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Abstract A smoothed particle hydrodynamics (SPH) solu-
tion to the Rayleigh–Taylor instability (RTI) problem in an
incompressible viscous two-phase immiscible fluid with sur-
face tension is presented. The present model is validated by
solving Laplace’s law, and square bubble deformation with-
out surface tension whereby it is shown that the implemented
SPH discretization does not produce any artificial surface
tension. To further validate the numerical model for the RTI
problem, results are quantitatively compared with analyti-
cal solutions in a linear regime. It is found that the SPH
method slightly overestimates the border of instability. The
long time evolution of simulations is presented for investi-
gating changes in the topology of rising bubbles and falling
spike in RTI, and the computed Froude numbers are com-
pared with previous works. It is shown that the numerical
algorithm used in this work is capable of capturing the inter-
face evolution and growth rate in RTI accurately.

Keywords Smoothed particle hydrodynamics (SPH) ·
Mesh free method · Projection method · Multi-phase flow ·
Interfacial flow · Rayleigh–Taylor instability (RTI)

1 Introduction

Instability developing and evolving at the interface between
two horizontal parallel fluids of different viscosities and den-
sities with the heavier fluid at the top and the lighter one at the

M. S. Shadloo · A. Zainali · M. Yildiz (B)
Faculty of Engineering and Natural Sciences, Advanced Composites
and Polymer Processing Laboratory, Sabanci University, Tuzla,
34956 Istanbul, Turkey
e-mail: meyildiz@sabanciuniv.edu

M. S. Shadloo
e-mail: mostafa@sabanciuniv.edu

bottom is known as the Rayleigh–Taylor instability (RTI) to
honor the pioneering works of Lord Rayleigh [1] and Taylor
[2]. The instability initiates when a multiphase fluid system
with different densities experiences gravitational force. As
a result, an unstable disturbance tends to grow in the direc-
tion of gravitational field thereby releasing and reducing the
potential energy of the system.

Due to being an important phenomenon in many fields of
engineering and sciences, the RTI has been widely investi-
gated by using experimental [3,4], analytical [5,6] as well
as numerical [7,8] approaches. In the literature, one may
find many qualitative mesh-dependent numerical studies for
this two-phase flow problem [9–16]. There are also a few
works that have used the smoothed particle hydrodynamics
(SPH) method to model the RTI problem [17–21]. Cummins
and Rudman [17] solved an RTI problem using the incom-
pressible SPH (ISPH) approach which is based on the pro-
jection method. Tartakovsky and Meakin [18] modeled RTI
problem in a multiphase and multi-component mixture with
the weakly compressible SPH (WCSPH) method through
solving momentum and species mass balance equations con-
currently. Hu and Adams [19] used the combination of pro-
jection methods proposed and implemented by Cummins and
Rudman [17] and Shao and Lo [20] and solved the RTI as a
benchmark problem. More recently, Grenier et al. [21] pre-
sented a new WCSPH formulation for simulating interfa-
cial flows, and modeled the RTI to validate their numerical
scheme. All of these SPH works and some others simulated
the RTI problem as a validation test case for the numerical
algorithms. Surprisingly, out of the works which have been
published up to now, there are only a few studies, especially
for the long time evolution of the RTI, where the authors
compare their numerical results with available analytical the-
ories and if it is so, mesh dependent techniques were used
[10,16], and to our best knowledge, there is no SPH work to
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date where the RTI problem is validated against analytical
data.

SPH is a relatively new meshless numerical approach
which has attracted significant attention in the last 15 years.
Compared with the conventional mesh-dependent compu-
tational fluid dynamics (CFD) methods, the SPH approach
exhibits unique advantages in modeling multiphase fluid
flows and associated transport phenomena due to its capabili-
ties of handling complex material surface behavior as well as
modeling complicated physics in a relatively simple manner
[22,23]. On the other hand, as SPH is still a developing CFD
tool, it is vital to investigate its attributes, namely, advanta-
ges or potential limitations in modeling different multiphase
flow problems to further understand and then improve this
technique. Toward this end, this work aims to simulate the
RTI problem by using the SPH method hence revealing its
ability for capturing complex hydrodynamic instabilities and
the physics in the RTI problem.

The paper is structured as follows: the presentation of the
current work begins in Sect. 2 with a concise description
of the numerical method. Afterward, governing equations
and relevant boundary conditions for 2-D simulations are
introduced in Sect. 3. The treatment of the interface for the
multiphase flow and the solution algorithm are discussed in
Sects. 4 and 5, respectively. Section 6 presents the results of
simulations conducted for a droplet problem with the effect
of surface tension force to validate the continuum surface
force (CSF) model with analytical Laplace’s solution, and
a square-droplet deformation without the influence of sur-
face tension to illustrate the nonexistence of artificial surface
tension in the used SPH discretization scheme [18,24]. In
the same section, the problem description for the RTI is pro-
vided along with simulation results validated by an analytical
linear stability analysis. The long time evolution of the RTI
is investigated and the comparison between the simulation
results and existence theories are provided in details. The
presentation is concluded in Sect. 7 with some final remarks.

2 SPH

Initially developed to solve astrophysics problems in 1977 by
Gingold and Monaghan [25] and Lucy [26] in separate works,
and later extended to solve a wide variety of fluid dynam-
ics problems [27–29], SPH is a member of the family of
Lagrangian methods. The SPH approach is based on smooth-
ing the hydrodynamics properties of a fluid through a weight-
ing/kernel function). The fluid in the solution domain is
represented by the ensemble of movable points (also referred
to as particles), which carry all relevant hydrodynamic prop-
erties such mass, density, and velocity, among others. The
weighting function W (rij, h), or in short Wij, can be any
arbitrary function (e.g., exponential, spline, and etc.) which

is required to posses some special properties [30] where rij is
the magnitude of the distance vector (rij = ri −rj) between a
particle of interest i and its neighbor j, ri is a position vector
defining the center point of the kernel function and h defines
the length of the support domain of the particle of interest.
The integral estimate or the kernel approximation to an arbi-
trary function f (ri), or fi in a concise notation, evaluated at
particle i can be introduced as

fi ∼= 〈 fi〉 ≡
∫

Ω

fjWijd
3rj. (1)

where d3rj is a differential volume element andΩ represents
the total bounded volume of the domain.

Approximating the integration in Eq. (1) by the summa-
tion over particle j and setting d3rj = 1/ψj, one can write
SPH interpolation for an arbitrary field fi as

fi =
∑

j

1

ψj
fjWij, (2)

where the number density ψi for the particle i is defined as

ψi =
∑

j

Wij, (3)

which is approximately equal to reciprocal of the correspond-
ing particle’s volume ψi = ρi/mi.

The SPH approximation for the gradient of an arbitrary
function fi can be introduced as

∂ fi

∂xk
i

=
∑

j

1

ψj
fj
∂Wij

∂xk
i

, (4)

For the sake of improving the accuracy and the stability
of the SPH method, in the literature, several forms of correc-
tive SPH gradient discretization formulations have been pro-
posed and implemented with the aim of remedying particle
inconsistency and kernel-boundary truncation related prob-
lems. Out of many excellent SPH studies that utilized the
corrective SPH schemes, some deserves particular mention
due to being the pioneering works in the field [31–37]. Ran-
dles and Libersky [31] used the renormalization procedure
which modifies the gradient of the kernel function through
utilizing two by two corrective matrix. Liu, Belytschko, and
their co-workers [32–36] in series of papers used a reproduc-
ing kernel approach, which consists of a correction function
and the conventional SPH kernel function and showed that
their correction formulations removes the tensile instability
[35]. It should be mentioned that many other corrective for-
mulations are also possible. For example, Chen and Beraun
in their work [37] also presented corrective SPH formulations
for the first and the second order derivatives. Their first order
derivative correction is quite similar to what has been utilized
in this work. However, their second order derivative correc-
tion requires the inversion of three by three matrix unlike the
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formulation presented in this work. In our earlier studies, we
have attempted to use a corrective SPH formulation for the
second-order derivative which also necessitates the inversion
of three by three corrective matrix, and observed that three
by three corrective matrix is rather sensitive to particle distri-
bution, and becomes easily ill-conditioned, which is not the
case for two by two corrective matrix [38].

Using a Taylor series expansion and the properties of a
second-rank isotropic tensor, the corrective SPH approxima-
tion for the gradient of a vector-valued function can also be
introduced as

∂ f p
i

∂xk
i

aks
i =

∑
j

1

ψi

(
f p
j − f p

i

) ∂Wij

∂xs
i
, (5)

where aks
i = ∑

j
1
ψj

rk
ji
∂Wij
∂xs

i
is a corrective second-rank tensor.

The corrective term aks
i is ideally equal to Kronecker delta

δks for a continuous function. The corrective SPH discreti-
zation scheme for the Laplacian of an arbitrary function can
be written in two different ways [38,22]

∂

∂xk
i

(
ζi
∂ f p

i

∂xk
i

)
= 8

(
a pm

i

)−1 ∑
j

2

ψj

ζiζj

ζi + ζj
f p
ij

r p
ij

r2
ij

∂Wij

∂xm
i
,

(6)

∂

∂xk
i

(
ζi
∂ f p

i

∂xk
i

)
= 8(

1 + all
i

) ∑
j

2

ψj

ζiζj

ζi + ζj
f p
ij

rs
ij

r2
ij

∂Wij

∂xs
i
,

(7)

where ζ might denote μ, and ρ−1, and f p
ij = f p

i − f p
j .

In a multiphase system with a large mismatch in trans-
port parameters such as density and viscosity of phases,
the attentive treatment of interface fluxes or gradients is of
significant importance for the accuracy and the robustness
of the computation. Therefore, it is a common practice in
the SPH approach to smooth transport parameters through
using a weighted harmonic mean interpolation, namely ζi =
2ζiζj/(ζi + ζj), as has been done in above equations.

It is to be mentioned that in our early works [38,22], Eqs.
(5) through (7) were written based on the particle density
(not in terms of the number density ψi) and were used to
treat single phase problems. In this work, Eq. (6) is used
for the discretization of the Laplacian of velocity field in
the linear momentum equation while Eq. (7) is utilized for
the Laplacian of pressure in the pressure Poissons equation.
Finally in the present simulations, the compactly supported
2-D quintic spline is used

Wij=χ

⎧⎪⎪⎨
⎪⎪⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5 0 ≤ q ≤ 1
(3 − q)5 − 6(2 − q)5 1 ≤ q ≤ 2
(3 − q)5 2 ≤ q ≤ 3
0 3 ≤ q

(8)

Here, q = rij/h and the spline coefficient χ is equal to
7

478πh2 for 2-D quintic spline.

3 Governing equations

We consider Newtonian, viscous, incompressible, and immis-
cible two-phase system. The governing equations for such a
system are the conservation of mass and linear momentum,
which are respectively formulated in Lagrangian form as

Dρ

Dt
= −ρ∇ · v, (9)

ρ
Dv
Dt

= ∇ · t + fvs + ρfb, (10)

where v is the fluid velocity vector, ρ is the fluid density, t
is the total stress tensor, fb is the body force which is equal
to gravitational force in this work , and fvs is the volumet-
ric surface tension force. The total stress tensor is defined
as t = −pI + T, where p is the absolute pressure, I is the
identity tensor, and T = μ(∇v + (∇v)T ) is the viscous part
of the total stress tensor, where μ is the dynamic viscosity.
Finally, D/Dt is the material time derivative operator.

4 Computation of the surface tension force

The surface tension force acts on the interface between two
fluids. The balance of linear momentum at the interface can
be formulated as fs = σκn for the constant surface tension
coefficient. Here fs is the surface tension force per unit area
which acts on the interface in the unit normal direction, σ
is the surface tension coefficient, n is the unit normal vec-
tor to the interface, and κ is the curvature of the interface.
For the sake of computational simplicity and efficiency, it is
preferable to express this local surface force as an equivalent
volumetric force fvs (the force per unit volume) as is done
in the CSF method originally proposed by Brackbill et al.
[10]. The basic concept behind this approach is to replace the
sharp interface between two fluids with a transition region of
a finite thickness. This can be realized through multiplying
the surface tension force per unit area with the delta Dirac
function δs as

fvs = σκδsn. (11)

The volumetric surface tension force fvs acts only on the
interface along the unit normal direction, and vanishes in the
bulk of the fluid. The effect of the surface tension is conse-
quently included in the computational model in the form of
an external force term.

To be able to distinguish among constituents of an
immiscible multiphase system, and calculate relevant inter-
face fields (i.e., the interface unit normal, curvature, and
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interfacial forces), each particle is assigned to color function
such that c = 0 for fluid 1 and c = 1 for fluid 2. To avoid
sharp variations in the color function across the interface, the
color function for each particle is smoothed as

Ci =
∑

j Wijcj∑
j Wij

. (12)

Here, it should be noted that the smoothed color func-
tion Ci effectively represents the volume fraction of fluid 2,
namely, C (2)

i = Ci and C (1)
i = 1 − Ci wherewith one can

write
∑
α Cα

i = 1 where Cα
i is the smoothed color function

of α th phase.
Each fluid particle has constant ρ and μ. Since ρ and μ

are discontinuous across the interface, the numerical scheme
might have instabilities especially in the case of a large mis-
match in the transport parameters of constituents. Hence, it
is practical to smooth the density and the viscosity of flu-
ids through using a weighted arithmetic mean interpolation.
Upon using smoothed color function, the density and viscos-
ity of the multiphase system can be calculated from those of
constituents respectively as

ρi = (1 − Ci)ρ1 + Ciρ2, (13)

and

μi = (1 − Ci)μ1 + Ciμ2. (14)

The unit normal vector n for particle i can be calculated
as

n = ∇C/|∇C |. (15)

Unit normals in the vicinity of fringes of the interface
might be erroneous and in turn may produce faulty results
when they are used in the computation of the curvature.
Therefore, a constraint is required to determine reliable nor-
mals as also pointed out in [39]. In this direction, the con-
straint in the form of |∇Ci| > ε/h is employed. Here, ε is a
constant used to control the thickness of the interface, which
is set to be ε = 0.08 in this work. Particles satisfying this
condition are regarded to be interface particles with reliable
unit normals.

Further, upon using only these reliable normals, the cur-
vature for particle i is calculated as

κ = −∇ · n. (16)

Finally, substituting Eqs. (15) and (16) into Eq. (11), and
approximating the delta Dirac function as the magnitude of
the gradient of the color function |∇C |, one can rewrite the
volumetric surface force as,

fvs = −σ(∇ · (∇C/|∇C |))∇C. (17)

5 Numerical scheme

In this section, we describe the sequence of the numerical
procedure implemented in this work. The modeling domains
of each test case are represented by particles generated on
a Cartesian grid with equidistant particle spacing. Physical
boundaries of the computational domain are defined by a
row of fixed particles whose relevant fields are evolved in
accordance with the numerical solution. Boundary and fluid
particles are distinguished through associating them with dif-
ferent integer label. Moreover, boundary particles with dis-
similar boundary conditions are also differently labeled so
that one can implement various boundary conditions when
necessary. The transport parameters and initial conditions are
assigned to both fluid and boundary particles. All fluid and
boundary particles are given the same smoothing lengths as
h = ηrij,o where rij,o is the initial particle spacing, and η is
a problem-dependent input parameter. In the present work, a
constant smoothing length with η = 1.6 is used.

The neighbor list is formed for each particle utilizing a
standard box-search algorithm, and then ghost particles are
generated for the utilization of multiple boundary tangents
(MBT) boundary treatment in the numerical procedure. The
details of the MBT method can be found in our earlier works
[40,38]. The field values Γ (i.e., velocities, and pressure)
of a ghost particle are obtained depending on the type of
boundary condition implemented. For the Dirichlet bound-
ary condition which specifies values for field variables on the
boundary of the domain, the following linear interpolation is
utilized; namely, Γg = 2Γb − Γ f where Γg , Γb, and Γ f are
the fields variables of the ghost, boundary, and fluid parti-
cles, respectively. As for the Neumann boundary condition
which specifies values for the field variables as a derivative
on the boundary, a ghost particle is assigned to the same field
values as the corresponding fluid particle, namely, Γg = Γ f .
Besides, ghost particles are bestowed with the same mass,
density, number density, and viscosity as their correspond-
ing fluid particles.

The mass of particles is calculated using the relation mi =
ρi/ψo where ψo = max(ψi) is the initial or reference num-
ber density. In what follows, one can notice that particles of
dissimilar phases are to have different masses which are kept
constant throughout the simulation. Having entered into the
outermost time loop of the numerical algorithm, the time step
is calculated adaptively through satisfying the so-called Cou-
rant–Friedrichs–Lewy (CFL) condition as Δt ≤ ch/Vmax

with c = 0.25 in this work.
Then, at each time step, before moving fluid particles to

their temporary or intermediate position, the average parti-
cle spacings ri,o for all fluid particles are computed as ri,o =∑

j rij/N (with N being the number of neighbors for particle
i), which is followed by the calculation of the artificial parti-
cle displacement (APD) vector δri = βVmaxr2

i,o
∑

j ri/r3
ij for
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all fluid particles where β is a problem-dependent parameter
which is set to be equal to 0.02 for all test cases [38,22].

With the knowledge of divergence free velocity v(n)i , and

particle position r(n)i at time n, all fluid particles are advected
to their temporary or intermediate positions

r∗
i = r(n)i + v(n)i Δt + δri. (18)

where relatively small APD vector is added to the above
given advection equation with the aim of disturbing the par-
ticle trajectories hence preventing local particle clusterings
or fractures in the computational domain which are inherent
to SPH method and known to be one of the sources of tensile
instability problem.

Due to the fact that particles have been moved to their
intermediate positions, their neighbors (both real and ghost
particles) need to be updated. Depending on the magnitude
of the velocity fields, one may assume that the neighbors of a
given particle may not change significantly. Thus, to reduce
the computational burden incurred due to the neighbor find-
ing and ghost particle-creation algorithms, the neighbor lists
and ghost particles are updated every tenth time step. After-
ward, in the interface subroutine, the surface tension force is
computed, and the mass and the viscosity of the mixture are
calculated through using a weighted arithmetic mean inter-
polation as mi = ∑

α mα
i Cα

i and μi = ∑
α μ

α
i Cα

i .
One of the most efficient ways to solve the balance of lin-

ear momentum equation is the projection method by which
the momentum balance equation is decoupled from the conti-
nuity equation. The projection method relies on the principle
of Hodge decomposition whereby any vector field can be
decomposed into a divergence-free part and the gradient of
an appropriate scalar potential such that

v∗
i = vi + Δt

ρ
∇ p(n+1)

i . (19)

Upon taking the divergence of Eq. (19), one can obtain
the pressure Poisson equation as

∇ · v∗

Δt
= ∇ ·

(∇ p

ρ

)
, (20)

noting that the term ∇ · v is set to be zero due to the assump-
tion of incompressibility. In the pressure Poisson equation,
the divergence of the intermediate velocity acts as a source
term. Eq. (20) is subjected to the Neumann boundary condi-
tion( ρ
Δt

)
(v∗ − v) · n = ∇ p · n, (21)

that can be obtained by projecting Eq. (19) on the outward
unit normal vector n to the boundary. The pressure boundary
condition can be further simplified to a form of ∇ p · n =
0 with the assumption that the boundary conditions for the
divergence free velocity are used for the intermediate veloc-
ity, namely, (v∗ − v) · n = 0.

The intermediate velocity field v∗ is calculated on the
intermediate particle locations by solving the momentum
balance equations with forward time integration without the
pressure gradient term as

v∗
i = v(n)i + f (n)i Δt, (22)

together with pertinent boundary conditions, where f i repre-
sents the right hand side of the linear momentum equation.

Given the intermediate particle positions and velocities,
the intermediate number densities and divergences of inter-
mediate velocities are calculated, which are used in the pres-
sure Poisson equation. The intermediate number density is
calculated through the solution of the mass conservation in
the following form

ψ∗
i = ψ

(n)
i −Δtψ(n)i

(∇ · v∗
i
)
. (23)

The pressure Poisson equation is solved together with the
Neumann boundary condition using a direct solver based on
the Gauss elimination method to calculate the pressure p(n+1)

i
wherewith the incompressibility condition can be enforced.
The intermediate number and mixture densities are used
when solving the pressure Poisson equation where interme-
diate mixture density is calculated as

ρ∗
i = ψ∗

i

∑
α

mα
i Cα

i . (24)

Then the divergence-free velocities are obtained by

v(n+1)
i = v∗

i − Δt

ρ
∇ p(n+1)

i︸ ︷︷ ︸
I

. (25)

To be able to treat large variation in the density across the
interfaces in a robust manner without facing pressure related
convergence issues, the discretization of the pressure gra-
dient term I in Eq. (19) requires a special treatment. Upon
using the product rule of differentiation, one can write that

1

ρ
∇ p = ∇

(
p

ρ

)
− p∇

(
1

ρ

)
, (26)

whose right hand side can be discretized by using Eq. (5) as

1

ρ
∇ pi

=
(

aks
i

)−1

⎛
⎝∑

j

1

ψj

[(
pj

ρj
− pi

ρi

)
−

(
pi

ρj
− pi

ρi

)]
∂Wij

∂xs
i

⎞
⎠

=
(

aks
i

)−1

⎛
⎝∑

j

1

ρjψj

(
pj−pi

) ∂Wij

∂xs
i

⎞
⎠ . (27)

It is noted that in the calculation of the pressure gradi-
ent in Eq. (27), the intermediate number density and mixture
densities are used. Finally, with the correct velocity field for
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Fig. 1 a Initial particle distribution for the circular droplet (fluid 2) surrounded by the background fluid (fluid 1) and b pressure field for the over
all domain. The particle resolution is 100 × 100

time-step n + 1, all fluid particles are moved to their new
positions

r(n+1)
i = r(n)i + 0.5

(
v(n)i + v(n+1)

i

)
Δt + δri. (28)

At the end, neighbor and ghost particles lists are updated,
and then the initial (reference) number density of the fluid
is restored. For further details of the numerical algorithm,
readers are referred to our earlier work [38].

6 Results

In the following, we consider three test cases, two of which
are modeled to validate the accuracy of the surface tension
force and the numerical scheme used while the last one is
performed to reveal the ability of the SPH method for cap-
turing the physics behind the hydrodynamic instabilities in
the RTI problem correctly.

6.1 Laplace’s law

A static circular bubble is a commonly used test case for
validating the accuracy of numerically computed pressure
jump across the interface in multiphase systems since it has
a simple analytical solution, (pin − pout = σ/r ), widely
referred to as Laplace’s law for a stationary droplet [16,41].
The computational domain for this test case is a unit square
with H denoting the edge length and a circular bubble with
a radius of r = 0.25 m is placed at the center of the unit
square domain (H = 1 m, see Fig. 1a). It is represented by
an array of 100 by 100 particles in x- and y-directions, and
the smoothing length for all particles is set equal to 1.6 times
the initial particle spacing.

The simulation parameters are density, viscosity and sur-
face tension coefficient with the numerical values of ρ1 =
ρ2 = 1000 kg/m3, μ1 = μ2 = 1 Pa s and σ = 0.25 N/m,
respectively. The utilized model parameters, namely, the
radius of the bubble and the surface tension, should lead to
pressure jump of unity on the interface in accordance with
the Laplace relation pin − pout = σ/r = 1 Pa. As for the
boundary conditions, the pressure on the boundaries is set
equal to zero, and the no-slip boundary condition is imposed
for velocity on all solid walls. The initial velocity field is
zero.

As stated previously, in the numerical modeling of multi-
phase flows, the physically sharp interface is approximated
by a transition region of a finite thickness, and the surface
tension force is included in the momentum balance equa-
tion as a volumetric force that is active only over this finite
interface thickness through the usage of Dirac delta func-
tion. Thus, it is numerically impossible to reproduce sharp
or exact pressure jump as in the case of analytical solution
[16] since the pressure jump across the interface is smoothed.
The existence of this smoothed pressure gradient, and also
the slight variation of curvature along the perimeter of the
circular bubble due to the discrete nature of the numeri-
cal approach induce spurious or parasite currents which are
observed as vortices in the vicinity of interface despite the
absence of any external force. Not only are they inherent
to the CSF method but also observed in other surface ten-
sion methods which use the discrete delta function approach
[12,42]. Figure 1b presents the computed pressure field for
the over all domain.

Figure 2 illustrates the locations of the spurious currents
in the neighborhood of the interface for two different mesh
resolutions for the first time step. It is seen from the figure
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Fig. 2 The locations of the spurious currents in the neighborhood of the interface for the particle resolutions of a 50 × 50 and b 100 × 100

Table 1 The L1 and L2 norms of velocity magnitude after the first time
step

Particle resolution L1 norm L2 norm

25 × 25 8.64e−6 1.64e−6

50 × 50 4.64e−6 6.4e−7

100 × 100 3.64e−6 2.4e−7

200 × 200 2.64e−6 1.35e−7

that the spurious current can be alleviated through the mesh
refinement. In spite of the spurious current, it is observed
that the computed pressure gradient across the interface is
equal to pin − pout = 1.004 Pa which is in a good agree-
ment with the analytical result. Here, the pressure inside and
outside the bubble is calculated by averaging the pressure
fields of particles for fluids 2 and 1 which are far enough
from the interface. Since the parasitic current in this test case
in the energy point of view is at least two order of magni-
tude lower than the applied surface tension force, it does not
create any serious effect on the results; nevertheless, in some
problems, force due to the spurious effect might be compa-
rable to other physical forces such as viscous, gravitational,
and surface tension forces, among others, thereby leading
to over/underestimated erroneous values in computational
results.

To show the convergence of the numerical model, in
Table 1 are given the L1 and L2 norms of the velocity mag-
nitude for the same time step, which are respectively defined

as L1 = ∑N
i ‖v‖/N and L2 =

√∑N
i ‖v‖2/N 2. Given that

the simulation starts with zero initial velocity field, the inter-
face velocities after the first time step are a direct measure
for the error in the pressure fields. As seen from Table 1,
as the particle resolution increases, both L1 and L2 norms
decrease, which indicates the convergence due to the particle
refinement.

6.2 Square droplet

The presence of velocity field on the interface of two flu-
ids in the absence of any external forces due to the jump in
the density of phases across the interface is known as artifi-
cial surface tension [24]. This is an undesired non-physical
phenomenon which is directly related to the discretization
scheme and the treatment of density discontinuity. The artifi-
cial surface tension can introduce some error into the model
thereby leading to inaccurate calculation of curvature, and
the formation of unphysical flow across the interface. Square
droplet problem is one of the simplest test cases which can be
used effectively to demonstrate if the artificial surface tension
exists in the solution domain. For this benchmark problem,
the domain geometry and the boundary conditions are iden-
tical to the first one except that the bubble is replaced by a
square droplet. The density ratio of phases is R = ρ2

ρ1
= 5

where ρ1 = 1000 kg/m3 and the kinematic viscosity is kept
constant, which is equal to ν1 = ν2 = 10−3 m2/s.

Figure 3 shows particle positions for t = 0, and t = 1 s.
Unlike the standard SPH [18], both sub figures are identi-
cal to each other, which indicates that the particle number
density formulations used in the discretization of governing
equations do not generate any artificial surface tension.

6.3 RTI

The RTI can occur in a multiphase fluid system where a
layer of heavier fluid is placed on top of another layer of
lighter fluid with an interface having a small initial pertur-
bation. This disturbance grows, and subsequently produce
a spike of heavier fluid moving downward into the lighter
fluid and bubbles of the lighter fluid moving upward. For
modeling the RTI phenomena, a rectangular computational
domain (Fig. 4) with the width and the height of H and 4H
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Fig. 3 a Initial particle distribution of a square drop of fluid 2 surrounded by fluid 1 and b the particle distribution for the same problem after 1 s

is used. For simplicity, H is chosen to be unity (H=1 m).
The number of particles for each fluid region is the same.
Fluid and boundary particles are given the same smooth-
ing lengths as h = 1.6rij,o. An initial sinusoidal pertur-
bation, y = 2 + ξo cos(kx), is applied to the fluid–fluid
interface through swapping the color fields of particles in
the vicinity of the perturbation where ξo is the amplitude of
the applied disturbance, which is ξo = 0.05H , k is the wave
number k = 2/πλ, and λ is the wave length which is set to
be λ = 1 m.

In all simulations, the density of the heavier fluid layer
is set to be ρ1 = 1000 kg/m3 and kinematic viscosity for
both fluids are kept constant, which is equal to ν1 = ν2 =
10−3 m2/s. The body force taken as gravity (g) acts only in
downward direction on all particles with the numerical value
of 0.09 m/s2. The boundaries are treated as solid walls, and
the no-slip and zero pressure gradient boundary conditions
are imposed using the MBT method [40].

In accordance with the linear theory for RTI [43], the initial
sinusoidal perturbation of the interface grows exponentially
in time, and the growth rate is given by

γ 2 = kg

[
AT − k2σ

g(ρ1 + ρ2)

]
, (29)

where AT = ρ2−ρ1
ρ2+ρ1

= R−1
R+1 is the Atwood number. It should

be noted that Eq. (29) is the well-known exact analytical solu-
tion for inviscid fluids subjected to surface tension. Consid-
ering the effect of viscous force , Mikaelian [6] presented an
accurate analytical approximation for the asymptotic growth
rate of viscous flow in the linear regime in the form of

γ 2−μ1 + μ2

ρ2
(1 + AT )k

2γ −
[
AT kg − σk3 1 + AT

2ρ2

]
= 0, (30)

which deviates from the exact solution less than 11 %.

Upon setting γ 2 = 0 in Eq. (29), one can calculate the
maximum or critical surface tension, σc = (ρ2 − ρ1)g/k2,
below which the given perturbation is unstable, namely, σ <
σc where σc is the critical surface tension and shows the
border of instability. In what follows, one can introduce an
stability parameter as

φ = σ/σc, (31)

where φ > 1 means that the two-fluid system should be
stable.

Figure 5 compares analytical and numerical growth rates
in the linear regime which are plotted as a function of sta-
bility parameter where γe, (γx1, γx2), and γn denote respec-
tively the growth rate for inviscid flow, the roots of growth
rate for viscous flow, and the numerical growth rate, which
are correspondingly calculated from Eqs. (29) and (30)
and

γn = ξ̂ /ξo − 1

t
. (32)

Here t is the simulation time at which the perturbation
amplitude ξ̂ is approximately equal to ξ̂ ≈ 0.1H . It should
be noted that there is a good agreement between analyti-
cal and numerical results except for some higher values of
the stability parameter. However, all results follow the same
pattern.

Figure 6 presents the results of numerical simulations
with the density ratio of R = 2 which corresponds to
AT = 1/3 for various stability parameters, namely, φ =
0.0, 0.2, 0.6, 0.9, and 1.1. In all cases, results are plotted
for dimensionless time t∗ = t (g/H)0.5 = 9.0. Simulation
results show an exponential growth for φ < 1.15 and a stable
oscillation for φ > 1.15.

The close observation of Fig. 6 suggests that the mor-
phology of the instability for the unstable regime can be

123



Comput Mech (2013) 51:699–715 707

0 0.5 1
0

1

2

3

4

x/H

y/
H

(a)

0 0.25 0.5
1.75

2

2.25

x/H

y/
H

(b)

Fig. 4 a Initial uniform particle distribution for RTI and b the zoomed
in view of the initial uniform particle distribution for the left half of the
domain. The particle resolution is 80 × 320

divided into three visible categories. The first category is
associated with small stability parameter values due to rather
small surface tension. In this category, the gravitational force
dominates over the surface tension force, hence causing the
spike to accelerate into the lighter fluid. As a result, one can
notice the formation of secondary vortices, so called Kelvin–
Helmholtz instability, on the bubble-spike interface owing to
the interfacial shear (see Fig. 6a, b). The second category
is observed when the gravitational and interfacial forces are
comparable. In this case, although the spike has its side tails,
the shear due to the acceleration is not so strong to lead to the
creation of secondary instabilities (see Fig. 6c). In the last cat-
egory corresponding to higher values of stability parameter,
where the surface tension force is dominant, the instability is
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Fig. 5 The dependence of the linear growth rate γ of a disturbance on
its stability parameter φ for the Atwood number of AT = 1/3

hindered (see Fig. 6d, e). It is noted that although according
to Eq. (31), the border of instability is marked by the sta-
bility parameter of unity φ = 1.0, here we have found that
this value is equal to φ ≈ 1.15 which deviates by 15 % from
the analytical calculation. Several reasons might contribute
to this discrepancy.

The first reason might be initial particle distribution.
Recalling that the computational domain is initially repre-
sented by a Cartesian grid with a equidistant particle spac-
ing, and then the sinusoidal perturbation is formed through
swapping the color fields of particles in the vicinity of the
planar interface, it is rather difficult to obtain highly smooth
and continuous initial sinusoidal disturbance due to the dis-
creteness in the particle distribution, as seen in Fig. 4b. This
may result in several smaller wave-like structures on the
main wave length. In the course of simulations, especially
for initial times in the linear regime, these wave-like struc-
tures may act as additional disturbances which tend to grow,
hence causing over prediction of the growth rate and the
stability parameter. Another reason might be spurious cur-
rents due to the usage of CSF model for the surface tension.
As elaborated in Sect. 6.1, the spurious current brings about
unphysical velocity field in the vicinity of the interface, which
causes extra kinetic energy therein, thereby shifting the RTI
problem toward instable region. Finally, the numerical dif-
fusion owing to the smoothing nature of the SPH method for
variables such as density, viscosity, pressure, among others,
especially in the neighborhood of the interface might also
contribute to the deviation in the stability parameter since it
consumes the stabilizing surface energy due to the surface
tension.

Time evolution of the fluid interface of the single mode
perturbation RTI for the stability parameter of φ = 0.0 and
φ = 0.4 are shown in Figs. 7 and 8, respectively. Here, results
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Fig. 6 The evolution of the fluid interface of the single mode pertur-
bation RTI for the Atwood number of AT = 1/3 at dimensionless
time of t∗ = t (g/H)0.5 = 9. The left hand side of each sub figures

presents particle distributions whereas the right hand side indicates the
contour plots of the color function for the stability parameter values of
a φ = 0.0, b φ = 0.2, c φ = 0.6, d φ = 0.9, and e φ = 1.1

Fig. 7 Time evolution of the fluid interface of the single mode per-
turbation RTI for the Atwood number of AT = 1/3 and the stability
parameter of φ = 0.0. The left panels of each sub figures show particle

distributions while the right panels illustrate contour plots of the color
function for dimensionless times of a t∗ = 1.8, b t∗ = 3.6, c t∗ = 5.4,
d t∗ = 7.2, and e t∗ = 9.0

are presented for five equidistant dimensionless times with
0 ≤ t∗ = t (g/H)0.5 ≤ 9.0.

Upon disturbing the initial planar interface sinusoidally,
the hydrostatic pressure acts to drive the heavier fluid into the
lighter one with the disturbance amplitude initially growing
exponentially. Shortly afterward, a “mushroom cap” shape

begins forming. As the time progresses, the heavy fluid fall-
ing down gradually forms a central spike with two side tails
which shed side spikes from their ends for the lower stability
parameter case. Eventually, for the first case where φ = 0.0,
the main spike of the heavy fluid experiences the Kelvin–
Helmholtz instability while two side spikes are stretched and
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Fig. 8 Time evolution of the fluid interface of the single mode per-
turbation RTI for the Atwood number of AT = 1/3 and the stability
parameter of φ = 0.4. On the left panels are given particle distributions

while on the right panels are presented contours of the color function for
dimensionless times of a t∗ = 1.8, b t∗ = 3.6, c t∗ = 5.4, d t∗ = 7.2,
and e t∗ = 9.0

folded into very complicated shapes. On the other hand for
the second case (φ = 0.4), the interface along the central
spike, as well as the fronts of both bubble and the spike remain
relatively smooth.

The features of RTI during the time evolution can be better
illustrated via the velocity fields. For this reason, the velocity
vectors and magnitudes for the same set of data are presented
in Figs. 9 and 10. As expected, the heavier fluid falls down
in the middle and the lighter fluid rises along vertical walls.
A distorted single vortex is clearly visible at the initial time
for both cases. For the lower stability parameter case (see
Fig. 9), a strong shear layer exists, which provides a good
condition for the formation of secondary instabilities. In this
situation, with an increase in time, more and more vortices
are generated and the flow field becomes quite distorted along
both side of the domain. However, an increase in the stability
parameter (or an increase in the surface tension) significantly
suppresses the development of both Kelvin–Helmholtz insta-
bility and the tails roll-up and the interface along the insta-
bility remains rather smooth (see Fig. 10). In this case, up
to late time, the dilute single vortex still exists and elongates
along the domain height. The interfacial patterns obtained in
this work compare very well with those in [13,44].

In Figs. 11 and 12, the positions and velocities of the bub-
ble’s fronts and spike’s tips, hb, vb and hs , and vs respectively,
are plotted as a function of time for the test case presented
in Fig. 6. As expected, the lower the stability parameter, the
higher the bubble front (Fig. 11a) and the faster the bubble
velocity (Fig. 11b). The bubble velocity is one of the impor-

tant characteristic behaviors of RTI which attracted the atten-
tion of researchers [45–47]. The single bubble is found to rise
with the steady velocity of [48]

vb = Fr

√
ρ2 − ρ1

ρ2

gDb

2
, (33)

where Fr is the Froude number (a dimensionless number
which is defined as the ratio of inertial to gravitational forces
and is used to quantify resistance of an object moving through
a fluid), and Db is the bubble diameter. If Db is taken to be
approximately equal to λ and with some simple mathemat-
ical manipulation, the following relationship for Fr can be
obtained:

Fr = vb√
AT

1+AT
gλ
. (34)

It is noted that Eqs. (33) and (34) does not take into account
the dilution of bubbles due to the entrainment of heavier fluid
and any physical and numerical diffusions.

Calculating the magnitude of bubble velocity from numer-
ical results, one can obtain the Fr number for the bubble
motion as presented in Fig. 13. Evidentially, it is shown that
two well known analytical solutions proposed by Goncha-
rov [46] and Abarzi et al. [47] form the lower and the upper
bounds for the simulation results. Additionally, the presented
velocity and Fr number patterns are consistent with those
reported in literature [49,50].
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Fig. 9 Time evolution of velocity fields of the RTI for the Atwood
number of AT = 1/3 and the stability parameter of φ = 0.0. The left
hand sides of sub figures denote velocity vectors while the right hand

sides show velocity contours (m/s) (the interval between contours is
0.02) for the dimensionless time of a t∗ = 1.8, b t∗ = 3.6, c t∗ = 5.4,
d t∗ = 7.2, and e t∗ = 9.0

Fig. 10 Time evolution of velocity fields of the RTI for the Atwood
number of AT = 1/3 and the stability parameter of φ = 0.4. The left
hand sides of sub figures denote velocity vectors while the right hand

sides show velocity contours (m/s) (the interval between contours is
0.02) for the dimensionless time of a t∗ = 1.8, b t∗ = 3.6, c t∗ = 5.4,
d t∗ = 7.2, and e t∗ = 9.0

The sensitivity of the numerical solutions to particle num-
bers has also been investigated through solving a test case
with the Atwood number of AT = 1/3 and the stability
parameter of φ = 0.4 on three different sets of particles
(i.e., 60 × 240 (coarse), 80 × 320 (intermediate), and 120 ×
480 (fine)). Results of these simulations are summarized as;
the interface position at dimensionless time of t∗ = 4.5 in

Fig. 14a, and the y-coordinates of the tip of the falling (spike)
and rising (bubble) fluid as function of dimensionless time
in Fig. 14b. Figure 14a demonstrates evidently that the inter-
mediate particle number provides solutions with sufficient
accuracy considering the trade-off between computational
costs and capturing the features being studied. Additionally,
Fig. 14b indicates that the bubble position is well reproduced
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Fig. 11 a The y-coordinate positions and b the velocities of the tip of the rising fluid (bubble) versus dimensionless time at the Atwood number
of AT = 1/3 for various stability parameters, namely, φ = 0.0, 0.2, 0.6, 0.9, and 1.1
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Fig. 12 a The y-coordinate positions and b the velocities of the tip of the falling fluid (spike) versus dimensionless time at the Atwood number of
AT = 1/3 for various stability parameters, namely, φ = 0.0, 0.2, 0.6, 0.9, and 1.1

by using coarse particle number, but the spike appears to
need at least the intermediate particle resolution in order to
achieve convergence. Therefore, in this work, all RTI results
are obtained using intermediate particle resolution.

Like many other works on the numerical simulation of
RTI in literature, the previously presented results have been
obtained utilizing initially uniform Cartesian particle distri-
bution (referred to as cubic grid hereafter). For the sake of
completeness, to be able assess possible difficulties caused

by irregular distributions of particles, numerical experiments
with initially non-uniform particles have also been con-
ducted; namely, staggered Cartesian grid and two different
forms of circular grid (radially centered, and radially off-
centered) with nearly equal particle spacing as illustrated in
Fig. 15b, c, and d, respectively. Particles for circular grids
are generated following the procedure described. Initially,
particle spacing is determined in accordance with the dimen-
sions of domain boundaries and the number of particles in the
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Fig. 13 The Froude number of the rising fluid (bubble) versus dimen-
sionless bubble tip position at the Atwood number of AT = 1/3. The
solid and the dashed lines are the analytical solutions proposed by Gon-
charov [46] and Abarzi [47] respectively, and the it square and circle
points represent the simulation results for the values corresponding to
stability parameters φ = 0.0, and φ = 0.2 respectively. The dimen-
sionless bubble tip position is calculated as h∗

b = hb/λ

x- and y-direction of the Cartesian grid. Then, the largest
boundary length is chosen as a radius for the greatest circle.
This radius is divided into particles with the same particle
spacing as the boundary particles. Accordingly, the position
of each particle on the radius of the largest circle (i.e., 4H for
the current computational domain configuration) is used as
the radius for other smaller circles. The number of particles
to be generated on each circle is determined in a way that
the particle spacing is equal. Once particles are generated in
circular manner on all circles, the rectangular computational
domain is extracted from the domain represented by particles
with circular arrangement. Simulation parameters for numer-
ical experiments conducted on these irregular particle distri-
butions are identical to one presented in Fig. 7c. The number
of particles for cubic grid, staggered grid, radially centered

and off-centered grids is 25600, 25600, 25974, and 25989,
respectively. It is noted that the non-uniform particle distribu-
tion makes it impossible to construct a symmetric disturbance
with respect to vertical central line. Due to the discreteness
of the particles, the initial amplitudes of the disturbances for
circular grids are slightly different from cubic and staggered
grids, and circular grids have larger y-coordinate positions
for the tip of the spike than cubic and staggered grids with
respect to bottom horizontal wall of the domain. As can be
seen from Fig. 15f–h, these issues lead to the development of
asymmetry in the spike of the instability, and inconsistencies
among simulation results in terms the position of the tip of
the spike as well as the straightness of the stem of the spike
since the initial cosine shape disturbance is no longer a per-
fect cosine function and also there are also several wavelike
disturbances on the main wave which change the form of the
initial disturbance. To conclude, even though as the simula-
tion progress, all fluid particles acquire random distribution,
it appears that the initial particle distribution is quite impor-
tant to be able construct a symmetric and a smoothly varying
disturbance.

7 Conclusion

The SPH method has been used for the simulation of incom-
pressible multiphase flow where the interfacial dynamics are
modeled by the CSF model. Numerical simulations were car-
ried out for three different 2-D problems namely, circular
and square droplet, and RTI developed from the single-mode
initial perturbation. Our simulations for the first two prob-
lems validate the accuracy of the implemented CSF model
and also show the non-existence of artificial surface ten-
sion in the used numerical scheme while the last problem
reveals most features of RTI observed in previous theoretical
and numerical studies. For the single-mode RTI, both initial
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Fig. 14 Particle convergence for a test case with the Atwood number
of AT = 1/3 and the stability parameter of φ = 0.4 on three differ-
ent sets of particles (i.e., 60 × 240 (coarse), 80 × 320 (intermediate),

and 120 × 480 (fine)); a the interface position at dimensionless time of
t∗ = 4.5, and b the y-coordinates of the tip of the falling (spike) and
rising (bubble) fluid versus dimensionless time
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Fig. 15 The different initial particle distributions namely, a cubic,
b staggered, c radially-centered, and d radially-off-centered, and in sub
figures e, f, g and h are given the evolutions of the fluid interface of the
single mode RTI for the Atwood number of AT = 1/3 at dimensionless
time of t∗ = t (g/H)0.5 = 5.4 calculated correspondingly on the grids

in sub figures a, b, c and d. It is noted that sub figure h has the low-
est initial disturbance amplitude (0.044) and highest tip position with
respect to the bottom wall of the domain which might explain the lag
in the presented position of the tip of the spike

linear growth rate and terminal bubble velocity as well as
Froude number agree well quantitatively with the theoreti-
cal predictions and previous numerical simulations. Further-
more, for the stability parameter analysis, some deviations
from analytical results were noted, which were discussed
and reasoned in details.
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