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Abstract This paper presents a novel numerical method
for simulating the fluid–structure interaction (FSI) problems
when blood flows over aortic valves. The method uses the
immersed boundary/element method and the smoothed finite
element method and hence it is termed as IS-FEM. The
IS-FEM is a partitioned approach and does not need a
body-fitted mesh for FSI simulations. It consists of three
main modules: the fluid solver, the solid solver and the FSI
force solver. In this work, the blood is modeled as incom-
pressible viscous flow and solved using the characteristic-
based-split scheme with FEM for spacial discretization. The
leaflets of the aortic valve are modeled as Mooney-Rivlin
hyperelastic materials and solved using smoothed finite ele-
ment method (or S-FEM). The FSI force is calculated on the
Lagrangian fictitious fluid mesh that is identical to the mov-
ing solid mesh. The octree search and neighbor-to-neighbor
schemes are used to detect efficiently the FSI pairs of fluid
and solid cells. As an example, a 3D idealized model of aor-
tic valve is modeled, and the opening process of the valve is
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simulated using the proposed IS-FEM. Numerical results
indicate that the IS-FEM can serve as an efficient tool in
the study of aortic valve dynamics to reveal the details of
stresses in the aortic valves, the flow velocities in the blood,
and the shear forces on the interfaces. This tool can also
be applied to animal models studying disease processes and
may ultimately translate to a new adaptive methods working
with magnetic resonance images, leading to improvements
on diagnostic and prognostic paradigms, as well as surgical
planning, in the care of patients.

Keywords Fluid–structure interaction · Immersed
smoothed finite element method · Fictitious fluid ·
Characteristic-based split · Aortic valve

1 Introduction

Valvular heart disease is a significant cause of morbidity and
mortality world-wide. Since the left heart bears a signifi-
cantly higher pressure load than the right heart, leading to
extremely large deformations, diseases of the left-sided aortic
and mitral valves are more common. The total annual mortal-
ity due to valvular heart diseases is more than 20,000 patients
per year in the United States alone [1–3]. Extrapolating cur-
rent trends, it is predicted that about 800,000 people world-
wide will require heart valve replacement annually by the
year 2020 [4], which creates substantial medical and finan-
cial burdens, including for example prosthetic mechanical
or biological valve production. One proposed solution to this
problem is that valves should be repaired rather than replaced
whenever possible [5,6], a practice currently reserved for a
minority of select cases. An effective repair strategy requires
a complete understanding on the cyclic stress level on the
valves and the aortic walls supporting the valves. Presently,
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these dynamics are poorly understood, and not taken into con-
sideration in a clinical context. Therefore, carefully devised
computational approaches capable of capturing the dynamics
of heart valves coupled with the hemodynamics, i.e., a fluid–
structure interaction (FSI) simulation enabled heart valve
solver, will advance clinical decision making paradigms and
ultimately improve valve disease treatments. In addition, it
enables engineers to design effective mechanical or biologi-
cal valves for replacement solutions [7].

A simplified simulation of aortic valve dynamics is a
purely structural analysis [8–11] which produces the defor-
mation and strain/stress distribution on leaflets by applying
a uniform pressure load on the appropriate surfaces. The
assumption of uniform pressure load ignores the distribu-
tion of the normal and shear stresses acting on the valvular
structures induced by the hemodynamics and its effects on
the valve dynamics. However, the leaflets of aortic valve are
very thin and soft, and hence the interaction between the
blood and valvular structures could be very intense and the
results obtained by purely structural analysis could be ques-
tionable in many cases. Therefore, the FSI analysis of aortic
valve is necessary to obtain more accurate pressure distribu-
tion during the dynamic cardiac cycle.

Currently, there are two kinds of method for the FSI sim-
ulations, moving-mesh method, which include the arbitrary
Lagrangian–Eulerian (ALE) schemes [12,13] and the space-
time (ST) method [14–17], and the immersed-type methods.
The moving-mesh schemes have been known to be accurate,
suitable for both compressible and incompressible flows, and
can be used for almost all the cases of FSI simulations. How-
ever, a mesh update method uses a mesh that is moving and
re-meshed. A number of mesh moving methods [18–21] that
reduce the frequency of remeshing have been developed for
FSI computations, including FSI problems with large dis-
placement [20]. Computations that involve contact between
structural surfaces, though challenging, can also be computed
with moving mesh methods, provided that the physics of the
problem does not require the precise computation of the flow
through the gap between the contacting surfaces (and bring-
ing that the flow to zero when there is the actual contact).
Examples of that are 3D fluid–particle interaction computa-
tions with 1,000 spheres falling in a liquid filled tube [22],
with a remeshing frequency that was only about every 10
time steps, and very complex parachute FSI computations in
3D [23], with large deformations of the parachute canopy,
and with contact between the parachutes of a cluster of para-
chutes. However, if the precise value of the gap is important
(which is the case of aortic valves), then the moving-mesh
method would be more difficult to use. Therefore, although
the moving-mesh methods are the most commonly used in
FSI studies [24,25], including the arterial FSI [26–29], it has
not yet been successfully applied to valve models due to the
frequent contact between the structural surfaces. Neverthe-

less, the moving-mesh is still used in commercial software
for aortic valve dynamics, regardless the efficiency [29–31].

The most commonly used method for FSI simulations
of aortic valve is the immersed-type methods, including
immersed boundary method (IBM) [32–35] and fictitious
domain (FD) approach [36–38]. For the FSI problems, the
IBM couples an Eulerian description of the fluid (no body-
fitted mesh is needed) to a Lagrangian description of the
immersed structure. The interaction between fluid and struc-
ture variables is mediated by integral transformation with
Dirac delta function kernels at the interface. The structure
part is modeled as elastic fibers which resist extension, com-
pression, and bending. One major disadvantage of the IBM
is that the elastic fiber assumption limits accurate representa-
tion of immersed flexible structure within the fluid domain.
Thus, the FSI simulations using IBM emphasize more on the
fluid part to predict the blood flow across prosthetic mechan-
ical valves or natural valves.

The fluid and structure part are also solved independently
in FD method. This approach is based on the imposition of
velocity constraints associated with moving boundaries by
means of Lagrange multipliers [36]. The basic idea of the FD
method is to extend the fluid problem defined in real physical
fluid domain (exclude the immersed structure) to a problem
defined in the whole computation domain (the sum of real
physical domain of both fluid and structure), while still forc-
ing the velocity boundary conditions. However, similar as the
IBM, one major limitation of the FD method lies in the mod-
eling of structure part. Although the structure part is modeled
as the Neo-Hookean material in [37,38], the body forces and
the inertia terms are neglected during FSI computation.

The immersed finite element method (IFEM) [39–41] pro-
vides an approach to overcome the modeling problems of
structure part in both IBM and FD method. With finite ele-
ment formulations for both fluid and solid domain, the sub-
merged structure is solved more realistically and accurately.
The key idea of the IFEM is to regard the fluid and solid as one
continuum, leading to a unique way for deriving the physical
FSI force. The interaction is realized by interpolating the FSI
force from solid to fluid, and interpolating the velocity from
fluid back to solid. Unlike the IBM or FD methods where the
interaction occurs along the interface of the two domains, the
interpolation takes place on the whole overlapping domain.
A possible disadvantage of IFEM is that the accuracy may be
dependent on the mesh size ratio between the fluid and solid
domain since it could affect the interpolation of FSI force.

As inspired by the above mentioned immersed-type meth-
ods, a novel Immersed Smoothed Finite Element Method
(IS-FEM) [42,43] is developed for FSI simulation. In the IS-
FEM, the fluid and structure is discretized using T-type mesh
(triangular for 2D and tetrahedral for 3D) and solved inde-
pendently, and the fictitious fluid is introduced for evaluating
interaction between fluid and structure. Unlike the IFEM, the
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interaction is realized by interpolating velocity from struc-
ture to fluid, and interpolating pressure from fluid to fictitious
fluid which has the same configuration as structure to calcu-
late the FSI force. We will introduce the interaction process
in detail in the following sections.

There are several distinguished features of the newly
developed IS-FEM making it extremely suitable for FSI sim-
ulations of aortic valve, which has complex geometry and
very large movement of soft and incompressible tissues (leaf-
lets). First, the T-type mesh has much better adaptation to
complicated geometry than the other types of mesh. Second,
the use of S-FEM [44–46] improves the accuracy of standard
FEM by overcome the “overly stiff” phenomenon and pro-
vides a stable and efficient way (named smoothing-domain-
based selective FS/NS-FEM-T4 model [45,46]) to remove
volumetric locking in nearly incompressible solids. Third,
the use of FD makes the interaction process more accurate,
robust and insensitive to the mesh size ratio between fluid
and structure.

In this paper, a 3D version of IS-FEM is developed for
the FSI simulation of aortic valves. The blood is modeled as
the isothermal incompressible viscous flow and solved using
the characteristic-based-split (CBS) algorithm [47–49]. The
leaflets of aortic valve are modeled as isotropic nearly incom-
pressible Mooney-Rivlin hyperelastic material and solved
using explicit time integration based on central difference
algorithm. The paper has five more sections. In Sect. 2, the
governing equations of the FSI systems with fictitious fluid
domain are briefly summarized. The structural solver based
on S-FEM and explicit time integration is described in Sect. 3.
The detailed procedure for IS-FEM is presented in Sect. 4.
In Sect. 5, an ideal aortic valve is modeled and its FSI simu-
lations are carried out using the proposed IS-FEM. The con-
clusions are drawn in the last section.

2 Governing equations of IS-FEM

2.1 Fictitious domain and FSI force

In this section, we will give the governing equations for
the general 3D FSI problems, which describe a moving and
deformable solid body with a finite volume fully immerses
in incompressible viscous fluid flow. As shown in Fig. 1a,
the function χ (Xs, t) describes the solid changing from the
initial configuration 0�s at time t = 0 to the current config-
uration �s at time t . The material and spatial coordinates of
the solid particles are denoted by Xs and xs, respectively. The
real fluid domain is denoted by �f , which is not overlapped
with �s but attached at the fluid–solid interface �fs. �fs is a
part of the boundary of �f and is naturally identical to the
closed boundary �s of �s. In the real FSI system, no fluid
exists in the volume which the solid �s occupies. Due to the

(a) Configurations of fluid and solid domains 

(b) Configuration of fictitious fluid domain 

Fig. 1 Illustration of fluid, structure and fictitious domains

motion of the solid, �f and �s are time-varying domains.
In this paper, the superscripts “f” and “s” denote fluid and
solid/structure, respectively.

With the assumption of conventional non-slip condition
on the fluid–solid interface �fs, the equations of motion of
fluid and solid can be written as:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρf Dvf
i

Dt
= divσ f

i j + ρf gi , xf ∈ �f

ρs Dvs
i

Dt
= divσ s

i j + ρsgi , xs ∈ �s

vf
i = vs

i , on �fs

f s,FSI
i = − f f,FSI

i , on �fs

(1)

where ρ denotes the density, vi the velocity, and σi j the Cau-
chy stress. For three-dimensional problems, i, j = 1, 2, 3.
The boundary conditions for the fluid and structure unrelated
to the FSI are omitted for the sake of simplicity. The local
form of FSI force exerted on the fluid particles xf ∈ �fscan
be determined as follows,

f f,FSI
i = ρf Dvf

i

Dt
− divσ f

i j − ρf gi , with vf
i = vs

i on �fs (2)
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where σ f
i j is calculated using the velocity vf

i = vs
i on FSI

boundary �fs. If �fs can be explicitly depicted for the fluid,
the calculation of FSI force is quite straightforward. How-
ever, �fs is implicit and time-varying in the immersed-type
methods, and thus require a proper way to evaluate the FSI
force.

In order to employ the numerical methods using Eulerian
mesh and coordinates to solve the fluid flow, we have to con-
struct a time-independent computational fluid domain, which
satisfies the governing equations in Eq. (1). For this purpose,
we introduce a fictitious fluid domain �fc = �s with a closed
boundary �fc = �s = �fs, as shown in Fig. 1b. �fc is filled
with the so-called fictitious fluid, which is incompressible
viscous fluid in this research. During the FSI process, the
equations of motion of the fictitious fluid can be written in
the same form as Eq. (1):

ρfc Dvfc
i

Dt
= divσ fc

i j + ρfcgi + f fc
i , xfc ∈ �fc (

�fc = �s)

(3)

Here, an additional body force f fc
i is given to balance the

momentum equation. In the above equation, the properties
of fictitious fluid and the continuous velocity field need to be
determined. Thus, we add two assumptions to the fictitious
flow:

(1) The fictitious fluid is assumed to have the same proper-
ties as the real fluid, i.e., we have ρfc = ρf for density,
and μfc = μf for the dynamic viscosity. This assump-
tion makes the domain �f∗ = �f ∪ �fc filled with the
homogeneous fluid.

(2) The fictitious fluid particles are assumed to be
“bounded” to the solid particles all the time, as shown
in Fig. 1b. This assumption gives the velocity field
vfc

i = vs
i for the fictitious fluid in �fc. Obviously, we

have vfc
i = vs

i = vf
i on the boundary �fc, leading to a

continuous velocity field in the domain �f∗.

Under the second assumption, the motion of the fictitious
fluid particles is enforced to be consistent with that of the
bounded solid particles. Hence, a pair of action and reaction
forces arises, denoted by f f,FSI

i and f s,FSI
i . f f,FSI

i works as
a body force replacing f fc

i in Eq. (3) as follows,

f f,FSI
i = ρfc Dvfc

i
Dt

− divσ fc
i j − ρfcgi , with vfc

i = vs
i in �fc

(4)

It should be noted that the FSI force in Eq. (4) is defined in
�fc, which is different from the FSI force in Eq. (2) defined
only on �fc. The equation of motion of the fictitious fluid in
the integral form can be written as
{∫

�fc ρf Dvfc
i

Dt
d� = ∫

�fc divσ fc
i j d� + ∫

�fc ρf gi d� + F f,FSI
i

vfc
i = vs

i , in �fc
(5)

where

F f,FSI
i =

∫

�fc

f f,FSI
i d� (6)

Combined with the integral form of equation of motion
for real fluid, we have
∫

�f

ρ f Dvf
i

Dt
d� +

∫

�fc

ρf Dvfc
i

Dt
d� =

∫

�f

divσ f
i j d� +

∫

�fc

divσ fc
i j d�

+
∫

�f

ρf gi d� +
∫

�fc

ρf gi d� + F f,FSI
i (7)

Since the two domains �f and �fc are non-overlapping and
only attached at �fc, and filled with homogeneous fluid, the
motion of equations in �f∗ can be expressed as
{ ∫

�f∗ ρf Dvf∗
i

Dt
d� = ∫

�f∗ divσ f∗
i j d� + ∫

�f∗ ρf gi d� + F f,FSI
i

vf∗
i = vs

i , in �fc
(8)

And the FSI force can be calculated as

f f,FSI
i = ρf Dvf∗

i

Dt
− divσ f∗

i j − ρf gi , with vf∗
i = vs

i in �fc

(9)

2.2 Governing equations for FSI system

According to the above discussion, we can conclude that
there are three sets of equations of the proposed IS-FEM:
(1) the Navier–Stokes equations for incompressible viscous
flow; (2) equations of motion for nonlinear solid, which is
described by total Lagrangian in this research; (3) equations
for the calculation of FSI force. In the following text, the
superscript “f*” is replaced by “f”.

For the incompressible viscous fluid, the differential form
of Navier–Stokes equations can be written as
⎧
⎪⎨

⎪⎩

∂vf
i

∂x f
i

= 0

ρf ∂vf
i

∂t + ρf ∂

∂x f
j

(
vf

i v
f
j

)
= − ∂pf

∂x f
i

+ ∂τ f
i j

∂x f
j

+ ρf gi

(10)

where pf represents the fluid pressure, and τ f
i j is the devia-

toric stresses as

τ f
i j = μf

(
∂vf

i

∂x f
j

+ ∂vf
j

∂x f
i

− 2

3

∂vf
k

∂x f
k

δi j

)

(11)

where δi j is the Kroneker delta. The boundary conditions can
be described as
{

gf
vbc (vi ) = vf

i − v̄f
i = 0, on �f

v for velocity
gf

pbc (p) = pf − p̄f = 0, on �f
p for pressure

(12)

and the initial conditions are

vf
i = 0v̄f

i , pf = 0 pf at t = 0 (13)
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Fig. 2 Illustration of
node-based and face-based
smoothing domain

(a) node-based (b) face-based

Here, the values with •̄ denote the prescribed field variable
values for boundary and initial conditions.

For the nonlinear solid, the equations of motion can be
written as

ρsüs
i = ∂ Ps

j i

∂ X s
j

+ ρsgi (14)

where Ps
j i is the first Piola-Kirchhoff stress of the solid, and

us
i and üs

i are the displacement and acceleration of the solid,
respectively. The boundary conditions of the solid can be
written as
{

ns
jσ

s
j i = T̄ s

i on �s
T for load/stress

vs
i = v̄s

i on �s
v for velocity

(15)

and the initial conditions are

Ps
j i = 0 P̄s

j i , and vs
i = 0v̄s

i at t = 0 (16)

where �s
T is the natural boundary of the solid with outward

normal ns
j and the prescribed traction force T̄ s

i , and �s
v is the

velocity boundary.
For the FSI force calculation, we have the conditions for

velocity and forcing as
{

vf
i = vs

i , in �fc for velocity
f f,FSI
i = − f s,FSI

i , in �s for force
(17)

and f f,FSI
i is calculated as

f f,FSI
i = ρf ∂vf

i

∂t
+ ρf ∂

∂x f
j

(
vf

i v
f
j

)

+∂pf

∂x f
i

− ∂τ f
i j

∂x f
j

− ρf gi , in �fc (18)

In the numerical simulations, the fluid domain �f and
solid domain �s are discretized by two different sets of
meshes, respectively. These two sets of meshes are not
required to coincide. It is also not necessary to adopt the
same type of the element. In this work, only the simplest
linear element, 4-node tetrahedral (T4) element is employed
for both fluid and solid parts. Since the CBS algorithm for
incompressible fluid is quite standard, we will not elaborate

on that in this paper. In the following section, we will briefly
introduce how to solve 3D nonlinear solid using S-FEM.

3 S-FEM for solving nonlinear solid dynamics

3.1 Overview of smoothing operation in S-FEM

For three-dimensional problems, we use 4-node tetrahedral
elements to discretize the solid domain. There are two kinds
of S-FEM for 3D problems: the node-based smoothed FEM
(NS-FEM) and the face-based smoothed FEM (FS-FEM).
The node-based smoothing domain is created by connecting
the midpoint of edges, the centroid of faces, and the cen-
troid of elements around the node of interest. A part of the
node-based smoothing domain around node A is shown in
Fig. 2a (the polyhedron AM1C1 M2C2 M3C3 O), where only
a partition of element ABC D is plotted for clearance. The
face-based smoothing domain is created by connecting the
nodes of the face and the centroids of the elements on both
sides of the face of interest, as shown in Fig. 2b (the polyhe-
dron O1 BC DO2).

For the IS-FEM, the calculation domain is discretized into
N s

ele elements with N s
n nodes, and a set of non-overlapping

smoothing domains are created based on the elements. The
material coordinates of the solid nodes are denoted by Xs

I i .
In both FEM and S-FEM, the displacement us

i and velocity
vs

i are interpolated using the standard FEM procedure:

us
i =

∑

I

0
s
I us

I i , vs
i =

∑

I

0
s
I v

s
I i (19)

where 0
s
I is the shape function calculated at the initial con-

figuration. In S-FEM, the spatial derivatives are calculated
based on the gradient smoothing method. The smoothed dis-
placement gradient in 0�sd

i (which denotes the smoothing
domain at initial configuration associated with a material
point Xs

isd) can be expressed as:

ūs
i, j

(
Xs

isd

) =
∫

0�sd
i

us
i, j

(
Xs)W

(
Xs; Xs − Xs

isd

)
d� (20)
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where us
i, j = ∂us

i /∂ X s
j is the gradient of the displacement

field. In this research, we use the piecewise constant (Heav-
iside) function for the gradient smoothing operation:

W
(
Xs; Xs − Xs

isd

) =
{

1/V sd
i , Xs ∈ 0�sd

i
0, Xs /∈0�sd

i
(21)

where V sd
i is the volume of the smoothing domain 0�sd

i . Inte-
grating Eq. (20) by part and considering Eqs. (19) and (21),
we have

ūs
i, j

(
Xs

isd

) =
∑

I

⎛

⎜
⎜
⎝

1

V sd
i

∫

�sd
i

0
s
I

(
Xs

isd

) 0nsd
j d�

⎞

⎟
⎟
⎠us

I i

=
∑

I

0
̄s
I, j

(
Xs

isd

)
us

I i (22)

where 0
̄s
I, j is the smoothed derivatives of shape function.

In the finite deformation analysis, the deformation gra-
dient, Fi j = ui, j + δi j , is the primary strain measure. The
smoothing operation on the deformation gradient Fi j yields
the following smoothed deformation gradient F̄i j :

F̄ s
i j =

∑

I

0
̄s
I, j

(
Xs

isd

)
us

I i + δi j (23)

Using F̄i j , one can easily construct the smoothed Cauchy-
Green deformation tensor, which will be shown in the fol-
lowing section.

Beside the smoothing operation over the strain field, the
other operations of S-FEM are almost the same as the stan-
dard FEM, we will not elaborate on that in this paper.

3.2 Calculation of hyperelastic materials using S-FEM

The leaflets of aortic valve are usually modeled as rubber-like
hyperelastic materials. The strain energy density function of
nearly incompressible Mooney-Rivlin materials can be writ-
ten as

W = c10
(
Ī1 − 3

)+ c01
(
Ī2 − 3

)+ κ

2
(J − 1)2 (24)

where c10 and c01 are empirically determined (usually fitted
from experimental data), and Ī1, Ī2 and Ī3 are three reduced
invariants of right Cauchy-Green deformation tensor C =
FTF:

Ī1 = I1 I −1/3
3 , Ī2 = I2 I −2/3

3 , J = I 1/2
3 (25)

with

I1 = trC, I2 = 1

2

{
(trC)2 + tr

(
C2
)}

, I3 = det (C) (26)

κ is the bulk modulus, which can be expressed as:

κ = 2 (c10 + c01)

1 − 2υ
(27)

The Cauchy–Lagrangian strain tensor is defined as

E = 1

2
(C − I) (28)

The second Piola-Kirchhoff (PK2) stress can be calculated
as:

Si j = ∂W

∂ Ei j
= 2

∂W

∂Ci j
(29)

Using the strain energy density function in Eq. (24), we have

Si j = 2
(

c10 I −1/3
3 + c01 I −2/3

3 I1

)
δi j − 2c01 I −2/3

3 Ci j

−
(

2

3
c10 I1 I −4/3

3 + 4

3
c10 I2 I −5/3

3

)(
C−1

)

i j

+κ (J − 1) J
(

C−1
)

i j
(30)

The first line in the above equation denotes the deviatoric
component of the stress tensor, and the second line denotes
the volumetric component. For incompressible materials, the
third term would vanish because I3 = 1. For nearly incom-
pressible materials, the “volumetric locking” will appear
since υ ≈ 0.5.

We have known that the NS-FEM is naturally immune
from volumetric locking but is overly soft. Therefore, we use
the smoothing-domain-based selective FS/NS-FEM, which
combines the immunity of NS-FEM and the “stiff side” of FS-
FEM, to overcome the volumetric locking problem of nearly
incompressible materials. In this research, we use the face-
based smoothing domain to calculate the deviatoric stress in
the first line of Eq. (30) and use the node-based smoothing
domain to calculate the volumetric stress in the second line
of Eq. (30).

The internal nodal force can be calculated from the PK2
stress in Eq. (29) as

f int

[

I =
∫

0�sd
i

0BT
I {S} d� (31)

where 0BI is the smoothed strain-displacement matrix, and
can be written as

0BI =0 BI 0 +0 BI 1 (32)

We can see that 0BI is the sum of two parts: 0BI 0 denotes
the initial state and 0BI 1 denotes the increment during defor-
mation. Both 0BI 0 and 0BI 1 are block matrices with the fol-
lowing forms:
⎧
⎨

⎩

0BI 0 =
[

0BJ1
I 0, . . . ,

0BJns
I 0

]

0BI 1 =
[

0BJ1
I 1, . . . ,

0BJns
I 1

] (33)

where Ji denotes the i th supporting node of the smoothing
domain, and ns is the number of supporting nodes. If the
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strain is denoted as ε = {
εx εy εz εyz εxz εxy

}T, for the
i th block, we have

0BJi
I 0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂0
̄s
Ji

∂ Xs 0 0

0
∂0
̄s

Ji

∂Y s 0

0 0
∂0
̄s

Ji

∂ Z s

0
∂0
̄s

Ji

∂ Z s

∂0
̄s
Ji

∂Y s

∂0
̄s
Ji

∂ Z s 0
∂0
̄s

Ji

∂ X s

∂0
̄s
Ji

∂Y s

∂0
̄s
Ji

∂ X s 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)

0BJi
I 1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂0
̄s
Ji

∂ X s

∂xs
Ji

∂ X s

∂0
̄s
I

∂ X s

∂ys
Ji

∂ X s

∂0
̄s
I

∂ X s

∂zs
Ji

∂ X s

∂0
̄s
I

∂Y s

∂xs
Ji

∂Y s

∂0
̄s
I

∂Y s

∂ys
Ji

∂Y s

∂0
̄s
I

∂Y s

∂zs
Ji

∂Y s

∂0
̄s
I

∂ Z s

∂xs
Ji

∂ Z s

∂0
̄s
I

∂ Z s

∂ys
Ji

∂ Z s

∂0
̄s
I

∂ Z s

∂zs
Ji

∂ Z s

∂0
̄s
I

∂Y s

∂xs
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂xs
Ji

∂Y s

∂0
̄s
I

∂Y s

∂ys
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂ys
Ji

∂Y s

∂0
̄s
I

∂Y s

∂zs
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂zs
Ji

∂Y s

∂0
̄s
I

∂ X s

∂xs
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂xs
Ji

∂ X s

∂0
̄s
I

∂ X s

∂ys
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂ys
Ji

∂ X s

∂0
̄s
I

∂ X s

∂zs
Ji

∂ Z s + ∂0
̄s
I

∂ Z s

∂zs
Ji

∂ X s

∂0
̄s
I

∂ X s

∂xs
Ji

∂Y s + ∂0
̄s
I

∂Y s

∂xs
Ji

∂ X s

∂0
̄s
I

∂ X s

∂ys
Ji

∂Y s + ∂0
̄s
I

∂Y s

∂ys
Ji

∂ X s

∂0
̄s
I

∂ X s

∂zs
Ji

∂Y s + ∂0
̄s
I

∂Y s

∂zs
Ji

∂ X s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(35)

with xs
Ji
, ys

Ji
and zs

Ji
denote the displacement of supporting

node Ji in x-, y-, and z-direction, respectively.

4 Procedures for IS-FEM

There are three major steps for the FSI simulation using
IS-FEM, the fluid solver, the structure solve, and the FSI
force calculation. In this section, we will give the sketches
of the three parts.

4.1 CBS for incompressible fluid flow

There are three steps in CBS method. In the first step, the
pressure term from the momentum equation will be dropped
and an intermediate velocity will be calculated. In the second
step, the pressure will be updated in an implicit form. In the
third step, the intermediate velocity will be corrected using
the pressure terms. In CBS, the velocity vf

i and pressure pf

are interpolated using the standard FEM procedure

vf
i =

∑

I


f
I v

f
I i , p f =

∑

I


f
I pf

I (36)

where 
f
I is the shape function of the fluid node I . Since

the immersed S-FEM is used, the spatial discretization of

fluid domain is unvarying during computation. The temporal
discretization of CBS for incompressible fluids can be sum-
marized as following.

Step I: on the intermediate momentum calculation

M f
I J

∗vf
J i −n vf

J i

�t
= −nC f

I J
nvf

J i

−�t

2
n K f

I J
nvf

J i − n F f
I i + n f f,τ

I i + n f f,g
I i

= ∗ RH Sf
I i +n f f,g

I i (37)

Step II: on the pressure calculation

H f
I J

n+1 pf
J = − 1

�t
Qf

I J i
∗vf

J i (38)

Step III: on the momentum correction

M f
I J

n+1vf
J i − nvf

J i

�t
= n+1 RH Sf

I i (39)

= M f
I J

∗vf
J i − nvf

J i

�t
− Gf

I J i
n+1 pf

J

where

M f
I J =

∫

�f

ρf
f
I 


f
J d�, nC f

I J =
∫

�f

ρf
f
I

∂
(

nvf
j 


f
J

)

∂x f
j

d�,

n K f
I J =

∫

�f

∂
(

nvf
k


f
J

)

∂x f
k

ρf
∂
(

nvf
j 


f
J

)

∂x f
j

d�, n F f
I i =

∫

�f

∂
f
J

∂x f
j

nτ f
i j d�,

n f f,τ
I i =

∫

�f


f
I

nτ f
i j n

f
j d�, n f f,τ

I i =
∫

�f


f
I ρ

f gi d�,

H f
I J =

∫

�f

∂
f
I

∂x f
i

∂
f
J

∂x f
i

d�, Qf
I J i =

∫

�f

ρf
f
I
∂
f

J

∂x f
i

d�,

Gf
I J i =

∫

�f


f
I
∂
f

J

∂x f
i

d� (40)
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The matrices M f
I J and H f

I J are invariant during computation
and only need to assemble once at the beginning. The mass
matrix M f

I J in the above equations is lumped. The pressure
in step II is solved using preconditioned conjugate gradient
(PCG) scheme. The above semi-implicit CBS algorithm is
conditionally stable, and the critical time step is determined
by

�tcr = min

(
h

|u| ,
h2

υ

)

(41)

where h is the size of the smallest element and υ is the kine-
matic viscosity.

4.2 Dynamics of nonlinear solids

In this research, the central difference method is used for
the explicit time integration for nonlinear solids. For the FSI
simulation of aortic valves, the equations of motion at time
step n for leaflets can be written as

Msüs = fext (us, nt
)− f int (us, nt

)
(42)

where fext and f int denote the nonlinear external and internal
nodal force. For the aortic valve, we have

fext (us, nt
) = fs,FSI (us, nt

)+ fs,contact (us, nt
)

(43)

where fs,contact (us, nt) denotes the contact force due to the
interaction between leaflets during moving. It should be
noted that contact force considered here is only used to pre-
vent penetrations between leaflets. Therefore, only the nor-
mal contact force is calculated, and the tangential contact
force (friction force) is neglected.

The implementation of central difference method is quite
standard and simple, and we will not elaborate on that here.
We can see the most critical parts of explicit solid dynam-
ics are the calculations of the internal and external nodal
forces. The calculation of internal nodal forces is introduced
in Sect. 3.1 (see Eq. (31)), and the calculation of external
nodal forces, i.e., the FSI forces, will be introduced in the
following section.

4.3 FSI procedure

In Sect. 2, we have made it clear that the interaction between
fluid and structure is realized via the fictitious fluid domain,
which is identical to the current configuration of the struc-
ture. Thus, the solution scheme for IS-FEM could be divided
into three main modules: (1) solving solid part with FSI force
conditions, i.e., f s,FSI

i = − f f,FSI
i ; (2) solving fluid part with

FSI velocity conditions, i.e., vf
i = vs

i , for x ∈ �fc; and (3)
identifying the FSI conditions.

4.3.1 Calculation of FSI forces

According to Eqs. (3) and (18), the FSI force can be obtained
by solving the fictitious fluid domain n+1�fc which uses the
same spatial discretization as the solid part at current con-
figuration n+1�s. Since the fictitious fluids have the same
properties as real fluids, we can use the same CBS scheme
to solve the N-S equations. In standard CBS, we calculate
the fluid variables at n+1t from the variables at nt and the
corresponding boundary conditions. But when we calculate
f f,FSI
i from Eq. (18), the fluid variables at both nt and n+1t in

n+1�fc are already known from the calculation of the whole
fluid domain �f∗. The nodal velocities are determined from
the assumption that the fictitious fluid particles are always
bonded to the corresponding solid particles, thus we have
n+1vfc

I i = n+1vs
I i and n+1vfc

I i = n+1vs
I i . For pressure variable

n+1 pfc
I , since the meshes of �f∗ and n+1�fc are not coinci-

dent, we have to interpolate the pressure from the fluid mesh
to the solid mesh (also the mesh of fictitious mesh).

When we solve the fictitious fluid using CBS from nt to
n+1t without f f,FSI

i , the three steps becomes as following.
Step I: Calculation of the intermediate momentum keeps

the same form as Eq. (37), and we have

M fc
I J

∗vfc
J i − nvfc

J i

�t
= −nC f

I J
nvfc

J i − �t

2
n K f

I J
nvfc

J i

−n F fc
I i + n f fc,τ

I i + n f fc,g
I i

= ∗ RH Sfc
I i + n f fc,g

I i (44)

Step II: Calculation of pressure. The pressure is interpo-
lated from n+1 pf

I calculated on the fluid domain �f∗ using
standard FEM interpolation as following.

n+1 pfc
I =

∑

J


f
J

(
n+1xfc

I

)
n+1 pf

J (45)

where 
f
J is the shape function of fluid node J in the element

which covers the fictitious particle (solid node). Therefore,
we need to find the interaction pair from fluid to solid at each
time step, and we will introduce that in the following section.

Step III: The momentum correction also keeps the same
form as Eq. (39)

M fc
I J

n+1ṽfc
J i −nvfc

J i
�t = n+1 RH Sfc

I i

= M fc
I J

∗vfc
J i −nvfc

J i
�t − Gfc

I J i
n+1 pfc

J

(46)

In the above equation, n+1ṽfc
J i is the calculated nodal velocity

without FSI force f f,FSI
i . Apparently, n+1ṽfc

J i is different from
n+1vfc

J i = n+1vs
J i , and thus the FSI force f f,FSI

i take effects
to enforce the velocity condition (gravity force is ignored):

123



Comput Mech (2012) 50:789–804 797

n+1 f f,FSI
I i = M fc

I J

n+1vfc
J i − n+1ṽfc

J i
�t

= M fc
I J

(
n+1vfc

J i − nvfc
J i

)
−
(

n+1ṽfc
J i − nvfc

J i

)

�t

= M fc
I J

(
n+1vfc

J i − nvfc
J i

)

�t
− ∗ RH Sfc

I i + Gfc
I J i

n+1 pfc
J (47)

The FSI force on the solid part which serves as the external
nodal force can solved explicitly as following:

n+1 f s,FSI
I i = −n+1 f f,FSI

I i

= −M fc
I J

(
n+1vfc

J i − nvfc
J i

)

�t
− nC f

I J
nvfc

J i

−�t

2
n K f

I J
nvfc

J i − n F fc
I i + n f fc,τ

I i − Gfc
I J i

n+1 pfc
J (48)

4.3.2 Search the FSI pairs

Since the leaflets driven by blood move in a large range within
the aortic valve, we need to find the FSI pairs for interpola-
tion at every time step. During the computation, we have to
find two types of FSI pairs: (1) the FSI pairs used to inter-
polate velocity from solid to fluid, i.e., find the fluid nodes
covered by solid elements, denoted as S-F FSI pairs; and (2)
the FSI pairs used to interpolate pressure from fluid to solid
(fictitious fluid), i.e., find the solid nodes covered by fluid
elements, denoted as F-S FSI pairs. For the FSI simulations
of aortic valve, there are a large number of modes for both
fluid and solid part, therefore, it will take extremely long time
to search the FSI pairs if only the simple brute-force search
is used.

The most distinguished feature of IS-FEM is that the fluid
mesh keeps unchanged during the computation. This feature
can greatly improve the searching efficiency since the data
structure of the fluid mesh is also unchanged and only need
to generate once at the beginning.

For the searching of F-S FSI pairs, we use the fast-
est known vicinity algorithm, named neighbor-to-neighbor
scheme [50]. The shape functions (volumetric coordinates)
are used to make the search jump from one element to its
neighbor in a definite path. First, we need to get the adja-
cency information for each face in each element, i.e., to find
the element indices on both sides of each face. In the IS-FEM,
the fluid part is discretized using the tetrahedral elements, and
thus for a solid node xs

P , the shape function 
f
I

(
xs

P

)
can be

calculated as


f
I

(
xs

P

) = VI
(
xs

P

)

V
(49)

where V is the volume of fluid element, and VI
(
xs

P

)
is the

volume of the tetrahedral constituted of solid node and the
fluid nodes of the element except node I . If the solid node is
within the fluid element, we have

∑

a=I,J,K ,L


f
a

(
xs

P

) = 1 and 
f
a

(
xs

P

) ≥ 0 (50)

If the solid node is not within the current fluid element, the
verification will be carried out for the next element which
shares the face J − K − L with


f
I

(
xs

P

) = min
(

f

a

(
xs

P

)
, a = I, J, L , K

)
(51)

The above equation indicates that the next element shares
the face opposite to the node with minimal shape function.
In the IS-FEM, the solid is fully immersed in the fluid (that
means every solid node is covered by a corresponding fluid
element) and moves in a continuous pattern, therefore, if we
choose the element set in the previous step as the initial status
for the search of F-S FSI pairs, it only needs 1 or 2 steps to
find the next fluid element.

Although the neighbor-to-neighbor scheme is extremely
fast, there are some limitations of this method. First, the adja-
cency information must be available. So it is suitable for the
mesh with fixed topology or we have to design algorithm
and data structure to update the adjacency information. Sec-
ond, the method is especially suitable for the convex search
domain. When the domain become concave or has gaps or
holes, the method need a lot extra operations and become
less efficient. Therefore, this method is not suitable to detect
the S-F FSI pairs for the aortic valve simulation since the
leaflets in the valve are concave, thin, and much smaller than
the fluid domain.

In this research, we use a more general method, the octree
search, to find the S-F FSI pairs. First, the octree is created
using the coordinates of fluid nodes. The cube size at the fin-
est level of the tree is determined by the size of the minimal
fluid element to obtain an appropriate number of nodes in
the cube. Then we loop all the solid elements to detect which
fluid node is covered by the current element. For a fluid node
xf

P , we still use the Eq. (50) as the criterion. However, the
shape function should be changed to 
s

I

(
xf

P

)
in the solid

element at current configuration.
After the FSI pairs are obtained, the value at the covered

node can be obtained using the standard FE interpolation as
following:
⎧
⎪⎨

⎪⎩

n+1vf
Pi = ∑

a=I,J,K ,L

n+1
s
a

(
xf

P

)
n+1vs

ai

n+1 pfc
P = ∑

a=I,J,K ,L

f

a

(
xs

P

)
n+1 pf

a
(52)

4.4 Full procedure of FSI simulation using IS-FEM

Now, we can summarize the procedure of IS-FEM as follow-
ing.

(1) Preprocessor of IS-FEM

(1.1) Import mesh data of fluid and solid domain;
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Fig. 3 Geometric model of an
ideal aortic valve

(a) Full valve (b) 1/3 of the valve 

(1.2) Calculate FE matrices for fluid: Mf , Hf , �f and
�f

,i ;
(1.3) Calculate FE matrices for solid: Ms and 0BI 0;
(1.4) Create octree from fluid nodes for FSI searching;
(1.5) Obtain adjacency information from fluid elements

for FSI searching;

(2) Set initial and boundary conditions for both fluid and
solid.

(3) For each time step:

(3.1) Solid solver using central difference method with
total Lagrangian description:

I. Update velocity and displacement at tn+1/2

⎧
⎨

⎩

(vs)n+1/2 = (vs)n + �t
2 (as)n

(us)n+1/2 = (us)n + �t (vs)n

(xs)n+1 = (xs)0 + (us)n+1/2
(53)

II. Calculate internal nodal forces Fs,int at current
configuration using equations in Sect. 3 (S-FEM
for hyperelastic materials).

III. Detect contact and calculate contact force Fs,contact .
The external nodal forces can be written as

Fs,ext = Fs,contact + Fs,FSI (54)
IV. Calculate acceleration and velocity at tn+1

{
(as)n+1 = (Ms)−1 (Fs,ext − Fs,int

)

(vs)n+1 = (vs)n+1/2 + �t
2 (as)n+1 (55)

V. Apply boundary conditions.

(3.2) Find FSI pairs at current configuration (xs)n+1

I. Find F-S FSI pairs using neighbor-to-neighbor
scheme;

II. Find S-F FSI pairs using octree search.
(3.3) CBS fluid solver

I. Interpolate FSI velocity conditions from solid
results based on S-F FSI pairs;

II. Apply velocity and pressure boundary conditions;

Table 1 Geometric parameters of aortic valve [9] (dimensions in mm)

rb rc h rsm hsm hs Lh Lt Wt

11.75 9.10 17.8 13.3 10.0 18.33 16.0 0.3 1.0

rb radius at the base of the valve, rc radius at the commissures, h valve
height, rsm maximum radius of aortic sinus, hsm height at rsm , Lh leaflet
height, Lt leaflet thickness, Wt valve wall thickness

III. Calculate
(
vf
)n+1

and
(
pf
)n+1

using CBS intro-
duced in Sect. 4.1.

(3.4) Calculate FSI force
I. Prepare fictitious fluid mesh from solid mesh at

current configuration;
II. Interpolate FSI pressure conditions from fluid

results based on F-S FSI pairs;
III. Calculate FSI forces using Eq. (48) in Sect. 4.3.1.

(3.5) Update data for next time step.

(3.6) Postprocessor and write intermediate results if nec-
essary.

(4) End of computation.

This is a weakly-coupled FSI coupling algorithm. Although
strongly-coupled algorithms such as block-iterative cou-
pling, quasi-direct coupling, or direct coupling algorithms
(see [51] for the terminology and the algorithms), might be
needed depending on how light the structure is compared to
the fluid masses involved in the FSI dynamics, in our case
here we find the weakly-coupled algorithm sufficient.

5 FSI simulation of aortic valve

5.1 FE model of aortic valve

An 3D ideal model of aortic valve is shown in Fig. 3. The
ideal aortic valve is modeled as three identical leaflets with
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Fig. 4 Unstructured tetrahedral
mesh of leaflets and valve. There
are two layers of solid elements
for each leaflet including 23,391
nodes and 121,576 elements,
and 185,679 nodes and 986,893
elements for the fluid domain

(a) Leaflets at initial configuration (b) Fluid mesh of valve

Table 2 Parameters for FSI simulation of aortic valve opening

ρs c10 c01 κ ρf μf pinlet
a poutlet

a

1,000 kg/m3 1,000 Pa 200 Pa 50c10 1,000 kg/m3 0.1 Pa s 120 mmHg 80 mmHg

a The pressure load is simplified as constant

uniform thickness and their corresponding sinuses. Since
contact between leaflets may occur during moving, we still
have to use the full model to carry out the simulation. The
modeling method is the same as in [9,52]. The size parame-
ters are listed in Table 1.

Since the IS-FEM is used here, there is no need to gener-
ate the body-fitted meshes. The leaflets (solid part) and the
valve (fluid part) are separately discretized using tetrahedral
elements as shown in Fig. 4. In this paper, the valve wall is
treated as solid wall, and thus its thickness is ignored, and
the fluid domain is bounded by its inner surfaces. The inlet
face is defined as connecting to the left ventricle, and the
outlet face is defined as connecting to the aorta. The leaflets
are fixed to the valve wall using Dirichlet conditions imposed
over the constrained edges. To better simulate the large bend-
ing deformations, we use two layers of tetrahedral elements
to discretize the leaflets.

5.2 Simulation of aortic valve opening

The aortic valve opens and closes according to the blood
pressure difference between the left ventricle and the aorta.
During ventricular systole, pressure rises in the left ventri-
cle. When the pressure in the left ventricle rises above the
pressure in the aorta, the aortic valve opens, allowing blood
to exit the left ventricle into the aorta. In this paper, the
opening of aortic valve is numerically simulated using the
IS-FEM. The material parameters for leaflets and blood, and
the pressure load for the simulation are listed in Table 2. It

should be noted that we focus here on the development and
application of IS-FEM to study the FSI phenomena in aortic
valve rather than on the accurate approximation of the physi-
ological situation, which will be investigated in another paper
in the near future.

At the initial state, both the blood and the leaflets are
stationary, and the blood is driven by the pressure differ-
ence between inlet and outlet faces. The time step length for
non-contact situation is 5.0E−6s, and when contact occurs
between two leaflets or between leaflets and the valve wall,
the time step length becomes 2.5E−6s.

The fluid results on a symmetry plane of the valve and
corresponding opening positions of leaflets of five successive
time points are shown in Fig. 5. The slender light blue stripe in
the figures denotes the immersed leaflet at current configura-
tion, and the leaflets are colored by the magnitudes of veloci-
ties of solid nodes. Figure 6 shows the stream lines within 1/3
valve and deformations of one leaflet. The Reynolds number,
defined as Re = 2ρ f v f rc/μ

f , reaches 700 at peak veloc-
ity at t = 1.9E−2s, the final opening position. This num-
ber is much lower than the physiological value which reads
Re ≈ 4000 (turbulent flow). The reason for this difference
is that a larger viscosity coefficient and coarse meshes are
chosen such that the computational time is resonable and
keep the flow as laminar (since there is no turbulence model
considered in the current version of CBS) to demonstrate the
proposed IS-FEM.

From computational results shown in Fig. 5 (2D presen-
tation) and Fig. 6 (3D presentation), we can see
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Velocity magnitude Pressure Opening position 

(a) t=5.0E-6s 

Velocity magnitude Pressure Opening position 

(b) t=5.0E-3s 

Velocity magnitude Pressure Opening position 

(c) t=1.0E-2s 

Fig. 5 Velocity (with stream lines on slice) and pressure contours of a symmetry plane of the valve and their corresponding opening positions at
different time steps

(1) The leaflets are driven aside to the sinuses under the
pressure difference between the inlet and outlet faces.
And therefore the blood in the sinuses are pushed out
due to the movement of the leaflet, see Fig. 5c, d.

(2) The streamlines of blood curves more severely at both
sides of the leaflets since the velocity at the nodes

covered by the solid elements are interpolated from
solid nodes to impose the FSI conditions rather than
computed from the fluid equations.

(3) The pressure distribution near the leaflets is less smooth
than the other area also since the FSI conditions are
imposed. Moreover, the pressure distributions on the
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Velocity magnitude    Pressure Opening position 

(d) t=1.5E-2s 

Velocity magnitude    Pressure Opening position 

(e) t=1.9E-2s 

Fig. 5 continued

leaflet surfaces are obviously non-uniform. Therefore,
only applying uniform pressure loads is not accurate
enough to obtain the stresses and deformations of leaf-
lets.

(4) It seems like the leaflet becomes longer during the
opening process. However, the leaflet does not actu-
ally become longer, it only drifts forward and becomes
flat during movement.

(5) Since the contacts between the leaflets and between the
leaflets and rigid fluid wall are considered, no penetra-
tion is observed in the simulation results.

Figure 7 shows the deformations of one leaflet during the
opening process at the six successive time points same as
in Figs. 5 and 6, and the leaflet is colored by the magni-
tude of displacements. In this figure, it is clearly shown that
the leaflet drifts forward with the blood flow and move out-
ward in the radial direction. The curvatures of the leaflets
reverse gradually from the bottom to the top, and the three

leaflets form a non-concave geometry at the final opening
position.

6 Conclusion

A 3D IS-FEM is developed and applied to the FSI simula-
tions of aortic valves. The interactions between the blood
and the hyperelastic leaflets are realized by calculating FSI
forces based on a set of Lagrangian fictitious fluid mesh,
which is coincides with the moving solid mesh, and there
is no need to use a body-fitted mesh. The fluid and solid
domains are solved separately. In this work, the fluid domain
is solved by CBS method on a fixed mesh. According to
the general formulations of IS-FEM introduced in Sect. 2,
we can solve the fluid domain using the other numerical
schemes. The solid domain is solved using smoothed finite
element method, which is extremely suitable for solving
the hyperelastic materials with large deformation. Both the
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(a) t=5.0E-6s 

(b) t=5.0E-3s 

(c) t=1.0E-2s 

Fig. 6 Streamlines of 1/3 valve

fluid and the solid domains are discretized using tetrahe-
dral elements, which greatly simplify the mesh generation
process.

An ideal aortic valve model is constructed and its opening
process is simulated using the proposed IS-FEM. Although
some data for the simulation are non-physiological, the
valve deformations and blood velocities (magnitude and
distribution) are comparable with numerical investigation
previously done. This means IS-FEM is capable of simu-
lating the aortic valve dynamics coupled with hemodynam-
ics, and could provide accurate results if the physiological
data are available. This method can be potentially used as
an efficient numerical tool to provide surgical plan based

(d) t=1.5E-2s 

(e) t=1.9E-2s 

Fig. 6 continued

Fig. 7 Deformations of one of the leaflets (the numbers denote the
time points same as in Figs. 5 and 6)

on the detailed valve dynamics of the patient-specific aortic
valve.
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