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Abstract This paper presents a quasi-static multiscale
computational model with its verification and rational appli-
cations to mechanical behavior predictions of asphaltic road-
ways that are subject to viscoelastic deformation and fracture
damage. The multiscale model is based on continuum thermo-
mechanics and is implemented using a finite element for-
mulation. Two length scales (global and local) are two-way
coupled in the model framework by linking a homogenized
global scale to a heterogeneous local scale representative
volume element. With the unique multiscaling and the use
of the finite element technique, it is possible to take into
account the effect of material heterogeneity, viscoelasticity,
and anisotropic damage accumulation in the small scale on
the overall performance of larger scale structures. Along with
the theoretical model formulation, two example problems
are shown: one to verify the model and its computational
benefits through comparisons with analytical solutions and
single-scale simulation results, and the other to demonstrate
the applicability of the approach to model general roadway
structures where material viscoelasticity and cohesive zone
fracture are involved.

Y.-R. Kim (B)
Department of Civil Engineering, Kyung Hee University,
224 Engineering Building,Yongin-si,
Gyeonggi-do 446-701, South Korea
e-mail: ykim3@khu.ac.kr

F. V. Souza
Multimech Research and Development, LLC, Omaha, NE 68022,
USA
e-mail: fsouza@multimechrd.com

J. E. S. L. Teixeira
Centro Tecnológico, Departamento de Engenharia Civil (CT-DEC),
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari,
514, CT I, Goiabeiras, Vitoria, ES 29060-970, Brazil
e-mail: jamilla.teixeira@ufes.br

Keywords Multiscale modeling · Asphalt pavement ·
Viscoelasticity · Fracture · Cohesive zone · Finite element
method

1 Introduction

Approximately 96 % of all paved roads and streets in the US,
almost two million miles, are surfaced with asphalt concrete
mixtures. On the average, the asphalt concrete industry pro-
duces and places approximately 500 million tons of asphalt
mixtures annually valued at some $11.5 billion. Billions of
dollars are spent annually on the construction and mainte-
nance of asphaltic surfaces on roadways in the US. Never-
theless, existing analysis tools have proven to be inadequate
to accurately predict damage accumulation and failure in
asphalt pavements. The primary weakness in existing analysis
tools is a general lack of understanding of the fundamental
mechanisms of fracture and damage in asphaltic compos-
ites. Improving a designer’s ability to understand and predict
the damage-dependent behavior of asphaltic composites will
greatly improve structural design of asphaltic roadways.

Accurate prediction and evaluation of damage in asphal-
tic roadways is challenging, and one of the challenges is
related to significant complexities of asphalt mixtures. The
asphalt mixtures are classic examples of multiphase, aniso-
tropic, multiscale granular composites consisting of irregu-
larly-shaped and randomly-oriented aggregate particles
embedded in the cementitious inelastic matrix phase. In addi-
tion to the geometric complexity, inelasticity, and anisotropy,
asphalt mixtures have been shown to develop literally thou-
sands of microcracks which eventually coalesce to form mac-
rocracks and then failure due to traffic loading, thus rendering
an exact solution untenable. Consequently, most traditional
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procedures utilize semi-empirical and/or phenomenological
methods and involve repetitive and costly laboratory tests.
Phenomenological approaches do not fully account for the
fundamental material characteristics, particularly the forma-
tion of numerous cracks on multiple length scales that even-
tually lead to roadway failure. The role played by individual
mixture constituents and their effects on the composite con-
stitutive behavior and structures has not been scientifically
understood either. Development of a more rigorous, physi-
cally based mechanistic model is required in order to predict
damage evolution, overall mechanical behavior of mixtures
and structures based on better understanding of the mixture
constituents and their interactions.

Recently, microstructure-based computational modeling
has been actively pursued by many researchers as a means of
overcoming the phenomenological approaches. The advan-
tage of the microstructure-based computational modeling
approach is that it can account for the effect of mixture het-
erogeneity by dealing with mixture constituents separately.
Several studies [1–6] have proposed the use of finite element
method (FEM)-based models to characterize damage perfor-
mance in asphaltic composites. An explicit numerical tech-
nique, called the discrete element method (DEM), has also
been used by several researchers [7–9]. These computational
approaches have successfully simulated geometric heteroge-
neity (i.e., random orientation of irregularly shaped aggre-
gates) and have predicted stiffness reduction due to fracture
of mixtures subjected to various modes of loading.

Even though various computational techniques based on
the mixture microstructure have been shown to be extremely
versatile in addressing the microstructural complexities, a
composite structure that contains thousands of irregularly-
shaped, randomly-oriented inclusions (particles, voids, etc.)
along with a number of potential crack sites at different length
scales would require a highly refined mesh. The solution for
such a problem requires the use of a tremendous amount of
computational time and effort, which is rarely feasible with
currently available computing power. These limitations have
led researchers to seek alternative proper approaches that can
account for the hierarchical structure of heterogeneous mate-
rials without having to model every microstructural detail,
but still considering the most important ones.

One such approach is multiscale modeling as demon-
strated in many studies [10–20]. In the multiscale approach,
a separate scale analysis is performed at each of the smaller
structural scales within the macroscopic body. If statistical
homogeneity at any smaller length scale has been satisfied, a
homogenization principle is used to produce field equations
for the next larger length scale. Damage can also be modeled
explicitly at each length scale by incorporating appropriate
types of fracture/damage mechanics modeling to the anal-
ysis. Therefore, multiscale models more accurately predict
structural behavior with much less computational effort by

using the homogenized fundamental properties of each of the
composite’s constituents.

To date, multiscale modeling concepts have rarely been
applied to roadway materials and structures. Regarding het-
erogeneity, inelasticity and damage in multiple length scales
in roadway materials and structures, it is obvious that the
multiscale modeling-analysis can provide vast advantages in
both modeling efficiency and predicting power. The multi-
scale models can predict larger scale structural behavior with
much less computational effort by utilizing the fundamental
properties of individual constituents and microstructure char-
acteristics at the smaller scales. Most importantly, the multi-
scale method can overcome clear obstacles from traditional
methods that typically try to model all scales at once.

2 Study objectives and scope

The primary objective of this study is to present a multi-
scale computational model developed to predict mechanical
behavior of viscoelastic asphalt roadways that are subject to
fracture damage. The multiscale model is based on contin-
uum thermo-mechanics and is implemented using a finite ele-
ment formulation. Two length scales (global scale of roadway
structure and local scale of mixture) are two-way coupled in
the quasi-static model framework by linking a homogenized
structure scale to a heterogeneous mixture scale representa-
tive volume element (RVE). Along with the theoretical model
formulation, model verification and potential applications of
the model are provided with example problems. It should be
clearly noted that this study is not to validate and calibrate the
model with some specific cases but to demonstrate the capa-
bilities of the model developed and verified herein. There-
fore, model inputs such as the material properties of mixture
components and finite element meshes for the example cases
were reasonably determined only for simulation purposes.
In addition, the model herein targets only predicting visco-
elastic deformation and fracture of mixtures and structures
although asphaltic roadways present both viscoelastic frac-
ture damage and plastic deformation.

3 Multiscale initial boundary value problem (IBVP)

The main objective of multiscale models is to determine
the overall constitutive behavior of heterogeneous materials
simultaneously throughout the analysis based on the behav-
ior of the individual constituents and their interactions at
the local scale. Multiscale models become very attractive
for problems with evolving microstructure due to forma-
tion and growth of microcracks, since the evolution of the
microstructure is necessarily both spatially and time depen-
dent, and there are no analytical solutions for this kind of
problem, especially for inelastic media. Figure 1 presents an
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asphaltic roadway which is considered statistically homoge-
neous for each layer at the global scale (structure scale) but
significantly heterogeneous at the local scale (mixture scale).
The size of local mixture scale needs to meet the required
dimension of the RVE, since the heterogeneous mixture RVE
is homogenized to produce its effective properties that are
sequentially updated to the global structure scale constitu-
tive relations. As illustrated in the figure, in the local scale
object, various sources of heterogeneity such as particles,
voids, and cracks can be considered.

As presented in Fig. 1, the multiscale technique in this
study models a global scale object (of its length scale lG ) with
its region wherein microcracks (length scale l L

c ) are evolving
on the local mixture scale (of its length scale l L ) RVE. The
primary variables used in the model are: the displacement
vector, the strain tensor, and the Cauchy stress tensor.

3.1 Global scale modeling

In the absence of body forces, inertial effects, and large
deformations, a global scale IBVP can be well-posed by an
appropriate set of initial-boundary conditions and a set of
governing equations: conservation of linear momentum (Eq.
(1)), conservation of angular momentum (Eq. (2)), infinites-
imal strain-displacement relations (Eq. (3)), and constitutive
equations (Eq. (4)).

σ G
ji, j = 0 in V G (1)

σ G
ji = σ G

i j in V G (2)

εG
i j = 1

2

(
uG

i, j + uG
j,i

)
in V G (3)

σ G
i j (t) = �̄τ=t

τ=−∞
{
εG

kl (τ )
}

in V G, (4)

where σ G
i j = global scale stress tensor, εG

i j = global scale

strain tensor, uG
i = global scale displacement vector, V G =

volume of global scale body, G indicates global scale, and
�̄τ=t

τ=−∞ is a functional mapping that describes the consti-
tutive behavior at each position in the global object, which
may account for damage accumulation and history-depen-
dent effects such as viscoelasticity, and is obtained by locally
averaging the response at the local scale RVE to that partic-
ular global scale position. Note that Eq. (4) is not known a
priori but is determined during the multiscale analysis, which
is elaborated in later sections.

3.2 Local scale modeling

Now considering that continuum mechanics still applies at
the local scale, assuming that the global length scale is much
larger than the local length scale, lG � l L , and that the length
scale associated with cracks at the local scale is much smaller
than the local length scale, l L � l L

c , that these cracks are

homogeneously distributed at the local scale, a well-posed
local IBVP is obtained by adjoining uniform initial bound-
ary conditions to the following set of equations:

σ L
ji, j = 0 in V L (5)

σ L
ji = σ L

i j in V L (6)

εL
i j = 1

2

(
uL

i, j + uL
j,i

)
in V L (7)

σ L
i j (t) = �τ=t

τ=−∞
{
εL

kl(τ )
}

in V L (8)

GL
i ≥ GL

iC ⇒ ∂

∂t

(
∂V L

I

)
> 0 in V L , (9)

where σ L
i j = local scale stress tensor, εL

i j = local scale strain

tensor, uL
i = local scale displacement vector, V L = volume

of local scale body, L indicates local scale, and �τ=t
τ=−∞ is a

functional that describes the constitutive behavior in the local
scale object, GL

i = fracture energy release rate at a particular
position in the local scale, GL

iC = the critical energy release
rate of the material, and ∂V L

I = internal boundary (such as
cracks) in the local scale object. It is important to note that
Eq. (9) states that cracks can only grow (crack healing is not
modeled) and crack growth occurs if the energy release rate
overcomes the critical energy release rate of the material.

The functional �τ=t
τ=−∞ may account for history-depen-

dent effects such as viscoelasticity, and in the current study
the functional can represent linear elastic (shown in Eq. (10))
or linear viscoelastic (Eq. (11)) behavior depending on the
constituent in the local scale mixture.

σ L
i j = C L

i jklε
L
kl in V L (10)

σ L
i j (t) =

t∫

−∞
C L

i jkl(t − τ)
∂εL

kl(τ )

∂τ
dτ in V L , (11)

where C L
i jkl = elastic tensor, C L

i jkl(t) = viscoelastic stress
relaxation modulus tensor which is time-dependent, t = time
of interest, and τ = integration variable.

The stress relaxation modulus tensor is determined by lab-
oratory relaxation tests, the results of which can be repre-
sented by a Prony series as follows:

C L
i jkl(t) = C L

i jkl,∞ +
q∑

p=1

C L
i jkl,p exp

(
−C L

i jkl,p

ηL
i jkl,p

t

)
, (12)

where C L
i jkl,∞, C L

i jkl,p = spring constants, ηL
i jkl,p = dash-

pot viscosities, and q = the number of Prony terms in the
generalized Maxwell model.

Crack propagation (Eq. (9)) in the local scale can be mod-
eled in many different ways, and one of the well-known
approaches is to use a cohesive zone which is illustrated
as the fracture process zone in Fig. 1. Cohesive zone mod-
els are well-established tools to remove stress singularities
ahead of crack tips. Cohesive zone models regard fracture
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Fig. 1 An asphaltic roadway with two length scales (homogeneous global structure scale and heterogeneous local mixture scale with fracture)

as a gradual phenomenon in which separation takes place
across an extended crack tip or cohesive zone (fracture pro-
cess zone) and where fracture is resisted by cohesive trac-
tions. Since the concept of a cohesive zone was first proposed
by Dugdale [21] and Barenblatt [22], many researchers [23–
28] have attempted to model the constitutive behavior for
cohesive zones.

In an attempt to simulate damage growth due to cracks in
viscoelastic media, Yoon and Allen [29] and Allen and Searcy
[30,31] formulated a nonlinear viscoelastic cohesive zone
model based on micromechanics. This model can reflect non-
linear viscoelastic damage growth and is appropriate for pre-
dicting damage evolution, corresponding material softening,
and eventual fracture failure of highly inelastic cementitious
materials, such as asphalt mixtures. The damage-dependent
cohesive zone model which relates cohesive zone traction to
cohesive zone opening displacements in viscoelastic media
can be written as follows:

T L
i (t) = 1

λL(t)
· uL

i (t)

δL
i

·
[
1 − αL(t)

]

·
⎧⎨
⎩�L

i +
t∫

t0

E L(t − τ)
∂λL(τ )

∂τ
dτ

⎫⎬
⎭ on ∂V L

C Z ,

(13)

where T L
i (t) = cohesive zone traction, uL

i (t) = cohesive
zone displacements, λL(t) = Euclidean norm of the cohe-
sive zone displacements, δL

i = cohesive zone material length
parameter, αL(t) = internal damage parameter reflecting the
area fraction of voids with respect to the cross-sectional area
of the idealized cohesive zone, �L

i = required stress level
to initiate cohesive zone damage, E L(t) = relaxation mod-
ulus of a single fibril in the cohesive zone, ∂V L

C Z = internal
boundary occupied by the cohesive zone, and i = n (normal),
or s (shear) for two-dimensional objects.

Similar to the Prony series representation (Eq. (12)) for
the bulk viscoelastic element, the relaxation modulus of a
single fibril in the cohesive zone can be presented as follows:

E L(t) = E L∞ +
q∑

p=1

E L
p exp

(
− E L

p

ηL
p

t

)
, (14)

where E L∞, E L
p = spring constants and ηL

p = dashpot vis-
cosities.

It can be shown that Eq. (13) is mathematically equiva-
lent to Eq. (9), i.e. energy release rate can be computed from
the traction-displacement relationship. Conceptually, as the
damage parameter α(t) reaches unity, the energy release rate
reaches its critical value and the cohesive zone traction vector
becomes zero, meaning that a free surface has been created
or, equivalently, a crack has propagated.

The damage parameter is determined by performing frac-
ture tests to represent locally averaged cross-sectional area of
damaged material in a cohesive zone. Alternatively, a phe-
nomenological form of the damage evolution can also be
employed to represent rate-dependent fracture. In the current
study, the following simple phenomenological form [31] has
been selected, since it is sufficient to demonstrate the forma-
tion and applicability of the multiscale model.

•
α = A [λ(t)]m , when

•
λ > 0 and α < 1 (15)

•
α = 0, when

•
λ ≤ 0 or α = 1, (16)

where A and m are microscale material constants which gov-
ern damage evolution behavior.

Since cohesive zone elements may introduce additional
compliance to the finite element mesh prior to crack initiation
and increase the maximum bandwidth of the stiffness matrix,
the computational model used herein provides an algorithm
to adaptively insert cohesive zone elements into the finite ele-
ment mesh at the moment at which the criterion for cohesive
zone initiation is satisfied such as:

T L
i (t) ≥ �L

i (17)

For a given solution step, the stress tensor is computed at
every node in the mesh and then the traction vector is com-
puted for every elemental edge sharing that node using Cau-
chy’s formula. Then, the traction vector for every edge in the
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mesh is checked against the crack initiation criterion (Eq.
(17)). Finally, if the crack initiation criterion is satisfied for
certain edge node, this node is doubled and a cohesive zone
element is then created for the new surface. One more thing to
be noted is that the Lagrange multipliers technique is used in
the model to apply displacement constraints in the cohesive
zone elements so that nodal interpenetration is precluded.
Further details on the algorithm for adaptive insertion of
cohesive zones can be found elsewhere [32,33].

3.3 Homogenization for linking two scales

Homogenization principles can now be used to establish the
relationships connecting both length scales. Accumulated
damage and structural degradation resulting from the local
scale analysis influence constitutive behavior at the global
scale. The results from the local scale analysis are homog-
enized and linked to the global scale problem. The concept
of homogenization [34,35] is applicable when the heteroge-
neous medium satisfies statistical homogeneity. Homogeni-
zation is central to the idea of multiscaling and is typically
through the averaging process of local fields within the het-
erogeneous medium as follows:

f G(xG
i , t) = f̄ L ≡ 1

V L

∫

V L

f L(x L
i , t)dV , (18)

where f̄ = volume average of a generic function f, f G =
the function at the global scale, f L = the function at the local
scale, and x L

i = the spatial coordinate at the local scale.
Using the divergence theorem, one can transform the vol-

ume integral above to a surface integral equation. Therefore,
if the boundary conditions at the local scale are homoge-
neous, the homogenized stresses at the global scale in terms
of the local stresses can be written as follows:

σ G
i j = σ̄ L

i j ≡ 1

V L

∫

∂V L
E

σ L
ki n

L
k x L

j d S, (19)

where ∂V L
E = external boundary of the local scale RVE, and

nL
k = the unit outer normal vector to the volume of local

scale RVE.
Likewise, the homogenized strains at the global scale in

terms of the local strains can be expressed as follows:

εG
i j = ε̄L

i j = EG
i j + eG

i j (20)

EG
i j = Ē L

i j ≡ 1

V L

∫

∂V L
E

1

2

(
uL

i nL
j + uL

j nL
i

)
d S (21)

eG
i j = ēL

i j ≡ 1

V L

∫

∂V L
I

1

2

(
uL

i nL
j + uL

j nL
i

)
d S, (22)

where Ē L
i j = external boundary average strain tensor, ēL

i j =
internal boundary average strain tensor which represents an
averaged measure of damage due to cracks in the local scale
RVE.

The use of Eqs. (19)–(22) is termed a mean field theory of
homogenization because the behavior of the global object is
determined only in terms of the mean stress and strain tensors
evaluated at the boundary of the local RVE. In the case of
quasi-static problems such as the one discussed in this paper,
the computation of the homogenized constitutive tensor is
obtained in order to correctly calculate the tangent stiffness
matrix �̄τ=t

τ=−∞ which is involved in Eq. (4).
It is important to note that the assumption that the strain

tensor is spatially uniform along the external boundary of the
RVE breaks down in regions of high gradients, such as in the
vicinity of cracks or where the size of the RVE is compara-
ble to the global length scale. Higher order homogenization
theorem can however be formulated by including gradients
of the deformation and moments of the stress tensor in the
model [36].

4 Incremental formulation for time dependence

When the IBVP is time and/or history dependent such as the
problem herein, incrementalization is necessary to allow inte-
gration of the governing equations, at least in an approximate
manner. Therefore, the multiscale model in this study uses an
incremental scheme for viscoelastic solids containing cracks.
Theoretical details demonstrating individual steps related to
the incremental formulation can be found in other studies
[32,37,38]; therefore, final equations in a summarized form
are presented in this paper for a complete discussion.

The stress tensor and the cohesive zone traction vector at
local scale RVE can be written in incremental form such as:

σ L
i j (t + �t) = σ L

i j (t) + �σ L
i j (23)

T L
i (t + �t) = T L

i (t) + �T L
i (24)

Assuming that the strain rate is constant for each time step and
that the linear viscoelastic relaxation modulus is represented
by a Prony series (as shown in Eq. (12)), the following incre-
mental constitutive equation can be expressed for the local
scale RVE [37].

�σ L
i j = C L

i jkl�εL
kl + �σ RL

i j , (25)

where C L
i jkl = C L

i jkl,∞

+ 1

�t

q∑
p=1

ηL
i jkl,p

{
1−exp

(
−C L

i jkl,p

ηL
i jkl,p

�t

)}

(26)

�σ RL
i j = −

3∑
k=1

3∑
l=1

AL
i jkl (27)
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AL
i jkl =

q∑
p=1

{
1 − exp

(
−C L

i jkl,p

ηL
i jkl,p

�t

)}
· SL

i jkl,p(t) (28)

SL
i jkl(t) = exp

(
−C L

i jkl,p

ηL
i jkl,p

�t

)
· SL

i jkl,p(t − �t) + ηL
i jkl,p

·�εL
kl

�t
·
{

1 − exp

(
−C L

i jkl,p

ηL
i jkl,p

�t

)}
(29)

In a similar way, the time increment of the viscoelastic cohe-
sive zone traction in the local scale RVE can also be derived,
and the resulting recursive traction difference �T L

i between
time t and t + �t is expressed as follows [38]:

�T L
i = kL

i j�uL
j + �T RL

i , (30)

where kL
i j = [1 − αL(t + �t)]

δL
i

·
⎡
⎣E L∞ + 1

�t

q∑
p=1

ηL
p

{
1 − exp

(
− E L

p

ηL
p

�t

)}⎤
⎦ (31)

�T RL
i =

[
1 − αL(t)

]

δL
i

⎡
⎣−

q∑
p=1

{
1 − exp

(
− E L

p

ηL
p

�t

)}

· sL
i j (t)

⎤
⎦− �αL

δL
i

⎡
⎣E L∞ · uL

i (t) +
q∑

p=1

sL
i j (t)

−
q∑

p=1

{
1 − exp

(
− E L

p

ηL
p

�t

)}
· sL

i j (t)

⎤
⎦− �αL · �L

i

(32)

sL
i j (t) = exp

(
− E L

p

ηL
p

�t

)
· sL

i j (t − �t)

+�uL
i

�t
· ηL

p ·
[

1 − exp

(
− E L

p

ηL
p

�t

)]
(33)

Now assuming that the homogenized constitutive behav-
ior of the global scale object can be approximated by an
incremental form similar to Eqs. (23) and (25):

σ G
i j (t + �t) = σ G

i j (t) + �σ G
i j (34)

�σ G
i j = CG

i jkl�εG
kl + �σ RG

i j (35)

CG
i jkl is the homogenized algorithmically consistent tan-

gent tensor, which is a function of time through its depen-
dence on the amount of damage accumulated at the local
RVE, and�σ RG

i j is the so-called homogenized history-depen-
dent residual stress term, which represents the history- and
rate-dependence in the material (both bulk and cohesive
zones) behavior. Using the concept of localization tensors
[39] with an assumption postulating that the local displace-
ment field can be related to the global strain tensor [40],
the homogenized instantaneous constitutive tensor and the

homogenized history-dependent residual stress term can be
derived, respectively as follows:

CG
i jkl

= 1

V L

∫

V L

[
C L

i jkl + C L
i jmn

{
1

2

(
L

mkl,n + L
nkl,m

)}]
dV

(36)

�σ RG
i j = 1

V L

∫

V L

(
C L

i jkl�εRL
kl + �σ RL

i j

)
dV , (37)

where �εRL
i j = 1

2

(
�u RL

i, j + �u RL
j,i

)
(38)

L
i jk is called the localization tensor that is necessary to

address the local displacement field due to the existence of
local asperities and internal boundaries including cracks and
cohesive zones. As shown in Eq. (36), the global scale tangent
tensor is controlled by heterogeneity, internal boundaries,
and cracks at the local scale RVE through the localization
tensor, and is also affected by viscoelasticity through local
scale viscoelastic property C L

i jkl(t). Therefore, the amount of
damage accumulated at the local scale RVE produces a non-
linear behavior at the global scale. The homogenized residual
stress term is estimated by the local scale property and the
local scale stress and strain fields, which are identified by
Eq. (27) and Eq. (38), respectively. Therefore, it is obvious
that the homogenized quantities at the global scale object are
obtained from the local scale RVE with given expressions
of the localization tensor in Eq. (36) and the local scale his-
tory-dependent displacement fields in Eq. (38). Souza and
Allen [32] presented a concise theoretical framework of this
two-way multiscale model and the corresponding finite ele-
ment formulation. The following matrix forms were finally
developed:

[
L

]
= −

[
K L

]−1 [
GL

]
(39)

{
�u RL

}
=
[

K L
]−1 {

F RL
}

, (40)

where
[

K L
]

=
∫

V L

[
BL
]T [

C L
] [

BL
]

dV

+
∫

∂V L
C Z

[
N L

]T [
kL
] [

N L
]

d S (41)

[
GL

]
=
∫

V L

[
BL
]T [

C L
]

dV (42)

{
F RL

}
= −

∫

V L

[
BL
]T {

�σ RL
}

dV

−
∫

∂V L
C Z

[
N L

]T {
�T RL

}
d S (43)
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[
N L

] = shape functions, and
[
BL
] = spatial derivatives

of shape functions.
The multiscale model herein is considered a two-way cou-

pled model because the applied displacements on the bound-
ary of the local scale are computed from the global scale
strain tensor (global-to-local coupling), and the homogenized
quantities are obtained from the solution of the local scale
IBVP (local-to-global coupling). Figure 2 presents the two-
way coupled multiscale modeling algorithm in a flowchart
form. Basically, the model is operated with seven major steps:
(i) read inputs for global and local scales; (ii) obtain initial
homogenized tangent tensor for global problem; (iii) solve
the global problem at a given time step; (iv) apply global
scale solution to local scale boundary value problem; (v)
solve the local scale problem at the time step; (vi) homoge-
nize local scale results; and (vii) update homogenized local
scale results to the global scale object at each integration
point for the next time step. It should be mentioned that, even
though not shown in Fig. 2, for each global scale nonlinear
time step, an iterative Newton-Raphson loop is performed
to guarantee convergence. The two-way coupled multiscale
model with all features described has been implemented into
a commercial finite element software package MultiMechTM

provided by MultiMech Research and Development, LLC.
The following model simulations were conducted by using
the MultiMechTM.

5 Model verification

In order to verify the multiscale computational model devel-
oped, a heterogeneous tapered bar as presented in Fig. 3 is
introduced. The tapered bar is a composite consisting of vis-
coelastic matrix and elastic particles. Due to the axis of sym-
metry, only half of the bar is modeled, and monotonically
increasing displacements are applied at the right end of the
bar, as shown in the figure. For the multiscale analysis, a
local scale microstructure describing the important geomet-
ric heterogeneities is needed. In the present example, a unit
cell is selected which possesses the same volume fraction
and equal level of mesh refinement obtained from the single
scale reference mesh. Model verification was performed in
two separate forms: without and with microstructure evolu-
tion such as cracks and/or cohesive zones with time.

For the case without the microstructure evolution, the mul-
tiscale computational solutions are compared to solutions
that can be analytically obtained as well as simulation results
from the single scale reference case where all heterogeneities
in the tapered bar are explicitly modeled in the global scale
mesh. The good agreement between model predictions and
the analytic solutions verify model accuracy of the multi-
scale technique, and the comparison in the simulation time
between multiscale model and the single scale model shows

the modeling efficiency of the multiscale approach compared
to the single scale technique.

For the case with microstructure evolution due to damage
over time, any deviation of computational simulations from
the undamaged analytic solutions will identify the amount of
damage predicted by the computational modeling approaches.
Since no analytic solution is available for the problems includ-
ing material viscoelasticity, heterogeneity, and rate-depen-
dent fracture, the predicting accuracy of the multiscale model
will only be estimated by comparing multiscale model sim-
ulations with simulation results from the single scale model.
Furthermore, simulation time between two approaches can
be compared to estimate the modeling efficiency.

The global and local scale objects are discretized and the
finite element meshes are constructed as shown in Fig. 3.
The finite element mesh (15,437 triangular elements) shown
in Fig. 3b of the global scale object with particles (Fig. 3a)
was finally developed by repeating a mesh refinement pro-
cess until the single scale finite element numerical solution
converges and closes to analytic solutions which are provided
later. In order to verify the multiscale modeling technique,
a homogeneous global scale mesh with only eight triangular
elements as presented in Fig. 3d is simulated by linking with
the local scale unit cell (shown in Fig. 3c) which contains 72
triangular elements. Simulation results from the multiscale
model can then be compared to the single scale (Fig. 3b) ref-
erence simulation and the analytic solution. Table 1 presents
material properties of the local scale constituents (i.e., elastic
particles, viscoelastic matrix, and cohesive zone properties
for the case with microcracks). Only local scale properties are
necessary to complete the local-global multiscale simulation.
The properties used are arbitrarily assumed for simulation
purposes only.

For the case without microstructure evolution, the analytic
solution is given as follows:

εxx (x, t) = 0.1t

0.693
·
(

1

20 − x

)
(44)

σxx (x, t) = 0.1

0.693
·
(

1

20 − x

)
· Ê(t), (45)

where Ê(t) = Ê∞t −
q∑

p=1

η̂p

{
1 − exp

(
− Ê p

η̂p
t

)}
(46)

Ê∞, Ê p, η̂p = Prony series terms evaluated for the com-
posite tapered bar.

Figure 4 plots the average stresses (σxx ) of the tapered
bar as loading time increases. Based on the results presented
in Fig. 4, the following remarks can be drawn: (i) the single
scale simulation results are almost identical to the analytic
solution, which infers that the single scale mesh is suffi-
ciently fine, and (ii) the accuracy of the multiscale model
increases as the global scale mesh is refined, but in this case
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Start

Read Global Inputs
(Load, Geometry, and 
Boundary Conditions)

Read Local Inputs
(Geometry and Material Properties of Each 

Constituent) 

Calculate Homogenized Tangent
Tensor from Local Scale Inputs

Apply Homogenized Tangent
Tensor to Global Scale Object

Solve Global Scale Problem

Apply Global Scale Deformations to 
the Local Scale RVE Boundaries

YES

NO

Solve Local Scale Problem

Homogenize Constitutive Tensor 
and Stress Tensor

Update Global Scale Tangent
Tensor and Stress Tensor

Next Time Step?

End
(Produce Outputs)

Fig. 2 A flowchart describing the two-way coupled multiscale modeling algorithm

only 8 constant strain triangle elements for the global scale
and 72 constant strain triangles for each local scale mesh
suffice, as opposed to 15,437 elements needed by the sin-
gle scale reference simulation. This result points out the
efficiency of the multiscale approach. The amount of time
required to complete the single scale reference simulation
was about 18.5 min, while the same level of accuracy could
be obtained from the multiscale model in 37 s using an ordi-
nary desktop computer with only one processor (2.50 GHz
CPU, 4GB RAM memory, and Linux OS). Furthermore, the
multiscale model can also run in parallel computing environ-
ments, which highlights the benefit of multiscale modeling
approach. The parallel computing vastly reduce simulation
time, since individual local scale IBVPs can be solved in
parallel by multiple processors.

For the cases where the microstructure does not evolve
with time and/or loading history, the two-way couple mul-

tiscaling is not necessarily required since the same degree
of accuracy can be obtained by using the simpler classi-
cal homogenization theory. The two-way coupled multiscale
models are however very attractive for problems where the
microstructure evolves with time, such as when microcracks
initiate and propagate. It is therefore now necessary to verify
the code for cases where damage evolves in the microstruc-
ture.

The effectiveness of the model for damage-induced
problems was verified by simulating the same tapered bar
problem by comparing single scale simulation results with
multiscale results. However, different from the previous case,
cohesive zone elements are now adaptively inserted into the
mesh once the cohesive zone initiation criterion (presented
in Eq. (17)) is met. Even though fracture problems typically
require higher level of mesh refinement, the same mesh used
for the non-damage case was adopted here so that one can
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Fig. 3 Elastic-viscoelastic
tapered bar problem to check
model accuracy and efficiency. a
Tapered bar with particles. b
Single scale mesh. c Local mesh
for the multiscale. d Global
mesh for the multiscale

(a)

(b) (c)

(d)

L = 10 

u (L , t) = 0.1t 

Elastic Particles 

Viscoelastic Matrix 

Y

X

cross-sectional area = 2 – /10x

Table 1 Local scale material
properties used for the tapered
bar problem

a Same fracture properties were
used to normal and shear
directions for simplicity

Elastic particles Viscoelastic matrix

E (GPa) 55.2 ν 0.35

ν 0.15 p E p (MPa) ηp (MPa s)

∞ 7.02 N/A

1 245.65 0.00737

Cohesive zone in the matrixa 2 422.26 0.1267

δn (m) 0.05 3 399.32 1.198

δs (m) 0.05 4 251.83 7.555

�n (MPa) 1.50 5 69.10 20.729

�s (MPa) 1.50 6 22.59 67.757

A 10.0 7 7.82 234.497

m 0.50 8 3.46 1037.880

compare computational times for both cases. Figure 5 plots
the average stress (σxx ) of the tapered bar as loading time
increases.

Due to the formation of cohesive zones followed by cracks,
it can be noticed in Fig. 5, that the average stress devi-
ates from the non-damage (linear viscoelastic) curve (pre-
sented by the analytical solution). The multiscale solution
was considered satisfactory when compared to the single
scale simulation results, which verifies the accuracy of the
multiscale model for damage-induced problems. In terms of
computational time required to run this problem, the multi-
scale solution was obtained approximately 250 times faster
than the single scale case. 26,700 s were necessary to com-
plete the single scale case, whereas only 105 s were used
to run the multiscale problem. Clearly, this example dem-
onstrates the higher computational efficiency of the mul-
tiscale technique when the object is highly heterogeneous

and contains damage. This benefit will further be noticeable
when one models geomaterials and infrastructure that typi-
cally presents a significant level of geometric complexity and
material inelasticity.

Figure 6 presents the deformed mesh and elemental stres-
ses of the tapered bar for the single scale case (Fig. 6a) and the
multiscale case (Fig. 6b), respectively. As shown, the tapered
bar experiences higher stress as the cross-sectional area of the
bar decreases, and particles are under higher stresses than the
matrix phase as shown in the single scale simulation (Fig. 6a).
The homogenized stresses obtained from the multiscaling
seem to be equivalent to the stress state of the single scale case
where two phases (i.e., particle and matrix) clearly present
different level of stresses. In addition, cohesive zones (repre-
sented by solid lines) inserted into individual RVEs clearly
demonstrate the spatially-dependent damage characteristics
of the tapered bar problem.
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Fig. 4 Model simulation results and comparisons with analytic solu-
tion without damage
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Fig. 5 Model simulation results and comparisons with analytic solu-
tion with damage

6 Model application

In order to demonstrate the applicability of the multiscale
model to composite structures where material inelasticity
and fracture damage are incorporated, an asphaltic road-
way structure subject to a cyclic loading was modeled. The
roadway structure to be modeled herein was arbitrarily con-
structed with typical three layers; 0.1-m thick asphaltic sur-
face, 0.1-m thick aggregate base layer, and 1.3-m thick soil
subgrade; as shown in Fig. 7. The asphaltic surface layer
is homogeneous in the global point of view but is modeled
through the two-way couple multiscale by linking all 253
global scale elements to respective local scale heterogeneous
RVE mixture. Thus, anisotropic and inelastic behavior of the
surface layer due to mixture viscoelasticity, spatial distri-
bution of the aggregates, and directional evolution of cohe-
sive zones and microcracks is automatically addressed by
the scale linking. The second and third layers were modeled
as isotropic linear elastic without linking to their local scale

RVEs. Only the surface layer is modeled by the multiscale
approach in this example for modeling simplicity, although
all three layers can be modeled through the multiscale method
with their corresponding RVEs.

For the local scale, a 0.05-m by 0.05-m asphalt concrete
mixture has been arbitrarily chosen as a RVE based on recent
findings by Kim et al. [41,42]. To determine appropriate
RVE dimensions of asphalt concrete mixtures, Kim et al.
[41,42] attempted multiple approaches such as geometri-
cal analysis of mixture heterogeneity using actual images
of mixture microstructure, experimental evaluation through
mechanical tests incorporated with digital image correlation
technique, and numerical simulation of mixture microstruc-
tures. Each analysis presented similar results indicating that
typical dense-graded asphalt mixtures can be characterized
for their material properties with an approximate RVE size
of 0.05–0.06 m.

As presented in Fig. 7, the local scale RVE consists of elas-
tic coarse aggregates and viscoelastic asphalt matrix which
mixes asphalt binder with fine aggregates and additives. The
coarse aggregate particles in the local scale are modeled as
linear elastic, whereas the asphalt matrix phase is viscoelas-
tic with fracture. Adaptive insertion of viscoelastic cohesive
zones is allowed in the matrix material to simulate rate-
dependent damage in the form of discrete cracks at the local
scale. As mentioned earlier, other roadway distresses such
as plastic deformation or moisture damage were not con-
sidered in this example. This model application targets only
predicting viscoelastic deformation and fracture of mixtures
and structures.

Since the purpose of this example is not to accurately
model some specific structures for validation but to dem-
onstrate the capabilities of the model to account for mate-
rial heterogeneity, inelasticity, and fracture with significantly
reduced computational efforts through the two-way couple
scale linking, the roadway structure was modeled with two-
dimensional axisymmetric approximation with reasonably
determined finite element meshes. Axisymmetric modeling
is limited in accounting for realistic tire loading and axle con-
figurations, but it can properly provide important physical
insights with considerable savings in computational efforts
with comparable model accuracy compared to three-dimen-
sional modeling. Therefore, it has been used by many researc-
hers for the modeling of roadway structures. In addition, as
shown in Table 2, material properties of the asphalt concrete
mixture constituents and underneath layers were assumed
with reasonable typical values. The cohesive zone proper-
ties of asphalt matrix phase in the local mixture RVE were
also arbitrarily assumed for simulation purposes only, even
though they can be directly measured by performing labora-
tory fracture tests [43–45].

Figure 7 also shows the loading sequence applied to the
roadway. Although the loading condition is not uniform in
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Fig. 6 Deformed meshes and elemental stresses of the tapered bar

reality, for the current study, a uniformly-distributed circu-
lar load (0.15-m radius) with its magnitude of 18.75 kN was
applied for simulating a passage of a typical dual-tire truck
axle (75 kN). To represent multiple passages, the loading
sequence was applied repeatedly with a 0.1-s loading pulse
followed by a 0.9-s rest period.

Simulation results were represented in a form of snap-
shots for both global structure and local RVE mixtures. Snap-
shots taken at peak of two different loading cycles (7th and
12th) are given in Fig. 8. The global structure results are pre-
sented in a contour plot of stress components σxx (horizon-
tal), σyy(vertical), and σxy (shear). Four local RVEs (A, B, C ,
and D) were strategically selected at four different locations
in the global scale and their deformation characteristics with
cohesive zone development at the 12th loading cycle are pre-
sented in the figure. Local scale RVEs A and B represent the

mixture behavior on top of the asphalt surface layer at two
different important locations: in the middle of tire loading
zone (RVE A) and at the edge of tire loading (RVE B). Mix-
ture RVE C was selected to investigate damage-dependent
mixture behavior at the bottom of the asphalt layer in the
center of tire loading, which has traditionally been known
as a critical location developing bottom-up fatigue cracks,
whereas RVEs A and B are more closely related to top-down
cracking. Mixture RVE D which is far from the loading can
be compared to other RVEs that are more directly influenced
by the tire loading, so that spatially-dependent damage char-
acteristics due to the loading can be visualized.

As can be clearly seen, the roadway presents higher stres-
ses with the increasing number of loading cycles, which indi-
cates the fatigue damage process. In this particular example,
with the given loading conditions, material properties, and
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Fig. 7 Three-layer roadway structure to demonstrate applicability of the multiscale model

Table 2 Material properties
used for the roadway problem

a Same fracture properties were
used to normal and shear
directions for simplicity

Bulk materials
Elastic particles in local RVE Asphalt matrix in local RVE

E (GPa) 60.9 ν 0.35

ν 0.15 p E p (MPa) ηp (MPa s)

∞ 12.15 –

Elastic properties of aggregate base 1 2497.50 0.2497

E (GPa) 0.20 2 1363.50 1.364

ν 0.40 3 1026.50 10.26

4 302.40 30.24

Elastic properties of soil subgrade 5 120.69 120.69

E (GPa) 0.06 6 36.45 364.50

ν 0.45 7 9.02 901.80

8 1.47 1474.20

Cohesive zone properties of asphalt matrix in local RVEa

δn (m) 0.001

δs (m) 0.001

�n (MPa) 1.0

�s (MPa) 1.0

A 1.0

m 0.5

geometry, the roadway structure is subject to compressive
stress through the entire surface layer, while significant ten-
sile stress is observed around the bottom of base layer, which

results in potential sites for crack propagation in opening
mode. At the top of surface layer, although the roadway is
under significant compression due to tire loading, the com-
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(a) (b) (c)

(d) (e) (f)

Asphalt Concrete

Aggregate Base

RVE A RVE B RVE C RVE D
Y

Soil Subgrade

(g)

(h) (i) (j) (k)

Fig. 8 Multiscale simulation results of the roadway problem. a σxx at
7th cycle. b σyy at 7th cycle. c σxy at 7th cycle. d σxx at 12th cycle.
e σyy at 12th cycle. f σxy at 12th cycle. g RVE locations in the global

scale. h RVE A at 12th cycle. i RVE B at 12th cycle. j RVE C at 12th
cycle. k RVE D at 12th cycle

pressive stress develops damage in shear as presented in the
deformation contour of the RVE A where a number of cohe-
sive zone elements (represented by solid lines) are embed-

ded. Damage associated with shear is even more visible at
the edge of tire loading. Structure contour of σxy and the
cohesive zones developed in the RVE B in the figure demon-
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strate potential crack propagation in shearing mode, which is
in agreement with other studies [46,47] that investigated the
mechanisms of top-down cracking. In the case of the RVE
that is far away from the loading zone, no significant damage
is involved in the microstructure, as seen from the RVE D.
Similar analyses can be conducted at any target conditions:
loading conditions, individual properties of materials, and
roadway geometries.

The multiscale model accounts for the effects of micro-
structural details by using a local scale RVE with signifi-
cantly reduced amount of computational effort and laboratory
tests due to the use of only local scale constituent proper-
ties, as opposed to mixture properties. Therefore, in evaluat-
ing the effect of mixture volumetric and/or microstructural
characteristics on the overall damage-induced performance
of mixtures and structures, no laboratory experiments would
be further required since the mixture characteristics are com-
puted through the model.

Although, this study did not target to present modeling
sensitivity related to the local scale constituent properties,
it is not premature to expect that the multiscale model can
allow roadway engineers to better understand the mechani-
cal effects of material-specific design variables on the overall
damage-related responses and performance characteristics of
structures. Consequently, the better understanding of small-
scale design variables can help engineers select mixture con-
stituents in a more appropriate way and advance the current
volumetric mix-design concepts, materials models, and per-
formance prediction models.

7 Summary and conclusions

This paper described the theoretical framework of a compu-
tational multiscale model with its verification and potential
applications to predict mechanical behavior of viscoelastic
asphalt roadways that are subject to nonlinear, inelastic frac-
ture damage. Two physical length scales were two-way cou-
pled in the quasi-static finite element framework by linking
a homogenized global scale to a heterogeneous local scale
RVE. Based on the unique multiscale algorithm, it was pos-
sible to take into account the effect of mixture heterogene-
ity, inelasticity, and anisotropic damage accumulation in the
small scale on the overall performance of larger scale struc-
tures. The nonlinear viscoelastic cohesive zone model was
also incorporated in the model to address rate-dependent frac-
ture damage in the asphaltic mixtures and roadway structures.

The model demonstrated clear potential and significant
benefits compared to traditional approaches in that only local
scale properties and local scale microstructure character-
istics are necessary to model damage-induced behavior in
larger scale objects. This results in significant savings in
time and costs. Furthermore, compared to single scale com-

putational modeling of heterogeneous objects, the multiscale
model demonstrated much higher computational efficiency
by reducing simulation time based on the homogenization
process to link scales and the parallel computing capabilities
which highlight the benefit of multiscale modeling approach.

It is expected that a successfully developed multiscale
computational model, such as the one presented herein, can
be an efficient analysis-design-prediction tool for various
types of mixtures and structures including asphalt mixtures
and roadways targeted in this study. Although many chal-
lenges still exist, and further improvements are necessary
remain for the future studies, this paper demonstrates the
potential power and efficacy of this modeling approach.
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