
boundary element methods has to be done in future work, in
particular when including a nonlinear material behavior or
plasticity. Nevertheless, the aim of the present paper is to
provide a numerical analysis of the non-symmetric coupling
of finite and boundary elements, an approach, as it is already
used for some time.

This paper is organized as follows: In Sect. 2 we recall
the formulation of boundary integral equations for the solu-
tion of boundary value problems with boundary conditions
of mixed type. Mapping properties of the single and double
layer boundary integral operators are summarized in Sect. 3,
where we derive the definition of appropriate norms which
are induced by the single layer boundary integral operator.
Moreover we focus on the contraction property of the double
layer boundary integral operator, and we discuss possible
approaches to compute approximate values of the contrac-
tion constant by solving related eigenvalue problems. The
main result of this paper is given in Sect. 5, where we derive

a sufficient and necessary condition to ensure stability of
the coupled approach for any choice of finite and bound-
ary elements. We end this paper by some final remarks and
conclusions.

2 Boundary integral equations

We consider the equilibrium equations of linear elastostatics,
by using the Einstein sum convention,

σi j, j (u)+ fi = 0 inΩ ⊂ R
3 (1)

with the stress tensor σi j given by Hooke’s law, i.e.

σi j (u) = Eν

(1 + ν)(1 − 2ν)
δi j ekk(u)+ E

1 + ν
ei j (u),

with E > 0 and ν ∈ (0, 1
2 ), and with the linearized strain

tensor

ei j = 1

2
(ui, j + u j,i ).

Later we will use the Lamé constants

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
.
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⎨
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⎠ ,

⎛

⎝
x3

0
−x1

⎞

⎠

⎫
⎬

⎭

we denote the space of rigid body motions satisfying

ei j (v
k) = 0 for all vk ∈ R.

In addition to the partial differential equation (1) we consider
boundary conditions of mixed type, i.e. prescribed displace-
ments (Dirichlet) or boundary stresses (Neumann),

ui = gD
i onΓ D

i ,

ti := σi j (u)n j = gN
i onΓ N

i ,

where n is the exterior normal vector which is defined almost
everywhere on Γ = ∂Ω . Note that we assume

Γ = Γ
D
i ∪ Γ N

i , Γ D
i ∩ Γ N

i = ∅, i = 1, 2, 3,

in particular we allow to consider different boundary condi-
tions in different components. Moreover, we may consider
boundary conditions in tangential and normal direction as
well, and boundary conditions of Signorini type to describe
contact problems with or without friction.

Any solution of the linear elasticity system (1) is given by
the representation formula (Somigliana identity)

ui (x) =
∫

Γ

U∗
i j (x, y)t j (y)dsy −

∫

Γ

T ∗
i j (x, y)u j (y)dsy

+
∫

Ω

U∗
i j (x, y) f j (y)dy for x ∈ Ω (2)
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where the fundamental solution of linear elasticity is given
by the Kelvin tensor

U∗
i j (x, y) = 1

8π

1

E

1 + ν

1 − ν

·
[

(3 − 4ν)
δi j

|x − y| + (xi − yi )(x j − y j )

|x − y|3
]

,

and T ∗
i j (x, y) is the related stress fundamental solution.

To apply the representation formula (2) we need to deter-
mine the complete Cauchy data [u, t]|Γ by solving appro-
priate boundary integral equations. For this we consider the
limiting process x → Γ in (2) to obtain the standard bound-
ary integral equation of the direct approach,
∫

Γ
U∗

i j (x, y)t j (y)dsy = ci j (x)u j (x)

+ −
∫

Γ
T ∗

i j (x, y)u j (y)dsy

−
∫

Ω
U∗

i j (x, y) f j (y)dy for x ∈ Γ, (3)

where the integral free coefficients ci j (x), x ∈ Γ , reflect the
jump conditions of the double layer potential in corners and
along edges. Without loss of generality we only consider the
case ci j = 1

2δi j . Hence we can write the boundary integral
equation (3) as

V t =
(

1

2
I + K

)

u − N0 f onΓ (4)

where we used the standard notations for the single layer
boundary integral operator V , for the double layer bound-
ary integral operator K , and for the Newton potential N0.
Although the double layer boundary integral operator K is
defined as Cauchy singular integral, using integration by
parts and assuming continuous displacements one obtains an
alternative representation which consists of weakly singular
integrals only, see [13,21]. Depending on the given boundary
conditions we will use the boundary integral equation (4) to
find the yet unknown Cauchy data. Instead of the general case
of boundary conditions of mixed type, we first consider the
particular cases of pure Dirichlet or Neumann boundary con-
ditions. In the case of Dirichlet boundary conditions u = gD

on Γ , (4) results in the first kind boundary integral equation
to find the Neumann datum t satisfying

V t = 1

2
gD + K gD − N0 f onΓ. (5)

In the case of a Neumann boundary value problem we need
to assume the equilibrium conditions
∫

Ω

f · vk dx +
∫

Γ

gN · vk|Γ dsx = 0 for all vk ∈ R,

where R is the space of all rigid body motions. To find the yet
unknown Dirichlet datum u|Γ we may consider the second
kind boundary integral equation

(
1

2
I + K

)

u|Γ = V gN + N0 f onΓ. (6)

Instead of (6) we may also consider a mixed formulation to
find (u|Γ , t) satisfying

V t −
(

1

2
I + K

)

u|Γ = −N0 f, t = gN onΓ. (7)

Since the first equatio in (7) can be identified with the bound-
ary integral equation (5) of the Dirichlet boundary value prob-
lem, we can solve this equation to obtain for the Neumann
datum

t = V −1
(

1

2
I + K

)

u|Γ − V −1 N0 f onΓ.

The operator

Sint := V −1
(

1

2
I + K

)

(8)

is called the Steklov–Poincaré operator which realizes the
Dirichlet to Neumann map which is associated to a function u
satisfying the homogeneous partial differential equation (1),
i.e. f = 0. Hence we can rewrite (7) as a first kind boundary
integral equation to find u|Γ such that

Sintu|Γ = gN + V −1 N0 f onΓ. (9)

In the case of mixed boundary conditions instead of (7) we
consider the mixed formulation to find (u|Γ , t) such that

V t − ( 1
2 I + K

)
u|Γ = −N0 f on Γ,

ti = gN
i on Γ N

i ,

ui = gD
i on Γ D

i .

(10)

In fact, when eliminating the boundary stresses t we end up
with a Steklov–Poincaré operator equation to find u|Γ such
that ui = gD

i on Γ D
i , and

(Su|Γ )i = gN
i + (V −1 N0 f )i onΓ N

i . (11)

Note that the Steklov–Poincaré operator equation (11) can
be generalized to the case when describing boundary condi-
tions in normal or tangential directions, or when considering
boundary conditions of Signorini type as in contact problems.

3 Boundary integral operators

The analysis of the boundary integral formulations (5–11)
is based on the mapping properties of the involved bound-
ary integral operators, see, e.g. [11,14,23,29]. In what fol-
lows we will summarize some properties of boundary integral
operators as required later on.
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3.1 Single layer boundary integral operator

For an arbitrary chosen density function w we define the
single layer potential

ui (x) =
∫

Γ

U∗
i j (x, y)w j (y)dsy for x ∈ R

3\Γ
which is a solution of the homogeneous linear elasticity sys-
tem (1) for both the interior domain Ω , and for the exterior
domain Ωc := R

3\Ω . Betti’s first formula for the interior
problem gives
∫

Ω

σi j (u)ei j (v)dx =
∫

Γ

tivi dsx . (12)

In particular for v = u and by using the jump relations of the
single layer potential we further obtain
∫

Ω

σi j (u)ei j (u)dx =
∫

Γ

[(
1

2
I − K ′

)

w

]

Vw dsx , (13)

where K ′ is the adjoint double layer boundary integral opera-
tor, which results from the application of the boundary stress
operator to the single layer potential. Accordingly we find for
the exterior Dirichlet boundary value problem, and by using
the decay behavior of the single layer potential in R

3,
∫

Ωc
σi j (u)ei j (u)dx =

∫

Γ

[(
1

2
I + K ′

)

w

]

Vw dsx . (14)

By taking the sum of (13) and (14) this gives
∫

R3\Γ
σi j (u)ei j (u)dx = 〈Vw,w〉Γ . (15)

Hence, by using Korn’s inequality, this shows that the sin-
gle layer boundary integral operator V is elliptic, and there-
fore invertible, see also [5,10,29]. Recall that the ellipticity
constant of the single layer boundary integral operator degen-
erates for almost incompressible materials [28]. For simplic-
ity we therefore assume ν < 1

2 . In particular, we conclude
the unique solvability of the boundary integral equation (5)
which is related to the Dirichlet boundary value problem.
Moreover, the Steklov–Poincaré operator Sint as given in (8),
and which is related to the interior Dirichlet problem, is well
defined.

By taking the Dirichlet trace of the single layer potential
we obtain u|Γ = Vw, and since the single layer boundary
integral operator V is invertible,w = V −1u|Γ follows. From
(15) we therefore obtain
∫

R3\Γ
σi j (u)ei j (u)dx = 〈V −1u, u〉Γ ,

i.e.

‖u‖2
V −1 := 〈V −1u, u〉Γ (16)

defines an equivalent norm in the space of given Dirichlet
data, i.e. in [H1/2(Γ )]3.

3.2 Double layer boundary integral operator

As for the single layer potential, for an arbitrary chosen den-
sity function v we now consider the double layer potential

ui (x) = −
∫

Γ

T ∗
i j (x, y)v j (y)dsy for x ∈ R

3\Γ

which is again a solution of the homogeneous linear elasticity
system (1). In the case of a Dirichlet problem, this indirect
ansatz results in a second kind boundary integral equation to
be solved, i.e.
(

1

2
I − K

)

v = gD onΓ. (17)

The solution of (17) is given by the Neumann series

v =
∞∑


=0

(
1

2
I + K

)


gD onΓ,

which is convergent when 1
2 I + K is a contraction. Recall

that we have
(

1

2
I + K

)

vk = 0 for all vk ∈ R.

When using the norm as defined in (16) it is possible to prove
the contraction estimate [31]
∥
∥
∥
∥

(
1

2
I + K

)

v

∥
∥
∥
∥

V −1
≤ cK ‖v‖V −1 for v ∈

[
H1/2(Γ )

]3

(18)

with

cK = 1

2
+
√

1

4
− c0 < 1, (19)

and

c0 = min
0 �=v∈H1/2

R (Γ )

〈Dv, v〉Γ
〈V −1v, v〉Γ > 0. (20)

Note that D is the so-called hypersingular boundary integral
operator of linear elasticity. In addition, H1/2

R (Γ ) is the space
of functions which are orthogonal to the rigid body motions,
in particular for v ∈ H1/2

R (Γ ) we have

〈v, V −1vk|Γ 〉Γ = 0 for all vk ∈ R.
Note that the orthogonality is considered with respect to an
inner product which is induced by the inverse single layer
boundary integral operator V −1.

For several applications, e.g., for the one-equation cou-
pling of finite and boundary element methods, an explicit
knowledge of the constant cK as given in (19) may be useful.
But only for rather few cases it may be possible to find cK

analytically. Instead, a numerical approximation of related
eigenvalue problems is required in general.
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By using (20) we can find c0 = λ2
min as the minimal eigen-

value of the generalized eigenvalue problem

Dv = λ2V −1v in H1/2
R (Γ ).

For v ∈ H1/2
R (Γ ) we introduce the transformation

w = λV −1v ∈ H−1/2
R (Γ ),

in particular we have

〈w, vk〉Γ = λ〈v, V −1vk〉Γ = 0 for all vk ∈ R.
Hence we finally have to solve the operator eigenvalue prob-
lem
(

D 0
0 V

)(
v

w

)

= λ

(
0 I
I 0

)(
v

w

)

(21)

for (v,w) ∈ H1/2
R (Γ ) × H−1/2

R (Γ ). Although the eigen-
value problem (21) can be used to determine the minimal
eigenvalue c0 = λ2

min, and therefore cK , it requires the
use of the hypersingular boundary integral operator D, and
a Galerkin discretization in the appropriate factor spaces
H1/2

R (Γ ) × H−1/2
R (Γ ) is mandatory. Moreover, numerical

algorithms to compute minimal eigenvalues may not be opti-
mal with respect to efficiency and stability, e.g., the inverse
power iteration requires the use of inverse matrices.

Hence we are interested in an approach to determine
cK which does not use the hypersingular boundary integral
operator D, and where only the computation of a maximal
eigenvalue is required. The contraction constant cK of the
contraction estimate (18) can be characterized by using a
Rayleigh quotient, i.e.

c2
K = max

v∈[H1/2(Γ )]3

‖ ( 1
2 I + K

)
v‖2

V −1

‖v‖2
V −1

= max
v∈[H1/2(Γ )]3

〈( 1
2 I + K ′) V −1

( 1
2 I + K

)
v, v

〉

Γ〈
V −1v, v

〉

Γ

,

and therefore cK = λmax is the maximal eigenvalue of the
generalized operator eigenvalue problem
(

1

2
I + K ′

)

V −1
(

1

2
I + K

)

v

= λ2V −1v in
[

H1/2(Γ )
]3
. (22)

Since all eigenvalues are non-negative, we may introduce the
transformations

w = λV −1v, z = V −1
(

1

2
I + K

)

v

which result in the generalized eigenvalue problem
⎛

⎝
V −( 1

2 I + K ) 0
( 1

2 I + K ′) 0 0
0 0 V

⎞

⎠

⎛

⎝
z
v

w

⎞

⎠ = λ

⎛

⎝
0 0 0
0 0 I
0 I 0

⎞

⎠

⎛

⎝
z
v

w

⎞

⎠

which does not require neither the use of the hypersingular
boundary integral operator D, nor the use of any factor space.
Hence we can use standard boundary element approxima-
tions, and a simple power method to find an approximation
of the maximal eigenvalue λmax, and therefore of cK .

From the contraction estimate (18) we finally conclude
the ellipticity estimate

〈Sintv, v〉Γ ≥ (1 − cK )‖v‖2
V −1 for all v ∈ H1/2

R (Γ )

which ensures unique solvability of the boundary integral
equation (9) in the appropriate factor space H1/2

R , i.e. the
solution of the Neumann boundary value problem is only
unique up to the rigid body motions.

Moreover, there also holds the ellipticity estimate, see
[17], for v ∈ H1/2

R (Γ )

1

cK

∥
∥
∥
∥

(
1

2
I + K

)

v

∥
∥
∥
∥

2

V −1
≤
〈
Sintv, v

〉

Γ
. (23)

4 Boundary element methods

In this section we discuss the numerical solution of bound-
ary integral equations which are related to different boundary
value problems as discussed before, by using Galerkin and
collocation schemes. For a more general discussion on the
numerical analysis of boundary element methods and on the
design of fast methods, see, for example, [21,23,29].

4.1 Boundary element spaces

For N ∈ N we consider a sequence of admissible bound-
ary element meshes Γh = ∪N


=1τ
. In the most simple case,
we assume that Γ is polyhedral and that each boundary ele-
ment mesh Γh consists of N plane shape regular triangu-
lar boundary elements τ
 with mid points x∗


 , with the area
Δ
 = ∫

τ

dsx , and with the local mesh size h
 = √

Δ
. With
respect to Γh we introduce, just for simplicity, lowest order
boundary element spaces

S0
h(Γ ) = span{ψ
}N


=1, S1
h(Γ ) = span{ϕi }M

i=1

of piecewise constant basis functions ψ
, and piecewise lin-
ear continuous nodal basis functions ϕi . M is the number of
boundary element nodes, and we assume, that the boundary
element meshes resolve the change in the boundary condi-
tions when considering a mixed boundary value problem.

4.2 Dirichlet boundary value problem

In the case of a Dirichlet boundary value problem we con-
sider the boundary integral equation (5) to be solved. Let
gD

h ∈ [S1
h(Γ )]3 be some approximation of the given Dirich-

let datum, which is obtained either by a simple interpolation,
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or by using a L2 projection. The Galerkin variational formu-
lation of the boundary integral equation (5) is to find th ∈
[S0

h(Γ )]3 such that

〈V th, τh〉Γ =
〈(

1

2
I + K

)

gD
h − N0 f, τh

〉

Γ

for all τh ∈ [S0
h(Γ )]3, which is equivalent to a linear system

of algebraic equations,

Vht =
(

1

2
Mh + Kh

)

g − f N . (24)

Note that Vh and Kh are the Galerkin matrices of the single
and double layer integral operators V and K , respectively,
and Mh is the mass matrix

Mh =
⎛

⎝
M

M
M

⎞

⎠ , M[ j, k] =
∫

Γ

ψk(x)ϕ j (x)dsx ,

and k = 1, . . . , N , j = 1, . . . ,M . For the evaluation of
all Galerkin integrals, see, for example, [15,20–22]. Finally,
f N is the contribution due to possible volume forces, for an
efficient evaluation, see, e.g., [19]. When we approximate
one integral in the computation of the Galerkin matrices by a
simple mid point rule, i.e. for some boundary integral oper-
ator A which is discretized by using piecewise constant test
functions we compute

A[
, k] =
∫

Γ

ψ
(x)(Aψk)(x)dsx ≈ Δ
(Aψk)(x
∗

 ),

this corresponds to a weighted collocation scheme. Although
there is still no general proof for stability available, the
resulting matrices are simple approximations of the related
Galerkin matrices, and numerical examples indicate the
applicability of such an approach. From a mathematical point
of view, however, Galerkin methods are well established also
from a theoretical point. In what follows we will not distin-
guish between Galerkin and collocation discretizations but
we need to assume stability for the latter one.

4.3 Neumann boundary value problem

In the case of a Neumann boundary value problem we con-
sider the mixed formulation (7) where the discretization of
the first equation corresponds to the linear system (24) but
now with unknown Dirichlet data, and where the weak for-
mulation of the Neumann boundary condition reads, for i =
1, 2, 3,
∫

Γ

ti,h(x)ϕ j (x)dsx =
∫

Γ

gN
i (x)ϕ j (x)dsx , j = 1, . . . ,M.

Hence we end up with the linear system
(

Vh − 1
2 Mh − Kh

M

h

)(
t
u

)

=
(− f N

gN

)

. (25)

Since the discrete single layer boundary integral operator Vh

is invertible, instead of (25) we may consider the Schur com-
plement system

M

h V −1

h

(
1

2
Mh + Kh

)

u = gN + M

h V −1

h f N (26)

which is nothing than a boundary element approximation of
the Steklov–Poincaré operator equation (9). Note that

SBEM
h := M


h V −1
h

(
1

2
Mh + Kh

)

(27)

is an in general non–symmetric discrete approximation of the
self–adjoint operator Sint, and this approximation is in gen-
eral not stable. In particular when using piecewise constant
and piecewise linear continuous basis functions to approxi-
mate the boundary stresses and displacements, respectively,
oscillations may appear. In fact, a stable approximation of
the Steklov–Poincaré operator Sint as defined in (8) requires
an appropriate choice of the boundary element spaces to be
used. The most common approach is to define boundary ele-
ment spaces S0

h(Γ ) and S1
H (Γ ) with respect to boundary

element meshes of different mesh size, in particular we need
to assume h < cM H where cM is in general unknown, see,
e.g., [27,32]. From a practical point of view, cM = 1

2 seems
to be sufficient for most applications. In fact, the boundary
element mesh as used to approximate the boundary displace-
ments by using piecewise linear basis functions is refined
once again to define piecewise constant basis functions to
approximate the boundary stresses. An alternative approach
is to use piecewise linear but discontinuous basis functions
for the approximation of the boundary stresses [27] on the
same mesh as for the boundary displacements. In both cases,
however, the number of degrees of freedom increases com-
pared to a naive approximation by using piecewise constant
and piecewise linear basis functions on the same mesh.

Since the Neumann boundary value problem is only
unique up to the rigid body motions one may introduce
an additional stabilization of the discrete Steklov–Poincaré
operator SBEM

h , see, e.g., [16], in the case of a hypersingular
boundary integral equation in the Laplace case.

4.4 Mixed boundary value problem

In the case of a mixed boundary value problem we con-
sider the Steklov–Poincaré operator equation (11) and we
follow the discretization approach as for a Neumann bound-
ary value problem. The structure of the linear systems
(25) and (26) remains the same, with different right hand
sides, and a smaller dimension of the unknown vector u.
Note that for a mixed boundary value problem no stabil-
ization of the discrete Steklov–Poincaré operator is required
as for the Neumann problem. However, to ensure stability
of the discrete Steklov–Poincaré operator SBEM

h again an
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appropriate choice of boundary element spaces is mandatory,
as discussed before.

5 Non-symmetric BEM/FEM coupling

As a model problem we consider a free space transmission
problem to find displacement fields uint and uext satisfying
the equilibrium equations

σ int
i j, j

(
uint

)
+ fi = 0 inΩ ⊂ R

3 (28)

and

σ ext
i j, j

(
uext) = 0 inΩc := R

3\Ω (29)

together with the transmission conditions on Γ

uint = uext, t := σi j

(
uint

)
n j = σi j

(
uext) n j , (30)

where n is the exterior normal vector with respect toΩ which
is defined almost everywhere on Γ = ∂Ω . In addition we
assume the radiation condition

|uext(x)| = O
(

1

|x |
)

as |x | → ∞. (31)

For both the interior and exterior linear elasticity system we
will consider Hooke’s law for the interior stress tensor σ int

i j

and for the exterior σ ext
i j , but with different material parame-

ters (E int, νint) in Ω , and (Eext, νext) in Ωc, respectively.
The variational formulation of the interior problem (28),

when inserting the Neumann transmission condition, is to
find u ∈ [H1(Ω)]3 such that
∫

Ω

σ int
i j

(
uint

)
ei j (v)dx −

∫

Γ

tivi dsx =
∫

Ω

fivi dx (32)

is satisfied for all v ∈ [H1(Ω)]3. On the other hand, the
boundary integral equation which is related to the exterior
Dirichlet boundary value problem is, by using the Dirichlet
transmission condition,

V t =
(

−1

2
I + K

)

uint onΓ. (33)

Since the single layer boundary integral operator V is invert-
ible, we can solve the boundary integral equation (33) to
obtain

t = −V −1
(

1

2
I − K

)

uint =: −Sextuint onΓ, (34)

where

Sext = V −1
(

1

2
I − K

)

is the Steklov–Poincaré operator which is related to the exte-
rior Dirichlet boundary value problem.

When inserting the exterior Dirichlet to Neumann map
(34) into the variational formulation (32) we obtain, by set-
ting u = uint,

∫

Ω

σ int
i j (u)ei j (v)dx+

∫

Γ

(Sextu|Γ )ivi dsx=
∫

Ω

fivi dx (35)

where the related bilinear form

a(u, v) =
∫

Ω

σ int
i j (u)ei j (v)dx +

∫

Γ

(
Sextu|Γ

)

i vi dsx

is elliptic. This ensures unique solvability of the variational
formulation (35), as well as stability and quasi–optimality
of associated Galerkin discretizations. However, the exterior
Steklov–Poincaré operator Sext involves the inversion of the
single layer boundary integral operator V , and therefore a sta-
ble boundary element approximation has to be used. At a first
glance, and as for the interior Neumann boundary value prob-
lem, this approach restricts the choice of finite and boundary
element spaces to be used, see, e.g., [27,32].

Instead of the reduced variational formulation (35) we now
consider a coupled variational formulation which combines
the interior variational problem (32) and the exterior bound-
ary integral equation (33). For this we define the bilinear
form

a(u, t; v, τ ) =
∫

Ω

σ int
i j (u)ei j (v)dx − 〈t, v〉Γ

+ 〈V t, τ 〉Γ +
〈(

1

2
I − K

)

u, τ

〉

Γ

and we consider the variational problem to find (u, t) ∈
[H1(Ω)]3 × [H−1/2(Γ )]3 such that

a(u, t; v, τ ) =
∫

Ω

fivi dx (36)

is satisfied for all (v, τ ) ∈ [H1(Ω)]3×[H−1/2(Γ )]3. Unique
solvability of the variational formulation (36) as well as
stability and quasi–optimality of related Galerkin solutions
follow when ellipticity of the bilinear form a(·, ·) can be
ensured.

Since the finite element part of the bilinear form a(·, ·)
only defines a semi-norm, we first introduce an alternative
representation.

Choosing v = vk ∈ R and τ = 0 as test functions in the
variational formulation (36) we first obtain

−
∫

Γ

tiv
k
i dsx =

∫

Ω

fiv
k
i dx, k = 1, . . . , 6.
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On the other hand, by choosing τ = tk = V −1vk and v = 0
gives

〈t, vk〉Γ = 〈t, V tk〉Γ = 〈V t, tk〉Γ
=
〈(

−1

2
I + K

)

u, tk
〉

Γ

=
〈(

1

2
I + K

)

u, tk
〉

Γ

− 〈u, tk〉Γ = −〈u, tk〉Γ

due to
〈(

1

2
I + K

)

u, tk
〉

Γ

=
〈(

1

2
I + K

)

u, V −1vk
〉

Γ

=
〈

u, V −1
(

1

2
I + K

)

vk
〉

Γ

= 0.

Note that we have used the symmetry K V = V K ′ and ( 1
2 I +

K )vk = 0 for all vk ∈ R. Hence we conclude

〈u, tk〉Γ = 〈 f, vk〉Ω for all vk ∈ R.

For any u ∈ [H1(Ω)]3 we can therefore write

u = ũ +
6∑

k=1

αkv
k, 〈̃u, tk〉Γ = 0 for k = 1, . . . , 6

where the coefficients αk are determined by the solution of
the linear system

6∑

k=1

αk〈vk, V −1v
〉Γ = 〈 f, v
〉Ω for 
 = 1, . . . , 6.

Hence, instead of (32) and (33) we consider a modified varia-
tional formulation to find (̃u, t) ∈ [H1(Ω)]3 ×[H−1/2(Γ )]3

such that

∫

Ω

σ int
i j (̃u)ei j (v)dx +

6∑

k=1

〈̃u, tk〉Γ 〈v, tk〉Γ − 〈t, v〉Γ
= 〈 f, v〉�

and

〈V t, τ 〉Γ +
〈(

1

2
I − K

)

ũ, τ

〉

Γ

= −
6∑

k=1

αk〈vk, τ 〉Γ

are satisfied for all (v, τ ) ∈ [H1(Ω)]3 × [H−1/2(Γ )]3. The
related bilinear form is given by

ã(u, t; v, τ ) =
∫

Ω

σ int
i j (u)ei j (v)dx +

6∑

k=1

〈u, tk〉Γ 〈v, tk〉Γ

−〈t, v〉Γ + 〈V t, τ 〉Γ +
〈(

1

2
I − K

)

u, τ

〉

Γ

.

To ensure ellipticity of the bilinear form ã(·; ·) we consider
for (v, τ ) ∈ [H1(Ω)]3 × [H−1/2(Γ )]3

ã(v, τ ; v, τ ) =
∫

Ω

σ int
i j (v)ei j (v)dx +

6∑

k=1

[〈v, tk〉Γ ]2

+〈V τ, τ 〉Γ −
〈(

1

2
I + K

)

v, τ

〉

Γ

.

We can write the finite element part of the bilinear form ã(·; ·)
as
∫

Ω

σ int
i j (v)ei j (v)dx

= 2μint
∫

Ω

ei j (v)ei j (v)dx + λint
∫

Ω

[div v]2dx

≥ η

[

2μext
∫

Ω

ei j (v)ei j (v)dx + λext
∫

Ω

[div v]2dx

]

= η

∫

Ω

σ ext
i j (v)ei j (v)dx

with

η := min

{
μint

μext ,
λint

λext

}

.

For v ∈ [H1(Ω)]3 be the unique weak solution of the
Dirichlet boundary value problem

σ ext
i j, j (vΓ ) = 0 inΩ, vΓ = v|Γ onΓ,

and we set v̂ := v − vΓ ∈ [H1
0 (Ω)]3. Then there holds the

orthogonality
∫

Ω

σ ext
i j (vΓ )ei j (̂v)dx =

∫

Ω

σ ext
i j (̂v)ei j (vΓ )dx = 0.

Hence we conclude

ã(v, τ ; v, τ ) ≥ η

∫

Ω

σ ext
i j (̂v)ei j (̂v)dx +

6∑

k=1

[
〈v, tk〉Γ

]2

+ η

∫

Ω

σ ext
i j (vΓ )ei j (vΓ )dx + 〈V τ, τ 〉Γ−

〈(
1

2
I + K

)

v, τ

〉

Γ

and it remains to consider the second line. Since vΓ is a
solution of the homogeneous equilibrium equations, by using
Betti’s first formula we have
∫

Ω

σ ext
i j (vΓ )ei j (vΓ )dx =

∫

Γ

Sint/extvΓ · vΓ dsx

where Sint/ext is the Steklov–Poincaré operator which is
related to an interior Dirichlet boundary value problem,
but with the material parameters as defined in the exterior
domain. On the other hand, due to (23)
〈(

1

2
I + K

)

v, τ

〉

Γ

≤ ‖
(

1

2
I + K

)

v‖V −1‖τ‖V

≤
√

cK
〈
Sint/extv, v

〉

Γ
‖τ‖V .
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Hence we conclude, for all γ > 0,

η

∫

Ω

σ ext
i j (vΓ )ei j (vΓ )dx + 〈V τ, τ 〉Γ

−
〈(

1

2
I + K

)

v, τ

〉

Γ

≥ η
〈
Sint/extv, v

〉

Γ
+ ‖τ‖2

V −
√

cK
〈
Sint/extv, v

〉

Γ
‖τ‖V

=
(

η − 1

2
cK

1

γ 2

) 〈
Sint/extv, v

〉

Γ
+
(

1 − 1

2
γ 2

)

‖τ‖2
V

+1

2

(
1

γ

√

cK
〈
Sint/extv, v

〉

Γ
− γ ‖τ‖V

)2

≥
(

η − 1

2
γ 2∗

)(〈
Sint/extv, v

〉

Γ
+ ‖τ‖2

V

)

if

η − 1

2
cK

1

γ 2∗
= 1 − 1

2
γ 2∗ > 0

is satisfied. From this condition we first find

γ 2∗ = 1 − η +
√

[η − 1]2 + cK

and therefore we obtain that

1 − 1

2
γ 2∗ = 1

2

[

1 + η −
√

[η − 1]2 + cK

]

> 0

is satisfied for

η >
1

4
cK .

In particular we finally conclude the ellipticity estimate

ã(v, τ ; v, τ ) ≥ η

∫

Ω

σ ext
i j (̂v)ei j (̂v)dx +

6∑

k=1

[〈v, tk〉Γ ]2

+
(

η − 1

2
γ 2∗

)(〈
Sint/extv, v

〉

Γ
+ ‖τ‖2

V

)

≥ cA
1

{∫

Ω

σ ext
i j (v)ei j (v)dx

+
6∑

k=1

[〈
v, V −1v

〉

Γ

]2 + ‖τ‖2
V

}

with the ellipticity constant

cA
1 = 1

2

[

1 + η −
√

[η − 1]2 + cK

]

> 0

if we assume

min

{
μint

μext ,
λint

λext

}

>
1

4
cK . (37)

Condition (37) is sufficient to ensure ellipticity of the mod-
ified bilinear form ã(·; ·). As a consequence we conclude
stability for any conformal discretization, i.e. for any choice
of standard finite and boundary elements. It turns out, see

[17] in the case of the Laplace equation, that (37) is also
necessary, i.e. for

μext = ημint, λext = ηλint

with

η ≤ 1

4
cK

there exist (v, τ ) ∈ [H1(Ω)]3 × [H−1/2(Γ )]3 such that

ã(v, τ ; v, τ ) = 0.

In this case, the bilinear form ã(·; ·) fails to be elliptic, and
hence we can not ensure stability of the coupled finite and
boundary elements by using the above arguments. However,
in this case we may use the Steklov–Poincaré operator for-
mulation (35) which is elliptic for any combination of mate-
rial parameters. But a stable discretization then requires an
appropriate choice of finite and boundary elements.

6 Conclusions

While the use of the Steklov–Poincaré operator equation
for the solution of mixed boundary value problems requires
an appropriate choice of boundary elements to approximate
the boundary displacements and boundary stresses, the one-
equation coupling of finite and boundary element methods
turns out to be stable for any choice of finite and boundary
elements, when a certain condition on the ratio of the material
parameters in both the interior and exterior domain is satis-
fied. Although in this paper we have not presented an explicit
proof, this condition turns out to be also necessary, see [17].
There, also numerical examples are given for illustration.
While in this paper we have considered the model problem
of a free space transmission problem, this approach can be
extended to analyze the coupling of finite and boundary ele-
ment methods to tackle boundary value problems in bounded
domains [18]. In this case we have to analyze eigenvalue
problems which relate the energy with respect to a bounded
domain with the energy of an associated exterior domain. As
for the computation of the contraction constant, the corre-
sponding eigenvalue problem can be solved by using bound-
ary element methods too. Other possible extensions include
the consideration of more complicated materials, e.g. poro-
elasticity, elastoplasticity, etc., and the design and analysis
of appropriate preconditioned iterative solution strategies for
the resulting linear systems. Some of these topics may be
tackled in future work, also from a numerical point of view,
and the results will be reported elsewhere.
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