
Comput Mech (2013) 51:899–909
DOI 10.1007/s00466-012-0769-8

ORIGINAL PAPER

A simplified implementation of a gradient-enhanced damage
model with transient length scale effects

S. Saroukhani · R. Vafadari · A. Simone

Received: 21 February 2012 / Accepted: 17 July 2012 / Published online: 1 August 2012
© Springer-Verlag 2012

Abstract Gradient-enhanced damage models with constant
gradient activity suffer from spurious damage growth at high
deformation levels. This issue was resolved by Geers et al.
(Comput Methods Appl Mech Eng 160(1–2):133–153, 1998)
by expressing the gradient activity parameter as a function
of the local equivalent strain at the expense of adding one
set of degrees of freedom to those of the standard model. In
this contribution, a new formulation of the gradient-enhanced
damage model with variable length scale is presented which
eliminates the need for the extra set of degrees of freedom.
The merits of the proposed formulation are demonstrated,
and the choice of the damage evolution law and its impact
on the model performance are discussed.

Keywords Continuum damage mechanics · Regularized
media · Gradient-enhanced damage models · Transient
internal length scale

1 Introduction

Failure in quasi-brittle materials stems from the nucleation
and accumulation of micro-cracks and culminates with the
formation and propagation of traction-free macro-cracks. A
sound computational framework for modeling such a phe-
nomenon should provide a realistic description of these pro-
cesses.

Numerous computational techniques are now available for
tracing the events that take place during failure. With ref-
erence to continuum damage models, nonlocal approaches
[3,4,18] are among the most successful. In these models,
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the quantity driving damage evolution at a material point is
computed as a weighted average of a measure of local defor-
mation at the surrounding points. The weight function of the
averaging process is directly related to an internal length scale
which controls how a material point is affected by the behav-
ior of surrounding points. Initial versions of these methods
adopted a constant internal length scale which resulted in
spurious damage growth in inactive regions at high deforma-
tion levels [19]. This is attributed [8] to the fact that the non-
local averaging process remains active at all material points
through the entire load history and, as a result, highly local-
ized strains within the process zone are mapped to surround-
ing points.

Although limited experimental knowledge is available
regarding the evolution of the internal length scale, microme-
chanical arguments have shown that the interaction between
cracks and voids is of a transient nature in the course of fail-
ure [1,2]. Pijaudier-Cabot et al. [19] made use of this argu-
ment to introduce a nonlocal model with evolving length
scale, whereby the internal length is made a function of local
damage expressed in terms of the local equivalent strain.
Compared to the original nonlocal damage model, the model
with evolving length scale delivers physically acceptable
damage profiles at high deformation levels. More recently,
other nonlocal damage models with evolving length scale
have been proposed [6,7,9,15]. In particular, the stress-based
model by Giry et al. [9] is very effective in solving the issues
discussed by Simone et al. [21] in terms of damage initiation
and propagation. In this context, it is worth mentioning that
also gradient plasticity models can benefit from the use of an
evolving length scale as demonstrated by Voyiadjis and Abu
Al-Rub [22].

The implicit gradient-enhanced damage model proposed
by Peerlings et al. [17] can be considered as an approxi-
mated differential version of the nonlocal damage model pro-
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posed by Pijaudier-Cabot and Bažant [18]. In this model, the
gradient activity parameter is the counterpart of the inter-
nal length scale parameter. Similar to the original nonlocal
damage model [18], the implicit gradient-enhanced damage
model adopts a constant length scale and fails to deliver phys-
ically acceptable damage profiles at high deformation lev-
els [21].

The concept of an evolving length scale appeared in
gradient models sooner than their nonlocal counterparts.
Geers et al. [8] proposed an implicit gradient-enhanced
damage model with a transient gradient activity parameter
expressed as a function of the local equivalent strain. This
approach eliminates the spurious damage growth associated
with the method with constant gradient activity [17]. How-
ever, the model involves an extra continuity equation on either
the gradient activity parameter or the local equivalent strain
and therefore adds a set of degrees of freedom to those of the
standard model.

In this contribution, a new formulation of the implicit gra-
dient-enhanced damage model with transient length scale
is presented which eliminates the need for the extra set of
degrees of freedom from the model developed by Geers
et al. [8]. In the following section, the original implicit gra-
dient-enhanced damage model is briefly described and an
explanation for the necessity of the extra set of degrees of
freedom is provided. Section 3 entails the derivations of
the weak form of the new formulation. In Sect. 4, the weak
form of the governing equations is discretized and the cor-
responding consistent incremental-iterative scheme is pre-
sented. Finally, in Sect. 5, the merits of the method are
demonstrated by one- and two-dimensional examples.

2 Implicit gradient-enhanced damage model
with constant and transient gradient activity

The gradient-enhanced damage model by Peerlings et al. [17]
is described by a system of coupled differential equations
expressed in terms of the classical equilibrium equation

∇ · σ + b = 0 in � (1)

and the modified Helmholtz equation (diffusion equation)

ē − c∇2ē = e in �, (2)

completed by the standard boundary conditions for the equi-
librium equations and by

∇ē · n = 0 on � (3)

for the diffusion equation.In the above equations, σ is the
stress tensor, b the vector of body forces, ē is the nonlocal
equivalent strain, c is the constant gradient activity parame-
ter, e is the local equivalent strain defined as a scalar measure
of the strain tensor ε, and n is the outward unit normal vector

on the boundary � of the body �.Stress and strain tensors
are related through

σ = (1 − ω) C : ε, (4)

where C is the fourth order tensor of elastic moduli and the
scalar damage variable ω varies between 0 and 1, indicating
undamaged and completely damaged material, respectively.
Damage is driven by the most severe deformation, expressed
through a scalar history parameter κ , reached at a material
point. The history parameter is governed by the usual Kuhn-
Tucker relations which are expressed in terms of the nonlocal
equivalent strain [17].

In the original formulation of the gradient-enhanced dam-
age models (1)–(4), the gradient activity parameter c is con-
sidered to be constant and equal to 1/2l2, where l is the
length scale parameter. The consequences of this choice have
been discussed by Geers et al. [8]. They showed that the con-
stant gradient-enhanced damage (CGD) model fails to render
physically acceptable results for situations characterized by
considerable deformation levels. In such cases, the weighting
function related to the diffusion equation (2) maps the local-
ized strain within the fracture zone to the nonlocal equivalent
strain related to neighboring material points. Consequently,
spurious damage growth can be observed around highly dam-
aged zones and in regions that should only unload.To address
this problem, Geers et al. [8] proposed a strain-based tran-
sient-gradient damage (STGD) model whereby the nonlocal
interaction is controlled by the transient gradient activity
parameter

ξ (e) =
{

c
(

e
eξ

)nξ

if e ≤ eξ

c if e > eξ

, (5)

where eξ and nξ are model parameters. The above expression
implies that nonlocal coupling starts as soon as deformation
is detected at a material point and reaches its maximum level,
namely c, when the local equivalent strain is eξ . The conse-
quences of this choice are twofold. On the one hand, nonlocal
interaction is progressively mobilized as the local equivalent
strain increases. On the other hand, at considerable deforma-
tion levels, ξ vanishes in the unloaded material surrounding
the process zone. Hence, nonlocal interaction is appropri-
ately confined and the unloaded material behaves in a local
manner.

However, when a transient gradient activity parameter ξ

is considered in (2) according to

ē − ξ∇2ē = e, (6)

the coupled set of governing equations (1) and (6) needs to be
augmented with a continuity equation on ξ [8]. This is related
to the presence of the gradient of ξ in the weak formulation
of equation (6) and results in an additional degree of freedom
per node. In this contribution, a simplified implementation
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of the strain-based transient-gradient damage model is pre-
sented which retains the same features as the model by Geers
et al. [8] with the advantage of requiring the same number of
degrees of freedom as the gradient-enhanced damage model
by Peerlings et al. [17].

3 A modified strain-based transient-gradient damage
model

To circumvent the need for an extra continuity equation, it
is sufficient to divide (6) by ξ �= 0. This yields the diffusion
equation

ē

ξ
− ∇2ē = e

ξ
. (7)

The weighted residual approach is used to obtain the weak
format of the governing equations. To this end, (1) and (7)
are multiplied by the vectorial function wu and the scalar
function we, respectively. The resulting equations are then
integrated over � to yield

∫
�

wu · (∇ · σ + b) d� = 0 ∀ wu ∈ H1
0 (�) (8)

and∫
�

we

(
ē

ξ
− ∇2ē

)
d� =

∫
�

we
e

ξ
d� ∀ we ∈ H1(�). (9)

Next, the identities

wu · (∇ · σ ) = ∇ · (wu · σ ) − (∇wu) : σ (10)

and

we∇2ē = ∇ · (we · ∇ē) − ∇we · ∇ē (11)

are substituted in (8) and (9). This leads to

∫
�

[∇wu : σ − wu · b − ∇ · (wu · σ )] d� = 0 (12)

and∫
�

[
we

ē

ξ
−∇ · (we · ∇ē)+∇we · ∇ē

]
d�=

∫
�

we
e

ξ
d�.

(13)

The weak form of the governing equations of the modified
strain-based transient-gradient damage model is obtained

using the divergence theorem and applying the boundary con-
ditions σ · n = p and ∇ē · n = 0 on �:∫
�

∇wu : σ d� =
∫
�

wu · b d� +
∫
�

wu · p d�, (14)

∫
�

(
we

ē

ξ
+ ∇we · ∇ē

)
d� =

∫
�

we
e

ξ
d�. (15)

As it is obvious from (15), the gradient of ξ is no longer
involved in the weak form of the diffusion equation. Unlike
the strain-based transient-gradient damage model by Geers
et al. [8], an extra continuity equation is not necessary.

4 Finite element formulation

4.1 Discretization

The Bubnov-Galerkin method is employed for the discretiza-
tion of the weak form of the governing equations. To this end,
the displacement and the nonlocal equivalent strain fields,
along with the corresponding weight functions, are discret-
ized at the element level as follows:

uh = Nuu, wh
u = Nuwu, ēh = Ne ē, wh

e = Newe,

∇ēh = Be ē, ∇wh
e = Bewe, ∇wh

u = Buwu, (16)

where the shape function matrices Nu and Ne interpolate
the nodal values u and ē, respectively, and Bu and Be are
the gradient operators for the displacement and the nonlocal
equivalent strain, respectively. The same shape functions are
used to interpolate the nodal values of the weight functions
wu and we. Inserting relations (16) into the weak formula-
tion of the governing equations and expressing the stress and
strain tensors in their vector form yield∫
�

wT
u BT

u σ d� =
∫
�

wT
u NT

u b d� +
∫
�

wT
u NT

u p d� (17)

and∫
�

wT
e

(
NT

e Ne
ē
ξ

+ BT
e Be ē

)
d� =

∫
�

wT
e NT

e
e

ξ
d�, (18)

which have to hold for any choice of wu and we. Therefore,
the final discretized expression of the governing equations
is:∫
�

BT
u σ d� =

∫
�

NT
u b d� +

∫
�

NT
u p d�, and (19)

∫
�

(
NT

e Ne
ē
ξ

+ BT
e Be ē

)
d� =

∫
�

NT
e

e

ξ
d�. (20)

Finally, the discretized governing equations are rewritten in
terms of external and internal nodal forces according to
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f u
int = f u

ext and f ē
int = f ē

ext (21)

where

f u
int =

∫
�

BT
u σ d�, (22)

f u
ext =

∫
�

NT
u b d� +

∫
�

NT
u p d�, (23)

f ē
int =

∫
�

(
NT

e Ne
ē
ξ

+ BT
e Be ē

)
d� −

∫
�

NT
e

e

ξ
d�, (24)

f ē
ext = 0. (25)

4.2 Consistent incremental-iterative scheme

A consistent tangent stiffness is obtained by linearizing (21)
at iteration i + 1 with respect to the previous iteration i .
Accordingly,

f u
ext = f u

int,i + δ f u
int (26)

and

f ē
ext = f ē

int,i + δ f ē
int, (27)

where

δ f u
int =

∫
�

BT
u δσ d� (28)

and

δ f ē
int =

∫
�

(
−NT

e Ne
δξ

ξ2 ē + NT
e

1

ξ
Neδ ē + BT

e Beδ ē

− NT
e
δe

ξ
+ NT

e
δξ

ξ2 e

)
d�. (29)

Variations δσ i+1 of the stress tensor are obtained consider-
ing (4):

δσ i+1 = (1 − ωi ) Cδεi+1 − Cεiδωi+1, (30)

where

δεi+1 = Buδui+1 (31)

and

δωi+1 = ∂ω

∂κ

∣∣∣
i

∂κ

∂ ē

∣∣∣
i
δēi+1 = ∂ω

∂κ

∣∣∣
i

∂κ

∂ ē

∣∣∣
i
Neδ ēi+1, (32)

in which the relation δēi+1 = Neδ ēi+1 has been used. The
resulting stress variations are then inserted into (28) to obtain

the iterative change of the internal nodal forces

δ f u
int =

∫
�

BT
u

[
(1 − ωi ) C Buδui+1

− Cεi
∂ω

∂κ

∣∣∣
i

∂κ

∂ ē

∣∣∣
i
Neδ ēi+1

]
d� (33)

which completes the linearization of the equilibrium equa-
tion (26).

The linearization of (29) requires the expression of vari-
ations δξ and δe. The gradient activity parameter ξ can be
made a function of damage, local equivalent strain, or non-
local equivalent strain. This implies that different expressions
of its variation with respect to the nonlocal equivalent strain
can be obtained. For instance, if ξ is assumed to be a function
of damage then

δξi+1 = ∂ξ

∂ω

∣∣∣
i

∂ω

∂κ

∣∣∣
i

∂κ

∂ ē

∣∣∣
i
Neδ ēi+1. (34)

However, micromechanical arguments and some experimen-
tal results show that the gradient activity parameter is an
increasing function of the local equivalent strain [19]. This
assumption, which is also used in this contribution, leads to
vanishing variations of ξ with respect to the nonlocal equiv-
alent strain,

∂ξ

∂ ē

∣∣∣
i
= 0, (35)

which in turn yield

δξi+1 = 0. (36)

As for the variations of the local equivalent strain, they can
be expressed as:

δei+1 = ∂e

∂ε

∣∣∣
i
δεi+1 = ∂e

∂ε

∣∣∣
i
Buδui+1. (37)

Variations δξi+1 and δei+1 can be inserted into (29) to yield

δ f ē
int =

∫
�

[
1

ξ i

(
NT

e Neδ ēi+1 − NT
e

∂e

∂ε

∣∣∣
i
Buδui+1

)

+ BT
e Beδ ēi+1

]
d� (38)

which completes the linearization of the diffusion Eq. (27).
The linearized equilibrium and diffusion equations are

then summarized in the following system of equations:

[
K uu

i K ue
i

K eu
i K ee

i

] [
δui+1

δ ēi+1

]
=

[
f u

ext
f ē

ext

]
−

[
f u

int,i
f ē

int,i

]
, (39)
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Table 1 Parameters for the
one-dimensional localization
test

Geometry and Quantity Value Units
model parameters

Geometry Length 100 mm

Imperfection length 2.5 mm

Cross-section 55 mm2

Cross-section (imperfection) 50 mm2

Elastic
parameters

Young’s modulus E 4500 MPa

Nonlocal
parameters

Gradient parameter c 5 mm2

nξ 1 –

eξ 0.15 (=10κi) –

c0 0.01 –

Damage law κi 0.015 –

κc 0.5 –

α 5 –

β 0.8 –

where

K uu
i =

∫
�

BT
u (1 − ωi ) C Bu d�, (40)

K ue
i =

∫
�

−BT
u Cεi

∂ω

∂κ

∣∣∣
i

∂κ

∂ ē

∣∣∣
i
Ne d�, (41)

K eu
i = −

∫
�

NT
e

1

ξ i

∂e

∂ε

∣∣∣
i
Bu d�, (42)

K ee
i =

∫
�

(
NT

e
1

ξ i
Ne + BT

e Be

)
d�. (43)

The algorithmic treatment of this system of equations is iden-
tical to that of the CGD model [17]. From the implementa-
tion point of view, the introduction of a transient gradient
activity parameter into a CGD model finite element code
requires only trivial modifications. These modifications con-
sist of dividing the integrands in the K eu, K ee, and δ f ē

int
terms of the CGD model by ξ , and providing a function which
takes care of the evolution of ξ in terms of the local equivalent
strain e.

5 Numerical examples

The problem of spurious damage growth in the standard gra-
dient-enhanced damage model has already been addressed by
Geers et al. [8] with their STGD model. However, the STGD
model is more computationally demanding than the stan-
dard one. In this section, one and two-dimensional examples
are provided to demonstrate the merits of the proposed for-
mulation in reproducing the same improvement at no extra
computational cost compared to the CGD model. In both

x

F , u

Fig. 1 Schematic configuration of the one-dimensional localization
test. The shaded part indicates the imperfection (see Table 1 for geom-
etry and constitutive model parameters)

examples, quadratic and linear interpolation functions are
used for the displacement and the nonlocal equivalent strain
fields, respectively.

As for the gradient activity parameter, the following evo-
lution law has been considered:

ξ (e) =
{

c0 + (c − c0)
(

e
eξ

)nξ

if e ≤ eξ

c if e > eξ

. (44)

This law is identical to (5) when c0 = 0. However, to avoid
division by zero in the system of governing equations (39)
and to retain a quantitative resemblance with (5), c0 is set to
an arbitrary positive value which should be chosen such that
nonlocal interaction is prevented at the initial time step. Our
experience indicates that when the gradient activity param-
eter is smaller than the square of the distance between any
two integration points, non-local interaction is effectively
prevented and the model behaves like a local damage model.
It is therefore sufficient to set c0 smaller than the square of
the shortest distance between any two integration points for
(44) and (5) to be equivalent. Furthermore, when the material
is completely unloaded, i.e. when e = 0, non-local interac-
tion is prevented because (44) yields ξ = c0 thus turning
the gradient enhanced damage model into a local damage
model.

The application of inverse procedures [5,11–13] through
fitting of series of experimental results enables a phys-
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320 el.

160 el.

80 el.

Constant gradient activity – 320 el.
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4

3

2

1

0

Fig. 2 Convergence of the force–displacement curve and comparison
with the response of the CGD model in the one-dimensional localization
test

ically-based determination of nonlocal and damage law
parameters. Such techniques can be employed to calibrate
c0 in view of the equivalence between (5) and (44). To
this end, it would be sufficient to determine c0 with an
inverse procedure such as that devised by Iacono et al. [11]
on a series of synthetic data sets obtained with the orig-
inal model by Geers et al. [8]. Other choices of c0 can
be physically motivated by the argument that initial mate-
rial defects promote nonlocal interaction between material
points [19].

5.1 One-dimensional localization test

The geometry and model parameters of the one-dimensional
localization test borrowed from Geers et al. [8] are listed
in Table 1. The bar, shown in Fig. 1, is loaded in tension
and has a geometrical imperfection at the center. Conven-
tional displacement control is used to compute the equilib-
rium path in the elastic regime, whereas a dissipation-based
arc-length method [10] is employed thereupon so that any

0

50

100 start

end0

5

x [mm]

evolution

ξ
[m

m
2
]

Fig. 4 Evolution of the gradient activity parameter in the one-dimen-
sional localization test

possible snap-back is captured. The damage evolution law
used in this example is the power law

ω (κ) = 1 −
(κi

κ

)β
(

κc − κ

κc − κi

)α

, (45)

where the parameters α and β describe the rate of damage
growth, and κi and κc are the initial and final equivalent
strain values which correspond to ω = 0 and ω = 1, respec-
tively. The local equivalent strain follows Mazars’ definition
according to which

e =
√√√√ 3∑

i=1

〈εi 〉+, (46)

where 〈εi 〉+ are the positive principal strain components [14].
In Figs. 2, 3, 4, 5, and 6, the simulations were stopped as
soon as F < 0.001Fmax, where Fmax is the maximum value
reached by the reaction force F—this is denoted as complete
loss of load-carrying capacity.

The results reported in Figs. 2, 3, 4, and 5 are identical
to those reported by Geers et al. [8, Section 5.1]. The mesh
objectivity of the model is clearly demonstrated by the force–
displacement curves for three different discretizations shown
in Fig. 2. For the sake of comparison, the force–displacement
curve obtained with the CGD model is also reported.

0

50

100 start

end0

1

ω

x [mm]

evolution
0

50

100 start

end0

1

ω

x [mm]

evolution

itcatneidargtneisnarT(b)ytivitcatneidargtnatsnoC(a) vity

Fig. 3 Damage evolution in the one-dimensional localization test. Note that here and in similar figures the end of the evolution process indicates
complete loss of load-carrying capacity which occurs at different stages in the two models
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0
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end0
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ē
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evolution
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end0

0.5
ē
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evolution

(b) Transient gradient activity(a) Constant gradient activity

Fig. 5 Nonlocal equivalent strain evolution in the one-dimensional localization test

eξ 10κi, 320 el.
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eξ 25κi, 160 el.
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Fig. 6 Influence of the parameter eξ on the force–displacement curve
in the one-dimensional localization test

Damage evolution is clearly influenced by the transient
gradient activity parameter ξ . Indeed, the width of the dam-
aged zone in Fig. 3b is narrower than that obtained with a
constant gradient activity parameter shown in Fig. 3a. This
is directly linked to the evolution of the gradient activity
parameter ξ . As shown in Fig. 4, initial loading stages are
characterized by an increase of the gradient activity along
the whole bar with an evident strain localization in a finite
zone. Within this region, the behavior of the model resem-
bles that of the CGD model, while very small gradient inter-
action is present elsewhere. As the loading continues, the
localization zone shrinks and the corresponding strain level
increases, whereas the neighboring points around the pro-
cess zone unload and the gradientactivity vanishes therein.
As a result, the nonlocal interaction is confined to a finite
region and the remaining parts of the bar behave in a strictly
local manner. The equivalent strain in the fracture zone is no
longer mapped to the surrounding material through nonlocal
coupling and the damage profile does not widen.

An analogous comparison can be made between the non-
local equivalent strain evolution of the two models reported

in Fig. 5. With reference to the situation when the load-car-
rying capacity of the bar has been almost exhausted, i.e. at
the end of the evolution process, the STGD model leads to
a more localized response and higher values of the nonlocal
strain compared to those of the CGD model. Oscillations
in the nonlocal equivalent strain might arise once the non-
local equivalent strain localizes in a single element at high
deformation levels. Such oscillations, not reported here, can
be resolved with a technique proposed in [8].

Computational experiments show that the structural behav-
ior in the one-dimensional example depends upon the choice
of the critical local strain eξ . Hence, it is worth investigating
the influence of this parameter on the model performance. To
this end, eξ is increased from 10 to 25 and the force–displace-
ment curves for the two cases are compared in Fig. 6. The
curve for latter case is shown for two different mesh densities.
It can be seen that the regularization quality of the method is
not influenced but the structural behaviors are significantly
different. Therefore, the choice of this parameter does not
affect the model performance but it should be calibrated for
practical problems.

Another issue to address is the the effect of the damage
evolution law on the model performance. To investigate the
matter, the exponential damage evolution law

ω = 1 − κi

κ

[
1 − α + αe−β(κ−κi)

]
(47)

with α = 0.99, β = 50 and κi = 0.005 has been employed.
Note that a power damage evolution law has been used in the
previous numerical examples. As shown in Fig. 7a, the local-
ization band starts widening at high deformation levels. This
can be attributed to the shape of the softening law which is
almost horizontal, i.e. characterized by a rate of change in the
damage variable tending to zero, at high deformation levels.
Numerical experiments indicate that the presence of a small
residual stiffness in highly localized regions results in load
redistribution to the neighboring points and hence reactivates
the nonlocal averaging therein. To corroborate this claim,
the same example is recomputed using the power softening
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0

50

100 start

end0

1

0

50

100 start

end0

1

evolutionevolution

x [mm]

ωω

(b) Modified power evolution law(a) Exponential evolution law

x [mm]

Fig. 7 Damage evolution in the one-dimensional localization test with different damage evolution laws

150 150

500

150

10

100

1/2 P 1/2 P

Fig. 8 Geometry and boundary conditions for the four-point bending
test. All dimensions are in mm and thickness = 50 mm

law (45) in which an almost horizontal branch with the same
residual stiffness as that of the exponential damage law is
added at κ = 0.7κc. It can be observed in Fig. 7b that the same
type of widening occurs at the very end of the simulation. This
implies that the performance of the model at high deforma-
tion levels is highly sensitive to the choice of the damage
evolution law. Nevertheless, this problem is particularly rel-
evant when exponential damage laws are used because in
such cases complete failure is never reached (ω → 1 for
κ → ∞) and thereby there exists a certain deformation level
beyond which the rate of change in the damage variable tends
to zero.

5.2 Concrete beam in four-point bending

To evaluate the model performance in two-dimensions, the
four-point bending test of the concrete beam shown in Fig. 8
is considered. This problem has been previously analyzed by
Pamin and de Borst [16] with a CGD model and by Simone
et al. [20] with a continuous-discontinuous approach. Model
parameters are listed in Table 2 and the beam is considered
under plane stress conditions. Damage evolution follows an
exponential damage law according to (47). The local equiva-
lent strain is expressed by the modified von Mises definition
according to which

e = k − 1

2k(1 − 2ν)
I1 + 1

2k

√
(k − 1)2

(1 − 2ν)
I 2
1 − 12k

(1 + ν)2 J2, (48)

where I1 and J2 are the first invariant of the strain tensor and
the second invariant of the deviatoric strain tensor, respec-
tively, k is the ratio of the compressive to tensile strength of
concrete, and ν is the Poisson’s ratio. Three different mesh
sizes have been adopted in the simulations with element
size h in the central part of the beam equal to 5, 2.5, and
1.25 mm for the coarse, medium and fine mesh, respectively.
The medium mesh has been used for the results depicted in
Figs. 9b, 10, 11, and 12.

The resulting load-deflection curves, reported in Fig. 9a,
clearly indicate convergence to a unique solution upon mesh
refinement. In these curves, the vertical displacement u of a
point placed at the bottom and with an offset of 7.5 mm from
the centerline of the beam has been used for the measure-
ments of the deflection. Interestingly, as reported in Fig. 9b,
there is almost no difference between the force–displace-
ment curves obtained with the constant and transient gradient
activity models. Damage evolution is however influenced by
the choice of the model as shown in Fig. 10 and is explained
further in the following.

The evolution of the damage field obtained with the CGD
model is shown in the top row of Fig. 10. Damage wid-
ens significantly close to the notch as the deformation level
increases. This eventually results in an unrealistically large
damage profile close to failure which is a known feature of
nonlocal and gradient-enhanced damage models with con-
stant gradient activity and has been described in detail by
Geers et al. [8] and Simone et al. [20].

The evolution of the damage field obtained with the tran-
sient gradient activity model is shown in the bottom row of
Fig. 10. A careful examination of these profiles reveals that
the widening issue, although less pronounced, is still present
in the notch area. Similar to the one-dimensional example,
the residual stiffness in the process zone results in the redis-
tribution of the load to the neighboring points and hence
increases the gradient activity parameter therein. This can be
seen in Fig. 11. Reactivation of the nonlocal activity around
the process zone leads high values of the nonlocal equivalent
strain to be mapped from the process zone to the neighboring
points and thereby yielding to widening of the damage pro-
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Table 2 Parameters for the
two-dimensional test

Model param-
eters

Quantity Value Units

Elastic
parameters

Young’s modulus E 40000 MPa
Poisson’s ratio ν 0.2 –

Nonlocal
parameters

Gradient parameter c 4 mm2

nξ 1 –

eξ 0.00075 (=10κi) –

c0 0.01 –

von Mises local
equivalent
strain

k 10 –

Damage law κi 0.000075 –

α 0.92 –

β 300 –

Fine mesh

Medium mesh

Coarse mesh
(a)
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Fig. 9 Convergence of the force–displacement curve in the four-point bending test (a), and comparison of the force–displacement curve obtained
with transient and constant gradient models (b)

file. This claim can be corroborated by a numerical example
in which the damage evolution law is adjusted such that the
energy dissipation rate is increased at intermediate deforma-
tion levels thus resulting in a very low residual stiffness. To
this end, α in (47) is changed from 0.92 to 0.999. As evi-
dent from Fig. 13, the widening problem close to the notch
is significantly alleviated. Despite this, the gradient activity
parameter shown in Fig. 14 has a behavior similar to that
reported in Fig. 11. This indicates that widening has only
been postponed and will eventually occur with further load-
ing as the dissipation rate in the softening law decreases.

6 Summary and final remarks

The original version of the gradient-enhanced damage model,
equipped with constant gradient activity, suffers from spu-
rious damage growth at final stages of failure. This spurred
the development of a model with a transient internal length
scale which successfully addresses this issue by employing
an extra continuity equation.

In this contribution, a new formulation of the strain-based
transient-gradient damage model is presented whereby a sim-
ple modification of the governing equations results in the
elimination of the extra set of degrees of freedom required
by the discretization of the extra continuity equation. The gra-
dient activity parameter is associated to the local strain and
it is thus mobilized in the process zone and neutralized else-
where. This allows the model to appropriately describe the
discontinuous nature of the displacement field at final stages
of failure. Hence, the problem ofspurious damage growth in
the constant gradient-enhanced damage model is eliminated.
The merits of the method are demonstrated by means of one-
and two-dimensional examples. It is shown that the presented
method reproduces the same results as the original transient
method while adopting a simpler and less computationally
expensive formulation.

Finally, the influence of the choice of the critical local
strain and the damage evolution law over the model perfor-
mance have been investigated. With regard to the value of
the critical local strain, it is observed that the regularization
properties of the method are insensitive to this parameter but
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Fig. 10 Damage evolution for the constant and transient models in the four-point bending test

(a) (b) (c)

Fig. 11 Evolution of the gradient activity parameter in the four-point bending test
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Fig. 12 Force–displacement curve in the four-point bending test with
α = 0.999

(a) (b) (c)

(d) (e) (f)

Fig. 13 Evolution of the damaged zone in the four-point bending test
with α = 0.999. Snapshots are taken at the points indicated in Fig. 12.
On the contour line ω = 0.1
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(a) (b) (c)

(d) (e) (f)

Fig. 14 Evolution of the gradient activity parameter in the four-point
bending test with α = 0.999. Snapshots are taken at the points indicated
in Fig. 12. On the contour line ξ = 0.5 mm2

the overall structural behavior is drastically influenced—this
observation indicates the need for parameter calibration in
applications. On the other hand, the model performance at
very high deformation levels proves to be contingent upon
the choice of the damage evolution law. It is indeed shown
that the damage profile widens when there exists some resid-
ual stiffness in the process zone at high deformation levels.
This feature is particularly evident when exponential dam-
age laws are employed. As a result, the use of exponential
damage laws in the type of models presented in this contri-
bution should be avoided as they inevitably yield unphysical
behavior at high deformation levels.
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