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Abstract A procedure for generating curved meshes, suit-
able for high-order finite element analysis, is described. The
strategy adopted is based upon curving a generated initial
mesh with planar edges and faces by using a linear elasticity
analogy. The analogy employs boundary loads that ensure
that nodes representing curved boundaries lie on the true
surface. Several examples, in both two and three dimensions,
illustrate the performance of the proposed approach, with the
quality of the generated meshes being analysed in terms of
a distortion measure. The examples chosen involve geome-
tries of particular interest to the computational fluid dynamics
community, including anisotropic meshes for complex three
dimensional configurations.

Keywords Mesh generation · High-order elements ·
Curved finite elements · Element distortion ·
Element stretching · Computational fluid dynamics

1 Introduction

The last decade has seen an increase in interest in the
development of high-order discretisation methods within the
finite element community [29,15,11,16]. The advantages
that high-order methods bring, in terms of accuracy and effi-
ciency, have been object of intensive study [17,5] and, as
higher order approximations are considered, the effect of an
appropriate boundary representation of the domain has been
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identified as being critical [24,26,27]. The use of curved ele-
ments becomes mandatory in order to obtain the advanta-
ges of using high-order approximations [8,1,18,37,25] and
the lack of high-order curved mesh generators for complex
geometries is recognised to be an obstacle preventing the
widespread application of high-order methods [34]. Exist-
ing approaches for constructing a curved high-order mesh
can be classified into two categories [6]: the so-called direct
methods, which build a curved high-order mesh directly from
the CAD representation of the geometry, and the a posteriori
approach, in which the curved mesh is generated by deform-
ing an initial linear mesh. A posteriori approaches are gen-
erally preferred, as they makes use of mature linear mesh
generation technology [36].

In the basic a posteriori approach [6,7], boundary mesh
entities are curved using the parametric space of the under-
lying geometric model. Curving a linear initial mesh will
often create low quality or invalid elements, especially in
regions of high curvature, and specific strategies for detect-
ing and correcting invalid elements are therefore necessary
[6,7,28,19]. Using a quality measure, derived from the Jaco-
bian of an isoparametric transformation to detect invalid ele-
ments, mesh operations such as edge and face swapping, edge
deletion, internal entity curving and node relocation are used
in an attempt to obtain a valid curved mesh. In addition, it
may, sometimes, be necessary [6] to perform remeshing in
order to completely remove non valid elements. Different
strategies have been proposed for alleviating the problem of
invalid elements [28]. These include improving the quality of
the curved surface mesh, by constructing an optimal nodal set
over the curved faces on the boundary, or using a hybrid mesh
of prismatic elements near curved boundaries and tetrahedral
elements in the rest of the domain, or using a curvature based
mesh refinement strategy to reduce the deformation of curved
elements and the possibility of generating non valid elements.
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An alternative a posteriori approach employs a non-linear
elasticity model to deform the initial mesh [20]. The ini-
tial linear mesh represents the undeformed state and, after
prescribing a boundary displacement based upon the curved
geometry, a deformed curved high-order mesh correspond-
ing to the equilibrium state is obtained. Mesh moving tech-
niques based on elasticity equations were proposed in [33],
with details given in [13], and have a proven track record of
robustness. In Jacobian-based stiffening, as shown in [30],
the stiffening power can be varied to obtain the desired effect.

In this paper, a linear elastic model is also adopted but, in an
attempt to improvetheefficiencyof theprocess,a linearelastic
model is adopted. In addition, specific strategies for the gener-
ation of nodal distributions on edges or faces of curved bound-
aries are proposed, in order to minimise the possible number
of non-valid elements and to enhance the overall quality of the
resulting curved mesh. Particular attention is paid to the gen-
eration of anisotropic boundary layer meshes, suitable for the
efficient simulation of high Reynolds number fluid flow prob-
lems. This is a crucial problem that must be overcome, before
high-order methods can be routinely applied by the computa-
tional fluid dynamics community to the solution of problems
of industrial interest. It is worth noting that the methodology
proposed in thispaper isvalid foranyelement topology, so that
hybrid meshes can also be constructed.

The paper is organised as follows. In Sect. 2, the linear
elastic problem and its solution, using high-order contin-
uous finite elements, is briefly outlined. Sections 3 and 4
describe the proposed approach for generating curved high-
order meshes in two and three dimensions respectively. The
performance of the proposed method is demonstrated in Sect.
5 and several examples, involving the generation of isotropic
and anisotropic meshes in both two and three dimensions, are
considered. Finally, Sect. 6 summarises the main conclusions
of the work that has been presented.

2 High-order finite element solution of the linear elastic
problem

The proposed a posteriori approach will employ a linear elas-
tic model to deform a mesh that has been generated for the
geometry of interest.

The equation governing the static deformation of a linear
elastic medium, Ω , with closed boundary Γ , is considered
in the form

∇ · σ = 0 in Ω (1)

The stress tensor σ is given by

σ = λtr(ε)I + 2με (2)

where ε is the deformation tensor and λ and μ denote the
Lamé coefficients for the medium. This constitutive relation

is often expressed, alternatively, in terms of Young’s modulus
E and Poisson’s ratio ν for the medium [39,38].

The solution to Eq. (1) is sought subject to appropriate
boundary conditions. In the current context, these condi-
tions will be an imposed displacement uD on the Dirichlet
boundary, Γ D , and an imposed traction, f n , on the Neumann
boundary Γ N . Here, Γ = Γ D ⋃

Γ N and Γ D ⋂
Γ N = ∅.

The solution is approximated using continuous piecewise
polynomials of order p on a reference element e and an
isoparametric finite element formulation is employed [38],
so that the physical and local coordinates for element e are
related using the mapping

x(ξ) =
nen∑

J=1

NJ (ξ)x J (3)

where x J are the coordinates of node J of the element.
To produce an accurate and efficient high-order finite ele-

ment solver, appropriate nodal distributions for the interpo-
lation [3,4,32] and optimal numerical quadratures for the
integration [9,35,10] are used. On one hand, optimal inter-
polation points, such as the Fekete points [32], substantially
reduce the interpolation error compared to equally-spaced
nodal distributions when very high-order approximations are
considered, say p ≥ 4. On the other hand, optimal numeri-
cal quadrature enables a reduction in the computational cost
involved in evaluating the integrals that appear in the varia-
tional formulation.

3 Two dimensional curved mesh generation

The two dimensional problem of generating a curved mesh,
of prescribed order p, is considered first. The basic steps
involved in the proposed process are illustrated in Fig. 1,
which shows how a triangular mesh of degree p = 4 can
be generated in the region surrounding a general two dimen-
sional object. Initially, Fig. 1a, the region surrounding the
object is discretised with linear triangular elements using a
standard two dimensional unstructured mesh generator. The
characteristic mesh size, h, of this initial mesh is selected in
such a way that the characteristic mesh size of the final high-
order mesh, h/p, will provide a spatial discretisation that
is suitable for resolving the features of interest in the prob-
lem under consideration. Nodes, appropriate to the selected
degree of approximation, p, are located on each straight-
sided element. In Fig. 1b, the nodes have been located at the
Fekete points [32]. Then, for each pair of edge vertices on
a curved boundary, the desired location for the nodes on the
true boundary is computed, as shown in Fig. 1c. The process
is completed by obtaining a high-order solution to the linear
elasticity problem, with the mesh of straight-sided elements
forming the initial configuration. With Dirichlet boundary
conditions corresponding to the displacement of boundary
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(a) (b)

(c) (d)

Fig. 1 Illustration of steps involved in the proposed method for gener-
ating high-order curved triangular elements in two dimensions: a initial
mesh with straight-sided elements; b high-order nodal distribution on

the straight-sided elements; c imposed displacement at nodes on the
curved portion of the boundary; d final curved high-order mesh

nodes, from their initial location on straight sides to their
desired location on the true boundary, the equilibrium con-
figuration is the curved high-order mesh of Fig. 1d.

3.1 Curved high-order edge nodal distribution

The key ingredient in ensuring that the process described
results in a curved high quality mesh of high-order elements
is the approach adopted to computing the desired location
of the nodes on each curved boundary edge. The approach
advocated here begins with a parameterisation of the true
boundary of the computational domain in the form

C : [0, 1] −→ C([0, 1]) ⊆ Γ ⊂ R
2

Standard choices for parameterising the boundary within a
CAD system are polynomial B-splines, non-uniform rational
B-splines (NURBS [21]) or subdivision surfaces [14]. Here,
it is the NURBS boundary representation of the domain that
is considered.

For an edge on a curved boundary, with vertices x1 and
x p+1, the parametric coordinates λ1 and λp+1 of the two
vertices are computed, from the parameterisation, as

C(λi ) = xi , i = 1, p + 1

using a point inversion algorithm [21]. For a curveC, parame-
terised by its arc length, a nodal distribution is specified in the
parametric space between λ1 and λp+1 and this is mapped to
the physical space using the parametrisation C. This provides
the desired nodal distribution over the true boundary, e.g. if
a mesh with p = 2 is desired, the location of the mid edge
node in the physical space is given by C ((λ1 + λ3)/2). The
nodal distribution is usually specified to be equally-spaced
or to correspond to the location of the Fekete points.

Unfortunately, NURBS curves are rarely parameterised
in terms of arc-length, so that obtaining the desired nodal
distribution in the physical space is not trivial. The problem
involves finding a nodal distribution in the parametric space
which, when mapped with C, corresponds to an equally-
spaced or a Fekete-nodal distribution in the physical space.
The length of the curved edge, defined by

L =
∫

Γ

dx =
λp+1∫

λ1

|C′(λ)|dλ

is evaluated approximately using a high-order Gauss–Legen-
dre quadrature [23]. In practice, an adaptive quadrature is
used, to ensure a relative error that is smaller than 10−4, and
composite quadratures are used to account for changes in the
NURBS definition in [λ1, λp+1]. Given a p-th degree nodal
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(a) (b) (c)

Fig. 2 Illustration of the proposed high-order mesh generation for a surface patch: a the initial linear triangular surface mesh; b the high-order
nodal distribution constructed on each edge of the patch boundary; c the high-order nodal distribution constructed on each internal edge

distribution, {ξ}p+1
k=1 ∈ [0, 1], the lengths of the subintervals

[ξk, ξk+1] are defined by

lk = ξk+1 − ξk k = 1, . . . , p

The parametric coordinates, {λk}p
k=2, of internal edge nodes

are found by using a standard root finding algorithm to solve
the set

1

L

λk∫

λ1

|C′(λ)|dλ −
k−1∑

j=1

l j = 0 k = 2, . . . , p

of independent non-linear equations. This equation set is
solved using a simple and robust bisection algorithm and,
as it is possible to select a good initial guess, convergence is
achieved in a few iterations. The NURBS parameterisation

xk = C(λk), k = 2, . . . , p (4)

is employed to determine the position of the internal edge
nodes in the physical space.

3.2 Two dimensional mesh

The high-order boundary nodal distribution, obtained by fol-
lowing the above procedure, is used to set the Dirichlet
boundary conditions for the linear elastic problem. For each
node on a curved boundary, the boundary condition imposes
a displacement

uk = xk − x0
k

where x0
k is the initial position of a boundary node and xk is

the position given from Eq. (4).
The linear elastic problem described in Sect. 2 is solved

and the result is a displacement field that, when applied to the
original linear mesh, produces the desired high-order curved
mesh.

4 Three dimensional curved mesh generation

The strategy adopted for generating curved high-order mes-
hes in three dimensions is an extension of the process

described for two dimensions. Initially, a linear mesh is gen-
erated and a high-order nodal distribution of the desired
degree of approximation is then located within each element.
For each face representing a curved boundary, a desired dis-
tribution for the nodes over the true boundary is generated
and the linear elasticity problem is then solved to obtain the
curved high-order mesh.

4.1 Curved high-order edge nodal distribution

The initial linear triangular mesh used to represent a surface
patch, making up a portion of a curved boundary, is illus-
trated in Fig. 2a. Edges that lie on a curved boundary are
classified into two categories: either edges that belong to a
surface patch boundary or edges that are internal to a surface
patch. In this case, a parameterisation of the form

S : [0, 1]2 −→ S([0, 1]2) ⊆ Γ ⊂ R
3

is assumed for each curved boundary. For edges on the bound-
ary of a surface patch, the desired nodal distribution is gen-
erated in the physical space, as shown in Fig. 2b. Again, an
equally-spaced distribution or the Fekete point location is
normally employed. The procedure described above for gen-
eration of edge nodal distributions in two dimensions can
be directly used, as the surface parameterisation is, when
restricted to a patch boundary, just a parametric curve in
three dimensions. In this example, an equally-spaced nodal
distribution for a degree of approximation p = 3 has been
selected. For an edge that does not lie on the boundary of
a surface patch, the geodesic connecting the two edge verti-
ces is approximated and the appropriate nodal distribution is
generated in the physical space, as shown in Fig. 2c.

The approximation of the geodesic connecting two edge
vertices x1 and x2 is performed by iteratively constructing
a list of points in the parametric space, such that the image
of these points in the boundary surface parameterisation S

approximates the geodesic. As a first step, the parametric
coordinates, λ1 and λ2, of the edge vertices are found such
that

S(λi ) = xi i = 1, 2
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(a) (b) (c)

Fig. 3 Illustration of the procedure for approximating the geodesic
between two points in the parametric space: a selection of a point λ3
on the perpendicular bisector between λ1 and λ2 such that Eq. (5) is

satisfied; b selection of points λ4 and λ5; c correction of λ3 using the
perpendicular bisector to the segment joining λ4 and λ5

Fig. 4 Two triangular faces on
a curved boundary showing a a
curved edge that forms an angle,
α1, less than the specified limit;
b correction of the edge for a
cubic interpolation

(a) (b)

Then, the point λ3 in the parametric space is determined, such
that it belongs to the perpendicular bisector of the segment
connecting λ1 and λ2, say r12, and it satisfies

d
(
x1,S(λ3)

) + d
(
S(λ3), x2

)

= min
λ∈r12

{
d
(
x1,S(λ)

) + d
(
S(λ), x2

)}
(5)

Here, d(·, ·) denotes the Euclidean distance. This process is
illustrated in Fig. 3a. The point x3 = S(λ3) is added to the
list of points approximating the geodesic and the process is
repeated between both x1 and x3 and between x3 and x2, as
shown in Fig. 3b. The result is a point, λ4, on the perpendic-
ular bisector of the line joining λ1 and λ3 and a point, λ5,
on the perpendicular bisector of the line joining λ3 and λ2.
The position of λ3 is corrected by using the perpendicular
bisector of the line between λ4 and λ5, as shown in Fig. 3c.
The process is repeated iteratively until a fine distribution of
nodes that approximate, with a specified accuracy, the geo-
desic connecting x1 and x2 is obtained. A nodal distribution,
of the desired degree of approximation p, can then be defined
on the approximated geodesic.

Finally, the angle between neighboring edges is checked
to ensure that the minimum angle is not less than a specified
lower limit. For each edge on a curved boundary, e.g. the edge
connecting vertices x1 and x2 in Fig. 4a, the angles, αi for

i = 1, . . . , 4, between this edge and its neighboring edges
are measured. If any angle αi is less than the specified lower
limit, a new edge connecting the vertices x1 and x2 is defined,
in such a way that the four angles αi for i = 1, . . . , 4 are
acceptable. For instance, if a degree of approximation p = 3
is considered, the new edge is defined by a cubic curve, that
contains the two vertices x1 and x2, with the derivative at
the initial and final vertices imposed in such a way that the
minimum angle between edges is not less than the specified
limit, as shown in Fig. 4b. For a degree of approximation
p = 4, the curvature on one edge vertex is also imposed and,
for a degree of approximation p = 5, the curvature at both
edge vertices is included. Extra conditions can be devised
when using higher degrees of approximation, but these are
not considered here.

4.2 Curved high-order surface mesh

A reference element, with a nodal distribution of the desired
degree, is employed to generate the internal nodes on a
curved boundary face. The reference element enables the
computation of the distance from an internal node to the
element boundaries. Using the geodesics in the physical
space, internal points are placed on the curved faces by
imposing the criterion that the relative distance, with respect
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Fig. 5 Reference triangle
showing the barycentric
coordinates of an internal point
for a an equally-spaced nodal
distribution for p = 3; b a
Fekete-nodal distribution for
p = 5

(a) (b)

Fig. 6 Surface patch showing
a a curved face; b the three
geodesics used to determine the
position of the internal node

(a) (b)

to the element boundaries, is approximately the same as that
for the corresponding node in the reference element.

The procedure for placing high-order interior nodes for
triangular faces is considered first. A p-th degree nodal distri-
bution is defined on a reference element, e.g. Fig. 5a, b show
an equally-spaced nodal distribution of degree p = 3 and a
Fekete-nodal distribution of degree p = 5 respectively in the
reference triangle. The barycentric coordinates, denoted by
(α, β, γ ), for an internal node with local coordinates ξ k =
(ξk, ηk), are given by (αk, βk, γk) = (1 − ξk −ηk, ξk, ηk), as
illustrated in Fig. 5. Note that the barycentric isolines inter-
sect the boundary of the reference element at the location
of the nodes, if the nodal distribution is equally-spaced, as
shown in Fig. 5a. However, this is not the case in general, as
shown in Fig. 5b for the case of a Fekete nodal distribution.

The barycentric coordinates of an internal node can be
used to define three geodesics, gα , gβ and gγ , in the physical
space. The geodesic, gα , joins the points xα

12 and xα
13, where

xα
I J lies on the geodesic, gI J , connecting the vertices x I and

x J . In this case,

dS(x I , x
α
I J ) = (1 − αk)dS(x I , x J )

where dS denotes the distance function over the surface para-
metrised by S, i.e. the distance along the geodesic between
two points. Similarly, gβ joins the points x

β
21 and x

β
23, where

x
β
I J ∈ gI J and

dS(x I , x
β
I J ) = (1 − βk)dS(x I , x J )

and gγ joins the points x
γ
31 and x

γ
32, where x

γ

I J ∈ gI J and

dS(x I , x
γ

I J ) = (1 − γk)dS(x I , x J )

The three geodesics gα , gβ and gγ , corresponding to the
internal node for an equally-spaced nodal distribution with
p = 3, are illustrated in Fig. 6.

The points xα ∈ gα , xβ ∈ gβ and xγ ∈ gγ are defined
such that

dS(xα
12, x

α) = γk

βk + γk
dS(xα

12, x
α
23)

dS(x
β
21, x

β) = γk

γk + αk
√

2
dS(x

β
21, x

β
23)

dS(x
γ
31, x

γ ) = βk

βk + αk
√

2
dS(x

γ
31, x

γ
32)

and the position of the internal face node in the physical
space is defined as the projection over the true surface of the
average position of xα , xβ and xγ , i.e.

xk = �S

(
(xα + xβ + xγ )/3

)
(6)

Here �S represents the projection operator over the surface
parameterised by S.

A similar procedure is adopted for curved quadrilateral
faces, but now only two geodesics are considered, corre-
sponding to the local coordinates of an internal node. Figure 7

123



Comput Mech (2013) 51:361–374 367

Fig. 7 Reference square, with a Fekete-nodal distribution, for p = 5
and the local coordinates for an interior node

shows a Fekete-nodal distribution for p = 5 in the reference
square and the local coordinates of an internal node. The
geodesic, gξ , joins the points x

ξ
12 and x

ξ
43, where x

ξ
I J ∈ gI J ,

and

dS(x I , x
ξ
I J ) = (1 − ξk)dS(x I , x J )

Similarly, the geodesic gη joins the points x
η
23 and x

η
14, where

x
η
I J ∈ gI J , and

dS(x I , x
η
I J ) = (1 − ηk)dS(x I , x J )

It is worth noting, as shown in Fig. 8, that the location of the
points x

ξ
I J and x

η
I J coincides with high-order edge nodes

computed in Sect. 4.1, as the nodal distribution in the ref-
erence square is a tensor product of one dimensional nodal
distributions. The points xξ ∈ gξ and xη ∈ gη are defined
such that

dS(x
ξ
12, x

ξ ) = ξkdS(x
ξ
12, x

ξ
43)

dS(x
η
14, x

η) = ηkdS(x
η
14, x

η
23)

and the position of the internal face node in the physical space
is defined as

xk = �S

(
(xξ + xη)/2

)
(7)

which is the projection over the true surface of the average
position of xξ and xη.

4.3 Three dimensional mesh

The resulting high-order boundary nodal distribution is used
to set the Dirichlet boundary conditions for the linear elastic
problem. For each node on a curved boundary, the boundary
condition imposes a displacement of the form

uk = xk − x0
k

where x0
k is the initial position of a boundary node and xk is

the position given by Eq. (6), for a curved triangular face, or
by Eq. (7), for a curved quadrilateral face. The linear elas-
tic problem described in Sect. 2 is solved and the result is a
displacement field that, when applied to the original mesh,
produces the desired high-order curved mesh. For realistic
three dimensional viscous flow problems, the linear system
of equations may contain millions of unknowns. In this case
it is preferable to split the system into a number of smaller
problems. For example, boundary layer meshes are normally
generated using a layer by layer strategy, so that the system
corresponding to the first layer of elements surrounding the
aerodynamic shape can be solved, using Dirichlet bound-
ary conditions on the curved boundary and a homogeneous
Neumann boundary condition on the outer surface of the
layer. The system corresponding to the second layer of ele-
ments can then be solved, using the displacement field from
the outer boundary of the first layer as a Dirichlet bound-
ary condition. The procedure continues until the last layer of
elements is deformed or until the displacement field of one
layer is small enough. It is worth recalling that, in case of
tetrahedral meshes, the presence of a large number of ele-
ments with planar faces leads to an extra efficiency of the
finite element solver. This is because the mapping between

Fig. 8 Surface patch showing
a a curved quadrilateral face;
b the two geodesics used to
determine the position of the
internal node

(a) (b)
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(a) (b)

Fig. 9 Influence of the elastic material parameters on a the scaled Jacobian; b the logarithm of the condition number of the system matrix

the reference element and the physical elements is then an
affine mapping, i.e. the determinant of the Jacobian of the
isoparametric transformation is constant. The layer by layer
approach means that the deformation process can be stopped
when a quality measure has not substantially changed after
applying the deformation. For the generation of the aniso-
tropic meshes shown in Sect. 5, the layer by layer approach
is implemented.

When we have very large meshes, with refined layers of
elements near solid surfaces, we can use the solid-exten-
sion-mesh moving technique (SEMMT) [31], particularly its
multi-domain version (SEMMT-MD), to efficiently solve the
mesh moving equations. This would result in a robust way of
solving the mesh movement equations iteratively, even with
stretched elements near solid surfaces.

Although other measures of the element quality can be
considered [22], the scaled Jacobian [6] is employed here as
a measure of the distortion of a curved high-order isopara-
metric finite element. This is defined as

Î = minξ∈R |J (ξ)|
maxξ∈R |J (ξ)| (8)

where

J (ξ) = ∂x(ξ)

∂ξ

is the Jacobian of the isoparametric mapping of Eq. (3). To
ensure that the curved high-order mesh is valid, it is necessary
to verify that

|J (ξ)| > 0 ∀ξ ∈ e

for all the elements in the mesh. In practice, the determinant
of the Jacobian |J (ξ)| is actually checked at a set of dis-
crete points [6] in the reference element e. The points used
are chosen to be those corresponding to a quadrature rule of
order 2p for a curved high-order element of degree p, i.e.
the quadrature points necessary to integrate exactly the ele-
ment mass matrix with an approximation of degree p. This
check does not remove completely the possibility that the

mesh may contain elements with a negative Jacobian [12].
With the standard definition of the scaled Jacobian given in
Eq. (8), it is possible to obtain a positive scaled Jacobian even
when the element is not valid, e.g. if the Jacobian is negative
at all the selected points. For this reason, the slightly modified
definition

I = minξ∈R |J (ξ)|
∣
∣ maxξ∈R |J (ξ)|∣∣

is employed as the indicator of the validity of an element.
With this revised definition, a negative value indicates that
the element is not valid, a positive value indicates that the
element is valid and the classical distortion measure is recov-
ered, i.e. I = Î .

5 Implementation examples

Several examples, in both two and three dimensions, are con-
sidered to illustrate the potential of the proposed methodol-
ogy. The examples that have been selected are of particular
interest to the aerospace community, as they involve isotro-
pic and anisotropic high-order curved meshes suitable for the
computation of external flows around aerodynamic shapes.

The elastic parameter values E = 10 and ν = 0.4 are
used for all the examples. It has been found that this combi-
nation allows the minimum scaled Jacobian to be maximised
and, at the same time, allows the condition number of the
linear system to be minimised. The scaled Jacobian is found
to be independent of the value of E and highly dependent
on ν. Since the scaled Jacobian is a measure of the volu-
metric deformation, it is expected that, with lower values of
ν, compressibility of the material will result in highly dis-
torted elements near curved boundaries. The best element
quality is expected for values of ν approaching the incom-
pressible limit, as the imposed boundary displacement then
propagates into the computational domain. This behaviour is
confirmed in Fig. 9a, which illustrates the influence of the
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(a)

(b)

(c)

Fig. 10 NACA0012 aerofoil showing a an initial mesh with straight-sided triangular elements; b a curved high-order mesh; c a detail of the curved
mesh near the leading edge with a high-order Fekete-nodal distribution on each element

(a) (b)

Fig. 11 NACA0012 aerofoil: detail near the leading edge showing a the initial mesh with straight-sided quadrilateral elements and b the curved
high-order mesh

elastic parameters on the scaled Jacobian. Figure 9b shows
that the condition number of the system matrix deteriorates
rapidly as the value of E is increased. Values of ν between
0 and 0.4 are found to have little effect. For higher values of
ν, i.e when the material approaches the incompressible limit,
the effect is more pronounced and the condition number of
the system matrix also deteriorates. Note that the exact nature
of the plots shown in Fig. 9 will depend upon the geometry
under consideration. However, it is important to note that the
same qualitative behavior has been consistently observed in
practice for a number of different geometries.

5.1 Isotropic mesh for a NACA0012 aerofoil

The first example is the problem of generating an isotropic
mesh, for a degree of approximation p = 5, in the region sur-
rounding a NACA0012 aerofoil. Figure 10a, b show an initial
mesh of linear elements and the final high-order curved mesh
respectively. A detail of the mesh in the vicinity of the lead-
ing edge of the aerofoil is shown in Fig. 10c. This detail

shows some of the curved elements and the high-order Fek-
ete-nodal distribution on each element. The mesh has 370
vertices, 650 elements and 50 edges on the curved boundary.
After introducing a high-order nodal distribution, appropri-
ate for an approximation of degree p = 5 over each element,
the resulting high-order mesh has 8,350 nodes. An example
of a high-order curved quadrilateral mesh generated for this
configuration is given in Fig. 11.

Figure 12a displays a histogram of the scaled Jacobian, I ,
for the high-order triangular mesh. It shows the percentage
of elements for a given scaled Jacobian in intervals of 0.05.
For this simple isotropic case, 99 % of the elements are such
that I > 0.95 and the minimum value of the scaled Jacobian
is 0.83.

To illustrate the optimal properties of meshes generated
in this fashion, the interpolation error estimate for a smooth
function is checked, on a series of curved triangular and
quadrilateral high-order meshes with degree ranging from
p = 1 up to p = 7. In order to measure the interpolation
error, the nodal values of the solution are set by using the
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(a) (b)

Fig. 12 NACA0012 aerofoil showing a the scaled Jacobian; b an illustration of the optimality of the mesh for finite element analysis

Fig. 13 Isotropic curved high-order surface mesh for a generic Falcon
aircraft

smooth function f (x, y) = x cos(y) + y sin(x). Then, the
error between the approximated solution, interpolated from
the nodal values, and the exact solution is computed at each
quadrature point in order to compute the L2(Ω) error. Fig-
ure 12b shows the evolution of this error, as a function of
the square root of the number of degrees of freedom ndof,

on both the triangular and quadrilateral elements. The expo-
nential convergence that is expected in the approximation of
a smooth function is observed, demonstrating that the pro-
posed strategy produces optimal meshes for finite element
analysis.

5.2 Isotropic mesh for a generic Falcon aircraft

This example indicates the use of the approach for the gener-
ation of an isotropic mesh in the region surrounding a com-
plex aircraft configuration. Figure 13 shows a view of the
high-order surface mesh produced after applying the pro-
posed approach. A detail of a view of the high-order surface
mesh and the nodal distribution, for use with a degree of
approximation p = 3, near the engine intake is shown in
Fig. 14a. A detail of a cut through the mesh, in the vicinity
of the aircraft surface, is shown in Figure 14b. The mesh has
27,842 vertices, 150,801 elements and 3,686 triangular faces
on the aircraft. For a degree of approximation p = 3, the
total number of nodes in this mesh is 703,938.

An indication of the distribution of the values of the scaled
Jacobian for this mesh is shown in the histogram of Fig. 15.

(a) (b)

Fig. 14 Isotropic mesh for a Falcon aircraft showing a a detail of a view of the surface mesh with the nodal distribution near the engine intake;
b a detail of a cut through the interior volume mesh
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Fig. 15 Scaled Jacobian for the generic Falcon isotropic mesh

For this complex geometry, the proposed approach produces
a high-order mesh in which almost 97 % of the elements
have a scaled Jacobian value I > 0.95. However, it should
be noted that the minimum value of I is now significantly
smaller than that produced in the previous two dimensional
example. For this mesh, there are two elements which are
such that 0.15 < I < 0.2 and 75 elements for which
I < 0.5. As might be expected, these elements are located
in critical regions of the mesh, such as the leading edge of
the wings and the engine intake. The low quality of these
elements can be mainly attributed to the low resolution pro-
vided by the cubic approximation when attempting to cap-
ture the large deformations in regions with high curvature.
It is worth recalling that, although the linear elastic model
has been selected for its efficiency, cases such as this can
violate the small deformation hypothesis inherent in the lin-
ear model. Refining the initial linear mesh, or increasing
the degree of the approximation employed, may alleviate
this problem, especially in the vicinity of regions with high
curvature.

5.3 Anisotropic mesh for a generic Falcon aircraft

A more complex example is the problem of generating an
anisotropic mesh for analysing viscous flow over a generic
Falcon aircraft configuration. Details of cuts through the
mesh, shown in Fig. 16a, b, illustrate the form of the bound-
ary layer mesh in the difficult regions near the engine intake
and the wing tip respectively.

The mesh has 228,845 vertices, 1,303,733 elements and
24,670 triangular faces on the aircraft surface. For a degree of
approximation p = 3, the total number of nodes in this mesh
is 5,967,338. An indication of the amount of element stretch-
ing in the mesh, defined as the ratio between the maximum
and the minimum edge, is represented in the histogram of
Figure 17a. The maximum stretching is almost 381 and there
are over 300 elements have a stretching of more than 200.
The histogram of the scaled Jacobian for the elements in the
mesh are shown in Fig. 17b. For this complex configuration,
more than 91 % of the elements have a scaled Jacobian value
I > 0.95. However, the minimum value of I is now 0.08 and
6,938 elements are such that I < 0.5.

5.4 Anisotropic mesh for the F6 configuration

The final example involves the generation of an anisotropic
mesh suitable for analysing viscous flow over the F6 aircraft
configuration introduced in the 2nd AIAA CFD Drag Pre-
diction Workshop [2]. A detail of a view of the surface mesh
is given in Fig. 18, showing the important regions near the
engine intake and at the leading edge of the wing. Views of
cuts through the volume mesh, near the engine intake and near
the leading edge of the wing, are given in Fig. 19. The mesh
has 803,345 vertices, 4,624,321 elements and 79,052 trian-
gular faces on the aircraft surface. For a degree of approx-
imation p = 3, the total number of nodes in this mesh is
21,113,641.

Figure 20a gives information on the amount of ele-
ment stretching. The maximum stretching is 320 and there

(a) (b)

Fig. 16 Anisotropic mesh for a generic Falcon aircraft showing the form of the mesh a near the engine intake; b near the wing tip
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(a) (b)

Fig. 17 Anisotropic mesh for a generic Falcon aircraft showing a the stretching; b the scaled Jacobian

Fig. 18 Anisotropic mesh generation for the F6 configuration showing
a detail of the surface mesh near the engine intake and the leading edge
of the wing

are more than 5,000 elements with a stretching of more
than 200. The histogram of the scaled Jacobian values is
shown in Fig. 20b. For this complex anisotropic mesh, more
than 95 % of the elements have a scaled Jacobian value

I > 0.95. The minimum value of I for this mesh is 0.015
and 15,030 elements have a value of I which is less than
0.5.

6 Conclusions

An a posteriori strategy for obtaining high-order curved mes-
hes, suitable for finite element analysis in both two and three
dimensions, has been described. The method is based on
deforming an initial mesh with planar faces and edges using
a linear elasticity model. The proposed methodology is valid
for any element topology and hybrid meshes, containing dif-
ferent types of element, can be handled. Special attention
has been paid to the construction of high-order nodal distri-
butions on edges and faces on curved boundaries. The quality
of the resulting meshes was analysed in terms of the scaled
Jacobian, which is a standard distortion measure for curved
elements.

Several examples, involving geometries of complex shape
in both two and three dimensions, have been considered to
demonstrate the potential of the proposed methodology. Spe-
cial emphasis has been placed on constructing high-order

Fig. 19 Anisotropic mesh generation for the F6 configuration showing views of a cut through the volume mesh near the engine intake and near
the leading edge of the wing
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(a) (b)

Fig. 20 F6 configuration: a stretching and b scaled Jacobian

curved meshes for geometries that are of particular interest
to the aerospace community. In this area, anisotropic meshes
suitable for analysing viscous flow over two complex aircraft
configurations have been presented.
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