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Abstract Geodynamic models describe the thermo-mecha-
nical evolution of rheologically intricate structures span-
ning different length scales, yet many of their most relevant
dynamic features can be studied in terms of low Reynolds
number multiphase creep flow of isoviscous and isopycnic
structures. We use the BEM- Earth code to study the inter-
action of the lithosphere and mantle within the solid earth
system in this approximation. BEM- Earth overcomes the
limitations of traditional FD/FEM for this problem by con-
sidering only the dynamics of Boundary Integral Elements
at fluid interfaces, and employing a parallel multipole solver
accelerated with a hashed octtree. As an application example,
we self-consistently model the processes controlling the sub-
duction of an oblique mid-ocean ridge in a global 3D spher-
ical setting in a variety of cases, and find a critical angle
characterising the transition between an extensional strain
regime related to tectonic plate necking and a compressive
regime related to Earth curvature effects.
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1 Introduction

Subduction, the geological process by which the top brit-
tle portion of the upper mantle (the lithosphere) sinks into
the more ductile interior of the solid Earth, is the key geody-
namic feature of our planet. Downwellings of cold and dense
rocks at subduction zones provide the density, temperature
and pressure gradients that drive mantle convection; generate
the main force propelling plate tectonics (the slab pull); and
are linked to most of the volcanism and seismicity that puts
human lives at risk. The large body of research associated
with subduction modelling attests to the complex geophysi-
cal aspects involved in its description as well as to difficulties
arising from the scarcity of time and depth dependent obser-
vations relevant for their understanding.1

Multiphysics simulation has contributed to increase the
degree of realism of subduction models by incorporat-
ing a broad range of attributes and processes influencing
very general visco-elasto-plastic rock rheology depending
on chemical composition, pressure, temperature and stress.
Additionally, setting this systems in a planetary scale span-
ning very large variations in size and physical properties
result in very complex models that push the traditional FEM
and FD methods to their limit. Such immense and intricate
parameter space makes extremely difficult to pinpoint the
effect of an individual variable in the behaviour of the sys-
tem. As a consequence, in order to discover parameters that
control dynamic features of subduction, many systems have
been explored only in 2D or in highly symmetric simplified
3D geometries, and with physical constrains to reduce the
total number of degrees of freedom.

Global tectonic modes are particular examples in which
the simplification leads to concise relationships between

1 For a review on current trends in subduction modelling see [11].
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input variables and dynamic behaviour. By describing the full
solid earth convection flow in spherical harmonics, the global
plate kinematic behaviour can be inferred starting from a
simple rheological model of the mantle and an estimation
of plate driving forces based on models of the subduction
history [15,10]. In this way it has been possible to predict
(or more precisely to reproduce) the observed present day
and the reconstructed paleo plate kinematics from simplified
models of the viscosity and density heterogeneities of the
solid earth.

Recent models [1,5,6] have revealed the importance of
slab pull variations due to the parallel subduction of a mid-
ocean ridge (MOR) in tectonic dynamics. Since they define
the regions where oceanic lithosphere is being created from
the cooling of magma, these ridges tend to be hotter and
more buoyant than the rest of the plate. As they approach
a subduction trench that is parallel to their axis, they might
cause necking and detachment of the portion that has already
subducted (the slab) and eventually a dramatic decrease of
slab pull which could lead to subduction cessation. Simi-
larly, the subduction of an active ridge orthogonal to the
trench could lead to the opening of a window between two
slabs significantly altering the pattern of mantle flow in the
solid earth. It is therefore essential to the understanding of
global tectonics to consider the subduction of such ridges
in the more general oblique setting in which they usually
occur.

We present the first 3D self consistent dynamical sim-
ulations of oblique MOR subduction spanning the com-
plete range of oblique collision angles. The self-consistent
dynamic description of 3D ridges, modelled as an indentation
in an otherwise flat rectangular tectonic plate, is simplified
by assuming a temperature independent viscous creep rhe-
ology governed by the Stokes equation. Using a multipole
accelerated boundary integral element method, we were able
to explore the full range of values of different ridge-trench
collision angles between the parallel and orthogonal cases,
compare strain estimations on the ridge for different colli-
sion angles, and characterise the transition between an exten-
sional regime associated to slab tearing and a compressive
regime related to Earth curvature effects. Such transition was
impossible to detect in previous works which were limited by
computational complexity to the analysis of simplified geom-
etries, end-member cases, 2D models, or particular regional
studies [20].

For this study, we use the BEM- Earth [17,18,21,24]
geodynamic modelling software, which allows the study
of regional subduction in the context of global spherical
mantle flow, reducing the problem dimensionality and accel-
erating the solution of the resulting dense systems. By
integrating multipole methods parallelised using MPI for
distributed memory architectures with hashed octtree algo-
rithms for fast identification of near and far-field interact-

ing elements, BEM- Earth is able to overcome some of the
limitations of finite difference/element methods traditionally
used in geodynamics.

2 MOR subduction

Despite recent advances, most geodynamic models of ridge-
trench collision are two dimensional and involve either a
parallel or an orthogonal ridge-axis-to-trench angle. Fur-
thermore, ridge subduction beyond simple slab detachment
in the parallel case, has not been reproduced by any 2D
thermo-mechanical model and is believed to be caused by
3D effects.

Present day examples of ridge-transform systems inter-
secting convergent margins like the Chile (Nazca-Antarc-
tica), Rivera (Rivera-Pacific) and Mendocino triple junctions
[4] indicate that the simultaneous subduction of two adja-
cent plates along the same trench is not uncommon, and is
manifested trough different tectonic settings for which the
angle between the transform or ridge axis and the trench
varies. Such ridge-trench collisions have been almost exclu-
sively studied in the parallel case in relation to the the dynam-
ics of subduction cessation and slab detachment [5,1,6] and
in the orthogonal case, where they are related to the for-
mation of slab windows [14]. In the parallel case, when a
ridge approaches a convergent margin the downgoing mate-
rial becomes progressively younger and harder to subduct.
Lithosphere as old as 10 Myr is considered to be already
neutrally buoyant with respect to the surrounding mantle [8]
and is not expected to contribute significantly to the down-
ward pull. Eventually, the combined effect of buoyancy and
the weakening of the slab at the ridge axis may lead to the
cessation of subduction and subsequent detachment of the
subducted slab [5,12]. In the orthogonal case, as the diverg-
ing oceanic plates subduct, magma that could form at the
edges of the plates will not be able to cool down to continue
lithospheric formation, thereby forming a slab window. Such
tearing of the slab and an eventual detachment inhibits the
capacity of slabs to propagate stresses through plates and
their boundaries and alter the pattern of mantle convection
[9,10] therefore having a profound impact on the dynamics
of plates and mantle [6,33]. Assuming slab pull is the most
significant force driving plate tectonics, the decrease of the
pull force associated with ridge subduction could have dra-
matic implications for tectonic dynamics, in particular for
global plate reorganisations.

We use the BEM- Earth software to self-consistently
model the processes controlling such a tectonic setup in a
variety of cases, assuming a lithosphere immersed in a less
viscous and less dense mantle, an inviscid highly dense core
and virtually frictionless plate boundaries.
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3 Fluid mechanical model

Mantle circulation and plate tectonic dynamics in the solid
earth, characterised by very low Reynolds number, is gov-
erned by the Stokes equation for steady, highly viscous flow

∇ · σ + ρb = 0. (1)

where σi j is the full stress tensor, and b represents the body
forces. In terms of the dynamic viscosity μ, the velocity field
u, and the pressure P , the gradient of the stress tensor is
given by

∇ · σ = μ∇2u − ∇ P. (2)

Following several numerical and experimental studies
[3,25], we approximate the fluid dynamics of subduction
by considering the mantle and the lithosphere as regions
of homogeneous density and viscosity, disregarding other
the chemical and rheological inhomogeneities. We further
assume a simple temperature independent rheology for such
multiphase flow, and model only the fundamental forces con-
trolling the process, which we take to be: the buoyancy result-
ing from the different densities between the flow phases; the
viscous drag that might hamper or assist plate motion; and
the viscous resistance to bending and stretching.

For our applications we will be interested in the dynamics
of subducting plates considered as isoviscous and isopyc-
nic surfaces immersed in a homogeneous mantle. We will
therefore solve the flow field for a system consisting of an
interface S1 representing the surface of the earth, surrounded
by an unbounded fluid and having disconnected closed inter-
faces inside representing the subducting slab S3 and the core-
mantle boundary S2 (see Fig. 1). The boundary conditions are
prescribed by the interfacial surface forces �f resulting from
the different material properties of each phase. From Eq. (1)
we see that the normal stress discontinuity produced by the
differential density (�ρ = ρ2 − ρ1) of two phases subject to
a gravitational acceleration g, is

�f(x) = �ρ(x) (g(x) · x) n, (3)

whereas the velocity field is continuous throughout the full
domain. The gravitational acceleration inside the mantle var-
ies in magnitude from 10.8 ms−2 at the core mantle bound-
ary down to 9.8 ms−2 near the surface [31]. Given that main
contributions to (3) come from the density contrast and the
position, we will assume a radially oriented gravitational field
of constant magnitude g = 10 ms−2. Forcing, deformation
and velocity fields are further required to vanish at infinity.

For a point x0 inside a region V where the viscosity μ

is homogeneous, Eq. (1) can be solved for the flow field
u(x) and the pressure field P(x) using the Green function
method. The boundary integral formulation [23] of the solu-
tion in terms of the Lagrangian specification of the flow field
takes the form:

S1

S2

S3

Air

Core

Mantle

Fig. 1 Subducting plate dynamic as a multiphase flow bounded by the
free surfaces Si . S1 represents the surface of the Earth, S2 a viscos-
ity transition at the core–mantle-boundary and S3 the surface of the
subducting plate

u j (x0) = − 1

8πμ

∫

∂V

fi (x)Gi j (x, x0)d S(x)

+ 1

8π

∫

∂V

ui (x)nk(x)Ti jk(x, x0)d S(x). (4)

Here the cartesian components of the field u(x) = u j (x)ê j

are represented in terms of the surface force f = σ ·n and the
fundamental solutions Gi j and Ti jk for the velocity and trac-
tion. The integral domain is the boundary ∂V of the region,
where the surface element and the components of the normal
are d S(x) and nk(x) respectively. The explicit form of the
fundamental solutions, known as Stokeslet and Stresslet are

Gi j (x, x0) = δi j

r
+ rir j

r3 , Ti jk(x, x0) = −6
rir j rk

r5
, (5)

where r = x − x0 and r = |r|. The pressure field can be
directly calculated through an integral equation analogous to
(4) [23, Eq. (2.3.17)], yet we will only focus on the flow field
since it completely defines the dynamic of the system.

In order to solve for the velocities using (4), we first need to
find its values on the boundary given the particular constrain.
To this aim, we first find the solution right on the boundary
x0 ∈ ∂V , which leads the following expression involving the
principal value (PV) of the Stresslet integral:

u j (x0) = − 1

4πμ

∫

∂V

fi (x)Gi j (x, x0)d S(x)

+ 1

4π

PV∫

∂V

ui (x)nk(x)Ti jk(x, x0)d S(x), (6)

here the PV is the improper integral value when the point x0

is right on the boundary.
In practice, we will find the values for the velocity on the

quasi-steady boundaries of multiphase flows for which we
prescribe the known surface force f = �f that accounts for
buoyancy.

Using mantle viscosity (density) μ0 (ρ0) as a reference
and defining a relative viscosity λi = μi/μ0 for each par-
ticular phase i , we can write the velocity at the boundary
Si = ∂Vi of such phase as a Fredholm integral of the second
kind [23,17,16]:
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u(x0) = −
(

1

1 + λi

)
1

4πμ0

∑
j

∫

S j

G(x) · �f(x) d S(x),

−
∑

j

(
1−λ j

1+λi

)
1

4π

PV∫

S j

u(x) · T(x, x0) · n(x) d S(x),

(7)

which might be solved using an iterative technique. Further-
more, we can study the evolution of the flow by solving only
on the boundaries and use the Eq. (4) whenever we want a
general solution at any point in space.

At each instant, the geometry of the interfaces completely
defines the flow field. In turn, the flow field completely
defines the evolution of the interfaces, which can be spec-
ified in terms of a set of Lagrangian points for each surface
Si :

∂xSi (t)

∂t
= [

u(xSi , t) · n
]

n + δt, (8)

where n and t are unit vectors normal and tangential to the
point at the surface and δ is a constant. Both the value of
δ and the particular orientation of t are arbitrary. Since the
surfaces Si represent interfaces between fluids and tangential
motion have no effect on their shape, we are free to choose
δt = u · (1 − nn) and identify the velocity of points xSi with
the velocity of the fluid,

∂xSi (t)

∂t
= u(xSi , t), (9)

which can be explicitly integrated numerically once the value
of the flow field on the interface is known.

3.1 Thin lubrication layer

In self consistent simulations of tectonics involving only
one plate, the negative buoyancy of the lithosphere would
induce vertical sinking, since the mantle is free to over-
flow the surface of the plate. In order to simulate subduction
behaviour without considering the contribution of surround-
ing plates or studying the global system of inter-plate stresses,
we interpose a thin lubrication layer between the surface of
the Earth and the surfaces contained within [17,22,25]. This
layer allows the plate to slide in any tangential direction, but
restores the isostatic equilibrium that keeps it from sinking
radially.

4 Numerical method

We simulate the self-consistent fluid mechanical evolution
of the subducting slab in a spherical setup, driven by buoy-
ancy, viscous drag, and resistance to bending and stretch-
ing without kinematic constrains, using the BEM- Earth

Fig. 2 Discretisation of a typical model of a subducting plate immersed
in the mantle between the surface of the Earth and the core–mantle
boundary

code [17,18,21,24], a parallel multipole accelerated bound-
ary integral element solver for the steady low Reynolds num-
ber flow.

The boundary Si of each phase is discretised in space
as a 3D unstructured triangulated surface mesh (see Fig. 2)
on which the variables (u, f, . . .) are defined using the col-
location approach. A local orthogonal cartesian coordinate
system is used to represent the values of linear shape func-
tions that interpolate the variables within each triangle. The
kernels integrals in 7 are calculated analytically for this inter-
polation, leading to a numerically equivalent linear system
of the form[
Λ + T

]
U = F, (10)

where Λ is a matrix containing constant coefficients asso-
ciated with each surface relative viscosity, T is the discrete
kernel of the Stresslet integral, F the numerical value of the
Stokeslet integral on the surface and U the unknown veloci-
ties at each element.

Integrating the kernels to obtain the linear system (10) is
a particularly complex task due to the presence of O(1/r3)

divergencies that render the integral hypersingular. The
nature of the regularisation process required to obtain a
closed form of the matrix elements [26] leads to very cum-
bersome expressions requiring the use of symbolic analytical
computational tools.

As an example the Stokeslet term in (7) in terms of linear
local shape functions ϕa(x) defined at each triangle x ∈ Ta

of the mesh, has the form

N∑
a=1

ga(x0) =
N∑

a=1

∫

Ta

Gi j (x, x0)ni (x)n j (x0)ϕa(x)d S(x),

(11)

where the integral is performed on each triangle. A closed
expression for this integral in the local coordinate basis has
the general form
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ga(x0) = ni (x)

[(
1 − y0

y

)
Ai j (x0) − 1

y
Bi j (x0)

]
n j (x0).

(12)

where A is a 3 × 3 matrix of rational functions, and B is
a 3 × 3 matrix involving regular rational and trigonometric
functions. The reader is referred to [26] for around 15 explicit
independent terms present in each case: inside the triangle
x0 ∈ Ta , outside the triangle x0 /∈ Ta and at the boundary of
the triangle x0 ∈ ∂Ta .

4.1 Fast multipole acceleration

Equation (10) is well-conditioned but dense [34], meaning
that the complexity of the calculation of the left hand side
of Eq. (10) scales with N 2 for N boundary elements. The
decay of the kernels in Eq. (5) and their derivatives with the
distance may be used to overcome the poor scaling behav-
iour of a direct calculation by allowing the application of
the fast multipole method [2,13]. In analogy with the mul-
tipole expansion of a potential outside the support of an
electrostatic charge distribution, our kernels of interest are
approximately degenerate, therefore the interaction between
sufficiently separated points x and y can be approximated by
an expression of the form

K (x − y) ≈
p−1∑
k=0

�k(x)�k(y) (13)

Effectively decoupling the interactions and allowing aO(pN )

complex calculation of sums of the form

N∑
i �= j

V (xi )K (xi − x j )P(x j )

≈
p−1∑
k=0

(
N∑

i=1

�k(xi )V (xi )

)
�k(x j )P(x j ) (14)

in the Eq. (10). In our case the accelerated approxima-
tion algorithm is based on clustering the point-like triangle
sources of stress and Stokes field at different length scales
and integrate the interaction kernel according to their sepa-
ration. When the points are close, the kernel is directly inte-
grated, when they are far, the multipole expansion is used
(see Fig. 3). BEM- Earth implements multipole expansions
for the Stokeslet or the Stresslet up to the second order.

The Stokeslet and Stresslet multipole expansion can be
obtained from the degenerate approximation of the well
known single-layer (point charge) and double-layer (dipole)
electrostatic potentials [7,27]

φ(x − y) = 1

|x − y| , �(x − y) = n · (x − y)

|x − y|3 . (15)

Point to Point

Cell to Cell

Point to Cell

Fig. 3 Depending on the distance between the sources, the contribu-
tion to the interaction on each surface is done using local (point to point)
or multipole terms (point to cell and cell to cell)

Root Cell Full Domain

Level 1

Level 2

Fig. 4 A volume is progressively subdivided from the full root cell
into finer regular partitions that define the cells at each level

Applying suitable generating operators [30], the evaluation
of the Stokeslet and Stresslet is reduced to

Gi j (x − y) =
(

δi j − (xi − y j )
∂

∂xi

)
1

|x − y| (16)

Ti jk(x − y)nk(x) = 1

6

[(
δi j − (xi − y j )

∂

∂xi

)
n · (x − y)

|x − y|3

+
(
δik − (xk − yk)

∂

∂xi

)
nk(x j − y j )

|x − y|3
]

(17)

The boundary elements involved in system of Eq. (10) are
classified in a spatial tree structure in which aggregations
of sources cluster together into cells at successive levels of
refinement (see Fig. 4). The field evaluation is approximated
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Fig. 5 Coordinates are stored as a binary keys encoding what side of
the bisection and at what level the particle is located. The three coordi-
nates are further interleaved and prepended a most significant bit. For
the example shown the binary key would be k2 = 1 101 101 000 100
which translates to the decimal integer k10 = 6 980

through a tree traversal that is truncated according to a pre-
scribed numerical tolerance ε. Knowing the maximum dis-
tance of the particles from the centre of the cell d, and
the value of the correspondent quadrupole moment B2, for
expansions up to second order, an analytical expression for
the error per interaction can be derived [32]

r = d

2
+

√
d2

4
+

√
3B2

ε
(18)

leading to a strict criteria defining the smallest interaction dis-
tance r to be considered for each cell. This efficiently trun-
cates the calculation by clearly establishing how much the
algorithm must traverse the hierarchical structure to obtain
the desired precision.2

BEM- Earth uses a hashed octtree method to hierarchi-
cally partition 3D space and store cell locations in a integer
key. A point P with coordinates x = (x, y, z) point is located
by iteratively bisecting the volume at each axis and storing a
single bit representing that it is to be found to the left (0) or
right (1) of the midpoint (see Fig. 5). Resulting coordinate
words are bitwise interleaved and prepended with a 1-bit to
represent all nodes at each level consistently without ambi-
guities derived from trailing zeroes:

x 1 1 0 1
y 0 0 0 0
z 1 1 0 0
k2 1 1 0 1 1 0 1 0 0 0 1 0 0

This key is directly mapped to index memory locations con-
taining the cell dependent data needed for the calculation and
simplifies its balanced distribution in a parallel system. The
stopping criteria at each level of refinement is linked to the
most significant bit.

A parallel generalised minimal residual method with
restart parameter k is used to iteratively solve Eq. (10). Once
the flow field at the surfaces is known, an explicit second

2 Similar truncation of matrix entries can be achieved by the wavelet
method [29], albeit with a more complicated strategy where its polyno-
mial order depends on the scale.

Trench

M
O

R

Fig. 6 Typical model setup

order Runge–Kutta adaptive timestep integration of Eq. (9)
is performed. The solution is thus only calculated at the end
of step and at the half-step. The time step size is constrained
by a maximum displacement parameter smaller than half of
the characteristic length of the smallest element, satisfying
the convergence criteria of the solver. An incompressibility
condition is enforced a posteriori on each surface by com-
paring the total volume surrounded by each interface with
the previous timestep, and isotropically correcting the nor-
mal displacements according to the residual found. The thin
lubrication layer is implemented through an additional cor-
rection of normal stresses of the surface elements that lie
within a fixed distance of the external surface [18,19].

As the surfaces to be studied have a constrained size and
their evolution is followed only up to the point where reach
the core-mantle boundary, the deformation of the mesh is not
significant enough to require remeshing or additional algo-
rithms to prevent topological changes.

Each model consisting of 61,260 elements with 30,636
nodes was run on a single 8-core SGI Altix XE310 Server
blade containing two Intel Xeon X5355 2.66 GHz cpus and
16 GB RAM, part of the Silica cluster at The University of
Sydney. The models ran for 150 timesteps with an average
310 s cpu time per step for a total of 13 h of cpu time per run,
equivalent to about an hour and a half real time per model.
Overall, the useful work performed by BEM- Earth scales
as O(N log N ) for N boundary elements [21].

5 Oblique ridge subduction model

The different impermeable viscosity/density contrasts defin-
ing the phases are the plate surface, the core-mantle boundary
and the surface of the Earth, which is free to deform under the
stresses produced by the underlying lithosphere and mantle,
and has a thin lubrication layer underneath.

We model a rectangular plate with fixed width and length
and a thickness of 95 km immersed in a non layered homo-
geneous mantle and impose density and viscosity contrasts
at its boundary (see Fig. 6). The lithosphere is taken to be
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Table 1 Basic model parameters

Density (contrast)
Mantle ρM 3, 300 kg m−3

Lithosphere �ρ 30 kg m−3

Viscosity

Mantle μ0 1.0 × 1021 Pa s

Lithosphere μ 200.0 × 1021 Pa s

Core μC 10.0 × 1021 Pa s

Gravity (magnitude) g 10 ms2

Plate dimensions L × W × D 5,097 × 3,823 × 95 km3

Lithosphere

Asthenosphere Isotherm

Fig. 7 Profile of a mid ocean ridge

200 times more viscous and than its surrounding mantle,
and having a constant density contrast of �ρ = 30 kgm−3

respect to it. The plate is initially discretised as a regular tri-
angular mesh subdivided 80, 60 and 4 times along its length,
width and depth respectively, with a minimum initial mesh
element length of around 20 km requiring a total of circa
90,000 boundary elements. As the simulation progresses, the
mesh deforms into an unstructured mesh with variable reso-
lution. Though it is possible to adaptively remesh the surface
in response to changes in curvature, we chose not to in favour
of computational efficiency. The basic model parameters are
shown in Table 1. The plate is indented according to the
lithospheric thickness profile of a MOR which follows a lin-
ear relationship between the thickness off the lithosphere and
the square root of the normal distance to the axis (see Fig. 7).
Once indented, the plate is bent at a dipping angle of 50◦ to
represent ongoing subduction of 15 % of its length when the
simulation starts. The shape is projected to the sphere accord-
ing to its thickness and depth and positioned in between the
surfaces representing the core and surface of the Earth. Sim-
ilar setups for which the angle θ between the MOR axis and
the trench is varied between 0◦ and 90◦ are studied.

6 Results

The BEM- Earth code approximation leads to a very coher-
ent plate motion typical of viscous slab numerical and lab-
oratory experiments on subduction [3,28]. All model runs
experience a transition stage in which the surface of the Earth
deforms as the lubrication layer responds to lithostatic com-
pensation. The system then evolves freely under the influence
of gravity through slab pull, until it reaches a quasi-steady-
state regime in which plate motion increases very gradually

Fig. 8 Time evolution of oblique MOR subduction at 80◦ (le f t) and
10◦ (right) after 30, 65 and 90 million years

in time and the slab subducts in a near vertical fashion. It is in
this stage that the different modes of subduction depending
on the oblique MOR angle become apparent. Finally the slab
reaches the core and the simulation stops.

Throughout the runs the strain rates at the tail of the plate
are consistently low for all the models and only a small degree
of lateral subduction and shortening is to be noticed as a
boundary effect. In general most of the strain accumulates
in the bending of the trench and around the MOR axis, but
as subduction progresses the onset of two different modes of
subduction are to be noticed (see Fig. 8). Varying the angle
between the MOR axis and the trench results in two distinc-
tive phases of subduction dynamics whose end members are
characterised by compression and folding in one case and
pure stretching and necking in the other (see Fig. 9).

In the first case the slab accommodates to the reduced
space available at depth with a sharp fold localised around the
near-vertical MOR axis and presents a very uniform inward
radial speed or sinking rate. In contrast, near parallel to trench
subduction of a MOR shows a strong differential sinking rate
between each side of the ridge and a high strain rate spread
over a broader region around both trench and ridge axis. A
transition between these two regimes is to be found at around
60◦ when the sinking rates at both sides of the MOR becomes
comparable (see Fig. 10). The relative motion of points at
different sides of the ridge indicates that the two resulting
regimes are further distinguished by a compressive versus an
extensional regime across the ridge.
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Fig. 9 MOR subduction orthogonal (top) and parallel to the trench
(bottom) as end members of oblique MOR subduction dynamics char-
acterised by folding and by necking and stretching respectively. (Color
figure online)

We have tested a the robustness of the results respect to
the mesh resolution for a non indented square slab with a
length equivalent to the radius of the Earth REarth by varying
the element size between 0.005 × REarth and 0.013 × REarth

(see Fig. 11) leading to surface meshes with a total num-
ber of elements between 5,625 and 40,000. The magnitude
of the correction after 100 timesteps progressively decays
at higher resolution suggesting convergence. Higher resolu-
tion models tend to be more flexible, yet the position of the

Fig. 10 Slabs of increasing oblique subduction angle from 0◦ to 80◦
in 10◦ increments, coloured according to their sinking rates (vz) as in
Fig. 9. The first element in the last row is the 60◦ critical angle for which
the sinking rates at both sides are comparable

Fig. 11 Change in shape of the subducting slab after 100 timesteps
with varying resolution. As resolution increases the profile approaches
the shaded region, suggesting convergence (cf. [19])

trailing edge of the slab and the speed of its motion remains
essentially unchanged [19].

7 Discussion and conclusions

The most remarkable result is the observation that the angle
between the MOR axis and the trench seems to be related
ceteris paribus with the two different modes of subduction
which are separated at a value of around 60◦. This suggests
that the the oblique angle of subduction is a quantity that
could control when a slab detaches forming a window or
folding into a tighter closed configuration. Further numerical
modelling including non-linear viscous and plastic rheology
would be necessary to address this claim. Possible geologi-
cal evidence could derive from the geochemical signature of
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volcanism associated with slab windows in the near-parallel
oblique subduction case.

In contrast to models with mantle layering, our slab
sinks radially with little trench retreat until it reaches the
core. Though such scenario may not be entirely realistic, it
enhances the effects of oblique subduction. The fact that the
stretching and folding start just after the equilibration stage
at the beginning of the simulation is strong indication that
the different subduction modes we have shown are likely to
be present in a more detailed model including the effects of
mantle layering.
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