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Abstract A three-dimensional immersed smoothed finite
element method (3D IS-FEM) using four-node tetrahedral
element is proposed to solve 3D fluid–structure interaction
(FSI) problems. The 3D IS-FEM is able to determine accu-
rately the physical deformation of the nonlinear solids placed
within the incompressible viscous fluid governed by Navier-
Stokes equations. The method employs the semi-implicit
characteristic-based split scheme to solve the fluid flows and
smoothed finite element methods to calculate the transient
dynamics responses of the nonlinear solids based on explicit
time integration. To impose the FSI conditions, a novel,
effective and sufficiently general technique via simple lin-
ear interpolation is presented based on Lagrangian fictitious
fluid meshes coinciding with the moving and deforming solid
meshes. In the comparisons to the referenced works includ-
ing experiments, it is clear that the proposed 3D IS-FEM
ensures stability of the scheme with the second order spatial
convergence property; and the IS-FEM is fairly independent
of a wide range of mesh size ratio.
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1 Introduction

Fluid–structure interaction (FSI) with moving boundaries
and largely deformable nonlinear solids and structures are
challenging problems in numerical simulations in terms
of accuracy, robustness and efficiency. With the contin-
ual improvements in computer hardware, great efforts have
been made by the numerical scientists in the community
of computational solid mechanics and fluid dynamics to
develop increasingly robust and accurate numerical meth-
odology/technique for the FSI simulation. Among numer-
ous numerical methods for FSI problems, one typical class
of methods have been proposed based on the moving-mesh
techniques, such as Arbitrary Lagrangian-Eulerian (ALE)
methods [1–4], space–time (ST) methods [5–12] and so on.
Based on the moving-mesh techniques, the fluid-structure
interfaces are explicitly depicted in the discrete model of the
FSI system, and the meshes for the fluid and solid structures
are movable in the FSI simulations with the moving bound-
aries or interfaces. Alternatively, based on the immersed-type
methods a class of methods using fixed fluid grid or mesh
have been proposed, such as the immersed boundary (IB)
methods [13–18], immersed finite element method (IFEM)
[19–23], 2D immersed smoothed finite element methods (2D
IS-FEM) [24,25] and so on. These effective numerical meth-
ods to solve FSI problems broadly include three key mod-
ules: (1) implementation of the FSIs; (2) solver for transient
responses of the nonlinear solids; (3) solver for transient fluid
flows.

The first module is always embedded in the process of
solving the fluid and solid problems so as to implement
the FSIs correctly. The numerical methods for the fluid
and solid problems may need meshes or grids to discret-
ize the fluid and solid domains. In the methods based on the
moving-mesh techniques, the fluid-structure interface always
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Fig. 1 Conceptual illustrations
of two types of methods for
solving FSI problems: a the
fluid-structure interfaces always
coinciding with fluid mesh or
grid; b the fluid-structure
interfaces immersed inside the
fluid mesh or grid

coincide with the fluid mesh or grid, such as the adap-
tive meshing technique, ALE methods or ST methods, as
illustrated in Fig. 1a. In this class of methods the FSIs can
be directly imposed on the interface by either the mono-
lithic approach (i.e., the fluid and solid problems are solved
simultaneously using a single solver) or the partitioned
approach (i.e., the fluid and solid problems are solved sep-
arately using two distinct solvers). However, dealing with
the problems with moving boundaries, the re-meshing oper-
ation is often necessary which is difficult and computa-
tional expensive especially for 3D FSI problems. In order
to avoid re-meshing, a class of immersed-type methods
using fixed fluid grid or mesh has been proposed following
the original IB method [13,14], such as the hybrid Carte-
sian/immersed boundary (HCIB) methods [15–18], IFEM
[19–23], 2D IS-FEM [24,25] and so on. The immersed-type
methods allow the fluid-structure interface to cut cross the
fluid mesh or grid, as shown in Fig. 1b. In most of the IB
methods, the fluid domain is discretized by fixed Eulerian
mesh or grid, whereas a set of Lagrangian fiber network is
used to present the structure being immersed inside the fluid
[15–18]. As such, the interactions between the fluid and solid
should be carefully treated. A smoothed approximation of the
Dirac delta function is designed to distribute the nodal FSI
forces and velocity fields between the Eulerian and Lagrang-
ian domains. In 2D problems, the major disadvantage of the
IB methods results from the assumption of the one-dimen-
sional fiber-like immersed structure, by which the structure
only carries mass but does not occupy volume. Therefore, it
is difficult to use IB methods to represent the solids with the
complex nonlinear constitutive law, which occupy finite vol-
ume in the fluid. To overcome this drawback, IFEM [19–23]
has been developed and is able to represent the true phys-
ics of the nonlinear solids with the use of the standard FEM
procedure. IFEM immerses the whole solid body inside the
fluid and imposes the FSI conditions by means of meshfree
approximation or FEM interpolation.

Being inspired by the IB and IFEM methods and with
the goal of solving general 3D FSI problems, a novel three-

dimensional immersed smoothed finite element method (3D
IS-FEM) is proposed in this work, which follows the main
frame and procedure of the 2D IS-FEM in [25]. This approach
adopts the efficient direct forcing technique from IB/HCIB to
calculate the FSI force, thus enabling the IS-FEM to analyze
the physical motion and deformation of the nonlinear solid
as per IFEM. The solvers for the solid and fluid problems in
the IS-FEM employ the well-developed numerical methods,
such as the smoothed finite element methods (S-FEMs) for
the solid part, and the semi-implicit characteristic-based split
(CBS) method for the fluid part.

FEM is a popular choice for solving the transient responses
of solids and structures. For simple preprocessing, three-node
triangular (T3) element for 2D cases and four-node tetra-
hedral (T4) element for 3D cases are preferred for mesh-
ing the domain with complex geometry. However, due to
several undesired features such as the overly-stiff behav-
ior, poor accuracy, and difficulties in handling incompress-
ibility, T3 and T4 element are usually not adopted in the
standard commercial FEM procedure for solids in which
robustness is key. Based on the gradient/strain smoothing
technique [26] and the generalized smoothed Galerkin (GS-
Galerkin) weak form or weakened weak (W2) form [27–33],
a family of S-FEM [34,35] has been proposed, which can
greatly improve the performance of the T3 and T4 elements.
The 3D IS-FEM mainly utilizes two types of S-FEMs: face-
based S-FEM using T4 element (FS-FEM-T4) for compress-
ible solids, and selective S-FEM using T4 element (Selective
S-FEM-T4) for nearly incompressible solids. Moreover, as
a special case of S-FEM [35], FEM-T4 is adopted in some
numerical examples, which serves to demonstrate that our
proposed scheme is also available for the standard FEM pro-
cedure.

For solving the fluid flow in the FSI problems, any sta-
ble and robust numerical method, which is able to use T3
or T4 element and effectively suppress spurious oscillations
resulting from the convective characteristic of convection-
dominated flows, the restriction of LBB condition and so
on, can serve as a suitable candidate for the fluid solver in
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IS-FEM. Various reliable numerical methods have been
reported to solve the incompressible Navier-Stokes fluid flow
under the framework of Galerkin procedure, such as the
pressure-stabilizing method introduced in [36] for the Stokes
flow and the pressure-stabilizing Pertrov-Galerkin (PSPG)
formulation introduced in [37] for Navier-Stokes equations,
streamline upwinding/Petrov-Galerkin (SUPG) formulation
[38], Galerkin least-square techniques (GLS) [39], Taylor–
Galerkin method [40], CBS algorithm [41,42] and so on.
In this work, the semi-implicit CBS scheme is employed,
which avoids any possibility of spurious solutions. More-
over, one important feature of CBS scheme is that it allows
equal interpolation for all the primitive variables, such as the
fluid velocity and pressure. Users can employ the simplest
four-node triangular (T4) elements for the efficient prepro-
cessing and numerical calculations.

In Sect. 2, the explicit scheme for dynamics analysis of
nonlinear solids based on central difference time integration
combined with the S-FEM is described. Galerkin procedure
based on the semi-implicit CBS method for the incompress-
ible viscous fluid flow is reviewed in Sect. 3. In Sect. 4, the
immersed methodology for coupling of the solid and fluid by
means of the fictitious Lagrangian fluid mesh is proposed.
Following various numerical examples provided in Sect. 5,
the conclusions are drawn in Sect. 6.

2 Brief review of S-FEM for explicit dynamics analysis
of solids

In order to describe the motion and deformation of the non-
linear solid, assume at the time t (τ ) the solid body occupies
the solid domain τ�s with a closed boundary τ�s . Here, s
denotes the solid appearing as the superscript on the right,
while τ denotes the time step number appearing as the super-
script on the left. At the initial stage (τ = 0) the solid
occupies the domain 0�s (so called the initial or referential
configuration) with the boundary 0�s . The material coordi-
nates of the solid are denoted as Xs

i = 0xs
i , (i = 1, 2, 3 for

3-D) at the initial configuration, and at the current configu-
ration of the time t (τ ) the spatial coordinates are denoted as
τ xs

i . The governing equation can be written as the following
total Lagrangian description

∂Ps
ji

∂Xs
j

+ ρs gi = ρsas
i

N .B.C. : ns
jσ

s
ji = f t,s

i on �s
t ;

V .B.C. : vs
i = v̄s

i , on �s
v;

I.C. : 0 Ps
ji = 0 P̄s

ji ,
0vs

i = 0v̄s
i . (1)

Here, N.B.C. denotes the natural boundary conditions,
V.B.C. denotes the velocity boundary conditions, and I.C.
denotes the initial conditions. In Eq. (1), Ps

ji is the first

Piola-Kirchhoff stress tensor, ρs is the initial density of the
solid, us

i is the displacement, as
i is the acceleration, vs

i is the
velocity, �s

t is the natural boundary with the outward surface
normal ns

j and the prescribed traction force f t,s
i , σ s

i j is the
Cauchy stress tensor and �s

v is the essential boundary with
the prescribed velocity v̄s

i .
Both S-FEM and the standard FEM (regarded as the spe-

cial case of S-FEM) are employed in this work. The main
difference between S-FEM and FEM is the smoothing oper-
ation on the spatial gradient or strain field in S-FEM. Sup-
pose that the initial solid domain 0�s is discretized by a set
of N s

n nodes and N s
ele elements. The material coordinates of

the solid nodes are denoted as Xs
I i

(
I = 1 to N s

n

)
. In both

FEM and S-FEM, the displacement us
i and velocity vs

i are
interpolated by the standard FEM procedure:

us
i =

∑

I

0�s
I us

I i , vs
i =

∑

I

0�s
I v

s
I i , (2)

where 0�s
I is the FEM shape function calculated at the initial

configuration. In the standard FEM, the spatial gradient of
the field is directly calculated as follows:

0us
i, j =

∑

I

0�s
I, j u

s
I i ,

0vs
i, j =

∑

I

0�s
I, jv

s
I i , (3)

where 0�s
I, j = ∂0�s

I /Xs
j is the derivatives of the shape

function at the initial configuration. However, generally the
above direct calculations of the spatial gradient are not used
in S-FEM, and the smoothing operations on the spatial gra-
dient of the field in the smoothing domains are alternatively
required.

In S-FEM, the domain 0�s is divided into N s
sd non-

overlapped smoothing domains 0�sd
isd with the boundaries

0�sd
isd

(
isd = 1, 2, . . . , N s

sd

)
, as illustrated in Fig. 2a. Each

smoothing domain 0�sd
isd is associated with a representative

material point Xs
isd . The smoothing of the gradient of the

displacement field in 0�sd
isd can be implemented as follows:

ūs
i, j

(
Xs

isd

) =
∫

0�sd
isd

us
i, j

(
Xs) W

(
Xs; Xs − Xs

isd

)
d� (4)

where us
i, j = ∂us

i /∂Xs
j are the gradient of the displace-

ment field, and ūs
i, j are the so-called smoothed gradient. The

smoothing function W
(
Xs; Xs − Xs

isd

)
should satisfy par-

tition of unity and the following Heaviside type piecewise
constant function is employed:

W
(
Xs; Xs − Xs

isd

) =
{

1/V sd
isd , Xs ∈ 0�sd

isd
0 Xs /∈ 0�sd

isd
;

V sd
isd = volume

(
0�sd

isd

)
. (5)

Introducing the divergence theorem, Eq. (5) can be recast
to
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Fig. 2 Illustrations of the smoothing domains for S-FEM: a non-overlapping smoothing domain; b face-based smoothing domain for FS-FEM-T4;
c node-based smoothing domain for NS-FEM-T4

ūs
i, j

(
Xs

isd

) = 1

V sd
isd

∫

0�sd
isd

us
i

(
Xs

isd

) 0nsd
j d� (6)

where 0nsd
j is the outward surface normal of the smooth-

ing domain boundary 0�sd
isd . Substituting Eq. (2) into Eq. (6),

the smoothed gradient of the displacement field can then be
written as

ūs
i, j

(
Xs

isd

) =
∑

I

⎛

⎜⎜
⎝

1

V sd
isd

∫

0�sd
isd

0�s
I

(
Xs

isd

) 0nsd
j d�

⎞

⎟⎟
⎠ us

I i

=
∑

I

0�̄s
I, j

(
Xs

isd

)
us

I i (7)

where �̄s
I, j is the smoothed derivatives of shape function.

In the finite deformation analysis, the deformation gra-
dient, Fi j = ui, j + δi j , is the primary strain measure. The
smoothing operation on the deformation gradient Fi j yields
the following smoothed deformation gradient F̄i j :

F̄ s
i j

(
Xs

isd

) = 1

V sd
isd

∫

0�sd
isd

us
i

0nsd
j d� + δi j

=
∑

I

0�̄s
I, j

(
Xs

isd

)
us

I i + δi j . (8)

Using F̄i j , one can easily construct the smoothed Green
strain, the smoothed right Cauchy-Green deformation ten-
sor, the smoothed Piola-Kirchhoff stress and so on.

There are mainly two types of smoothing domain in 3D
S-FEM with T4 element, such as the face-based smooth-
ing domain as shown in Fig. 2b and the node-based smooth-
ing domain as shown in Fig. 2c, leading to FS-FEM-T4 and
node-based smoothed FEM (NS-FEM-T4), respectively. The
employment of FS-FEM-T4 can greatly improve the per-
formance of the simplest linear T4 elements and provide
superior computational efficiency and accuracy on compar-
ing with the standard FEM-T4 procedure [34,35]. The com-

bination of these two types of S-FEM as Selective S-FEM
is used to remove volumetric locking in the analysis of the
nearly incompressible solids. The detailed implementations
of FS-FEM, NS-FEM and Selective S-FEM can be found in
[35].

In this work, the explicit time integration based on the cen-
tral difference algorithm is employed to obtain the transient
dynamics solutions of the nonlinear solids [43]. The well-
known equation of motion is given in the following form:

Ms
I J as

J i = f s,ext
I i − f s,int

I i (9)

subject to the boundary conditions. Here, Ms
I J is the entry of

the lumped mass matrix, f s,ext
I i is the external force vector

in the standard FEM form, f s,int
I i is the internal force vector,

defined in the total Lagrangian formulation as

f s,int
I i =

∫

0�s

0�s
I, j Ps

ji d�. (10)

If FEM is employed, f s,int
I i is calculated following the stan-

dard FEM procedure. In S-FEM, f s,int
I i is evaluated based on

the smoothed derivatives of the shape function (see [34,35]
for details).

In this research, two types of nonlinear elastic materials
are employed in the numerical examples. One is the isotropic
Saint Venant-Kirchhoff elastic material with the following
strain energy density function,

ψ (E) = 1

2
λ (trE)2 + μtrE2 (11)

where E is the Green strain tensor, and λ and μ are the Lamé
constants of the linearized theory. The second type is the
nearly incompressible Mooney-Rivlin hyperelastic material,
defined by the following strain energy density function,

� = A10
(
Ī1 − 3

) + A01
(
Ī2 − 3

) + 1

2
κ (J − 1) (12)

where A10 and A01 are the material constants, κ is the bulk
modulus, Ī1 = I1 I −1/3

3 and Ī2 = I1 I −2/3
3 . Here, I1, I2 and
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I3 are the three invariants of the right Cauchy-Green defor-
mation tensor C, and J is the determinant of the deformation
gradient F. For the nearly incompressible materials some
special techniques should be adopted to remove volumetric
locking, such as selective reduced integration (SRI) in FEM
or Selective S-FEM. If A01 = 0, the description in Eq. (12)
is reduced to Neo-Hookean description.

Using the explicit time integration based on the central
difference method [43], we provide the following flowchart
to perform the dynamics analysis of the nonlinear solids.

Flowchart 1: Explicit dynamics analysis for nonlinear
solids

(1) Loop over all the solid elements, and compute 0�s
I and

0�s
I,i at the initial configuration.

(2) Compute the lumped mass matrix Ms
I J .

(3) Set up the I.C., 0vs
I i ,

0 Ps
I i j ,

0us
I i , and t (τ ) = 0 with

the time step number τ = 0.
(4) Compute the external force τ+1 f s,ext

I .
(5) Call the subroutine Solid_ExDyna_3D (τ, �t, τus

I i ,
τ vs

I i ,
τas

I i , Ms
I J ,

τ+1 f s,ext
I i ).

5.1 Compute the (smoothed) internal force τ f̄ s,int
I i ,

and the residual force τ+1 f s
I i = τ+1 f s,ext

I i −
τ f̄ s,int

I i .
5.2 Compute the nodal acceleration τas

I i = M−1
I J
τ+1

f s
I i .

5.3 Partially update the nodal velocity τ+1/2vs
I i =

τ vs
I i +�tτas

I i/2.
5.4 Apply the velocity boundary conditions, and

update the nodal displacement τ+1us
I i = τus

I i +
�tτ+1/2vs

I i .

5.5 Compute the internal force τ+1 f s,int
I i , and the

residual force τ+1 f s
I i = τ+1 f s,ext

I i − τ+1 f s,int
I i .

5.6 Compute the nodal acceleration τ+1as
I i = M−1

I J
τ+1

f s
I i .

5.7 Update the nodal velocity, τ+1vs
I i = τ+1/2vs

I i +
�tτ+1as

I i/2.
5.8 Return τ+1us

I i ,
τ+1vs

I i ,
τ+1as

I i to the main rou-
tine.

(6) Update the solid nodal variables τus
I i = τ+1us

I i ,
τ vs

I i =
τ+1vs

I i ,
τas

I i = τ+1as
I i , τ = τ + 1, t = t +�t . Go to

Step (4) and continue with the next time step.

3 Brief review of CBS method for incompressible
viscous fluid flow

The conservation form of Navier-Stokes (N-S) equations for
the incompressible viscous fluid flow are given as follows

∂V f
i

∂t
+ ∂

∂x f
j

(
v

f
i V f

j

)
= −∂p f

∂x f
i

+ ∂T
f
i j

∂x f
j

+ ρ f gi

∂V f
i

∂x f
i

= −∂p f

∂t
;

V .B.C. : g f
vbc (vi ) = v

f
i − v̄

f
i = 0 on � f

v ;
P.B.C. : p f − p̄ f = 0 on � f

p ;
I.C. : 0v

f
i = 0v̄

f
i ; 0 p f = 0 p̄ f (13)

where V f
i = ρ f v

f
i . Here, P.B.C. denotes the pressure

boundary condition. ρ f is the fluid density, μ f is the fluid
dynamic viscosity, v f

i is the fluid velocity, p f is the fluid

pressure, gi is the acceleration of gravity, and T
f
i j is the

deviatoric stresses. The superscript f on the right denotes
the fluid. The fluid problem is solved based on the Eulerian
mesh, hence the nodes of the fluid mesh are fixed with the
coordinates x f

i .
The Galerkin procedure based on the semi-implicit form

of CBS method [41,42] is employed to solve the incompress-
ible viscous fluid flow. For the sake of simplicity only the
fully-discrete equations are provided here (see [41,42] for the
detailed derivations). A set of finite element mesh using T4
elements with N f

n nodes and N f
ele elements is used to discret-

ize the fluid domain � f . The coordinates of the fluid nodes
are denoted by x f

I

(
I = 1 to N f

n

)
. The primitive unknown

variables, the fluid velocity v f
i and the pressure p f , can be

interpolated by the following standard FEM procedure

τ v
f

i =
∑

I

�
f
I
τ v

f
I i ; τ p f =

∑

I

�
f
I
τ p f

I (14)

where� f
I is the shape function of the fluid node I . Using the

above spatial discretization, the time discretization based on
the CBS algorithm leads to the following three steps to calcu-
late the fluid velocity and pressure at the new time t (τ + 1).

Step 1: On the intermediate momentum calculation

M f
I J

∗v f
J i − τ v

f
J i

�t
= −τC f

I J
τ v

f
J i − τ F f

I i

−�t

2
τ K f

I J
τ v

f
J i + τ f f,t

I i + τ f f,g
I i

= ∗ RH S f
I i + τ f f,g

I i ; (15)

Step 2: On the pressure calculation

H f
I J
τ+1 p f

J = − 1

�t
Q f

I J i
∗v f

J i ; (16)

Step 3: On the momentum correction

M f
I J

τ+1v
f
J i − τ v

f
J i

�t
= τ+1 RH S f

I i

= MI J

∗v f
J i − τ v

f
J i

�t
− G f

I J i
τ p f

J ; (17)
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where,

M f
I J = ∫

� f

ρ f�
f
I �

f
J d�,

τC f
I J = ∫

� f

ρ f�
f
I

∂
(
τ v

f
j �

f
J

)

∂x f
j

d�,

τ F f
I i = ∫

� f

∂�
f
I

∂x f
j

τ
T

f
i j d�,

τ K f
I J = ∫

� f

∂
(
τ v

f
k �

f
I

)

∂x f
k

ρ f
∂
(
τ v

f
j �

f
J

)

∂x f
j

d�,

τ f f,t
I i = ∫

� f

�
f
I
τ
T

f
i j n

f
j d�, τ f f,g

I i = ∫

� f

�
f
I ρ

f gi d�,

H f
I J = ∫

� f

∂�
f
I

∂x f
i

∂�
f
J

∂x f
i

d�, Q f
I J i = ∫

� f

ρ f�
f
I
∂�

f
J

∂x f
i

d�,

G f
I J i = ∫

� f

�
f
I
∂�

f
J

∂x f
i

d�, .

(18)

The mass matrix M f
I J in the above equations is lumped.

Under Step 2, the iteration scheme, the preconditioned con-
jugate gradient (PCG) scheme, is employed to solve Eq. (16).
The invariant matrices H f

I J and M f
I J are assembled only once

at the beginning. The right hand sides under Step 1 and Step
3, denoted by ∗ RH S f

I i and τ+1 RH S f
I i , respectively, will be

used in the calculation of the FSI forces. The above semi-
implicit CBS algorithm is conditionally stable, and the criti-
cal time step�t can be determined accordingly [42,44]. The
flowchart to calculate the incompressible viscous fluid flow
is given below.

Flowchart 2: CBS for incompressible viscous fluid

(1) Loop over all the fluid elements, and compute � f
I and

∂�
f
I /∂x f

i .

(2) Compute the lumped mass matrix M f
I J and the matrix

H f
I J .

(3) Set up I.C., 0v
f
I i ,

0 p f
I i , t (τ ) = 0, and the time step

number τ = 0.
(4) Call subroutine Fluid_CBS_3D (τ,�t, τ v f

I i ,
τ p f

I i ,

M f
I J , H f

I J ,
τ+1g f

vbc

(
v

f
I i

)
).

4.1 Compute ∗v f
J i using Eq. (15).

4.2 Apply the P.B.C., and obtain τ+1 p f
J using

Eq. (16).
4.3 Use Eq. (17) and apply V.B.C. τ+1g f

vbc (vI i ) to

get τ+1v
f
J i .

4.4 Return τ+1v
f
J i and τ+1 p f

I to the main routine.

(5) Update τ v f
I i = τ+1v

f
I i ,

τ p f
I = τ+1 p f

I , τ = τ + 1 and
t = t +�t . Go to Step (4) and continue with the next
time step.

4 Immersed S-FEM for FSI

4.1 Governing equations and FSI conditions

In this work, the 3D FSI problem involves a deformable non-
linear solid body immersed within the incompressible vis-
cous fluid. As illustrated in Fig. 3, firstly we assume that the
fluid always exists everywhere in the fluid domain � f . The
solid domain τ�s is always completely immersed inside� f .
The sub-domain of � f overlapping the solid domain τ�s is
denoted by τ� f s = τ�s with a closed fluid-structure inter-
face τ� f s = τ�s . Obviously, this FSI problem consists of a
fluid and a solid part. These two parts are coupled by addi-
tional FSI conditions. The FSI conditions in this research
are introduced based on the following assumption: the fluid
particles residing in � f s are bound to the solid particles,
i.e., the motions of the fluid particles in � f s are identical
to the motions of the bound solid particles. This assump-
tion is presented by the FSI velocity condition in Eq. (19).
The mentioned assumption indicates the non-slip condition
at the fluid-structure interface. The FSI forcing condition in
Eq. (19) reveals that, when the solid and fluid particles in
� f s are constrained to satisfy the first equation of Eq. (19),
a pair of interacting forces, f s,F SI

i and f f,F SI
i , appear and

are applied on the solid and fluid particles, respectively.
Overall, the governing equations for the FSI problems

comprise three parts: (1) the governing equations for the
fluid flow given by Eq. (13); (2) the governing equation for
the solid given by Eq. (1); (3) the FSI conditions given as
follows.

FSI conditions

FSI velocity condition: v f
i = vs

i for x ∈ � f s;
FSI forcing condition: f s,F SI

i = − f f,F SI
i for x ∈ � f s .

(19)

The solution scheme for the IS-FEM is composed of
three main modules: (1) solving the fluid problem with
the FSI conditions; (2) solving the solid problem with
the FSI conditions; and (3) identify the FSI conditions.
The key point is to identify and implement the FSI con-
ditions in Eq. (19) properly and accurately. In the pro-
posed IS-FEM, the FSI velocity condition is imposed on
the fluid particles in τ� f s , and the corresponding FSI
forcing condition is applied as the external force act-
ing on the solid particles. The FSI velocity condition
can be achieved straightforwardly from the solid veloc-
ity field. However, the FSI forces have to be determined
carefully. Below shows the detailed algorithm to advance
the solutions at the next time step τ + 1 from the time
step τ .

In the formulations, the fluid problem is solved in the
whole fluid domain including the overlapping domain � f s ,

123



Comput Mech (2013) 51:129–150 135

Fig. 3 Procedure for the IS-FEM to solve FSI problems from the time
stepτ to the time stepτ+1: a solve the solid problem and update the solid
configuration, b obtain the velocity of fluid nodes x f

I ∈τ+1� f s by FEM

interpolation, c solve the fluid problem with FSI velocity condition, d
illustration of fictitious fluid mesh and fictitious fluid nodes. Open circle
solid nodes; filled square fluid nodes; filled circle fictitious fluid nodes

with the proper B.C., I.C. and FSI conditions. Similarly,
under the given I.C., B.C. and the proper FSI conditions, the
motion and deformation of the nonlinear solid body are cal-
culated taking into account simultaneously the interactions
with the fluid.

The fluid domain � f and the solid domain τ�s are dis-
cretized by two different sets of meshes, respectively. The
fluid problem is solved using Eulerian mesh, and the solid
problem is solved using Lagrangian mesh. These two sets of
meshes are not required to coincide. It is also not necessary
to adopt the same type of the element. In this work, only the
simplest linear element, four-node tetrahedral (T4) element,
is employed for the 3D simulations.

To establish the solution procedure of IS-FEM in the
following sub-sections, firstly we assume that, at the time
t (τ ), the status of the fluid and solid are already known,
i.e., τ v f

I i ,
τ p f

I ,
τ vs

I i ,
τas

I i ,
τus

I i , and the FSI force τ f s,F SI
I i

are known variables. At the initial stage τ = 0, all these
variables can be given as the initial conditions. The bound-
ary conditions for the solid and fluid problems expressed in

Eqs. (1) and (13) apart from the fluid–structure interaction,
are satisfied by default without special indication in this sec-
tion.

4.2 Solving the solid problem with FSI forcing condition

We start the FSI analysis by solving for the motion and
deformation of the solid in terms of the known nodal val-
ues τ vs

I i ,
τas

I i , and τus
I i at the time step τ . The nodal FSI

forces τ f s,F SI
I i are computed from the fluid status τ v f

I i and
τ p f

I at the time step τ (see details in the Subsect. 4.4), and
assembled to the total external force as follows

τ+1 f̃ s,ext
I i = τ+1 f s,ext

I i + τ f s,F SI
I i . (20)

Applying the total external force τ+1 f̃ s,ext
I i on the solid

nodes, and calling the subroutine Solid_ExDyna_3D in
the Flowchart 1, one can solve for the solid variables
n+1vs

I i ,
n+1as

I i , and n+1us
I i . And the configuration τ�s of

the solid is then transformed to τ+1�s . The overlapping
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domain τ� f s is transformed to τ+1� f s = τ+1�s , as plotted
in Fig. 3a.

4.3 Identifying FSI velocity condition and solving fluid
problem

As the outcome of the Subsect. 4.2, the nodal velocities nvs
I i

and n+1vs
I i are known for all the solid nodes. Because the fluid

and solid meshes usually do not coincide, the FSI velocity
condition v f

i = vs
i for x ∈ � f s can not be imposed on the

fluid nodes x f
I ∈ τ+1� f s directly. Hence, data fitting tech-

niques have to be employed to map the solid velocity field to
the fluid nodes. One of the most frequently used tools is the
discretized Dirac delta function in IB methods [13,14], and
the similar procedure using meshfree approximation [21]. In
this work, a simple linear interpolation scheme with the help
of the fluid and solid FEM meshes is utilized, which has been
reported in [23].

To implement the FEM interpolation, a search algorithm
has to be carried out to find which solid element at the config-
uration τ+1�s covers the fluid node x f

I ∈ τ+1� f s of interest.
Due to the motion and deformation of the solid body, this
searching procedure has to be carried out at every time step
after the new configuration τ+1�s is obtained. After search-
ing, for every fluid node x f

I ∈ τ+1� f s , one can find a corre-
sponding solid element covering it. One should note that one
solid element may cover more than one fluid node. Suppose
a solid element with the nodes τ+1xs

I ,
τ+1xs

J ,
τ+1xs

K , and
τ+1xs

L is found to be covering the fluid node x f
I ∈ n+1� f s

of interest, as shown in Fig. 3b. The solid velocity field can
be interpolated to this fluid node so as to obtain the velocity
τ+1v̂

f s
I i as follows

τ+1v̂
f s
I i =

∑

a=I,J,K ,L

τ+1�s
a

(
τ+1x f

I

)
τ+1vs

ai (21)

(
for x f

I ∈ τ+1� f s
)

where τ+1�s
a

(
τ+1x f

I

)
is the FEM shape function at the con-

figuration τ+1�s . The FSI velocity condition can then be
identified, and imposed on the fluid nodes x f

I ∈ n+1� f s in
the following form

τ+1g f
F SI

(
v

f
I i

)
= τ+1v

f
I i

− τ+1v̂
f s
I i = 0, x f

I ∈ τ+1� f s . (22)

Appendingn+1g f
F SI

(
v

f
I i

)
to n+1g f

vbc

(
v

f
I i

)
leads to the fol-

lowing modified fluid V.B.C:

τ+1g f
vbc∪F SI

(
v

f
I i

)
: τ+1v

f
I i = τ+1v̄

f
I i ,

x f
I ∈ � f

v and
τ+1v

f
J i = τ+1v̂

f s
J i ,

τ+1x f
J ∈ τ+1� f s . (23)

Simply replacing τ+1g f
vbc

(
v

f
I i

)
by τ+1g f

vbc∪F SI

(
v

f
I i

)
in the

call on the subroutine Fluid_CBS_3D in the Flowchart 2,
the fluid status will be updated. The results of this step are
the fluid velocity τ+1v

f
I i which satisfies the fluid V.B.C.

and the FSI velocity condition, and the fluid pressure n+1 p f
I

which satisfies the fluid P.B.C.

4.4 Identifying FSI forcing condition

The scheme to calculate the FSI forces acting on the fluid
and solid particles is similar to the direct forcing method
[15] or the first-order temporal differencing method [16]. As
described in Sect. 4.2, the FSI velocity condition is directly
imposed on the fluid nodes. However, if the Navier-Stokes
equations are solved without the FSI velocity condition
τ+1g f

F SI

(
v

f
I i

)
, i.e., the fluid particles x f ∈ τ+1� f s are not

bound to the corresponding solid particles, the CBS proce-
dure will lead to the nodal fluid velocities τ+1ṽ

f
I i , which can

be written in the following form in terms of Eq. (17)

M f
I J

τ+1ṽ
f
J i − τ v

f
J i

�t
= τ+1 RH S f

I i . (24)

In the Subsect. 4.3, the nodal fluid velocities solved sat-
isfying the FSI velocity condition are τ+1v

f
I i . On the fluid

nodes x f
I ∈ τ+1� f s , one may note that τ+1ṽ

f
I i are differ-

ent from the τ+1v
f
I i . Suppose the nodal force τ+1 f f,F SI

I i is

applied on each of the fluid nodes x f
I ∈ τ+1� f s so as to

introduce a velocity increment �v f
J i thereby enabling the

τ+1ṽ
f
J i to take on τ+1v

f
I i ,(as illustrated in Fig. 3c), we have

τ+1v
f
I i = τ+1ṽ

f
I i +�v

f
I i

(
x f

I ∈ τ+1� f s
)
. (25)

Furthermore, the change of τ v f
I i to τ+1v

f
I i can be viewed

as the result of the nodal forces τ+1 F f
I i acting on the fluid

nodes x f
I ∈ τ+1� f s through the period from t (τ ) to t (τ+1),

as provided in the following form

M f
I J

τ+1v
f
J i − τ v

f
J i

�t
= τ+1 F f

I i

(
for x f

I ∈ τ+1� f s
)
. (26)

Substitution of Eqs. (24) and (25) into Eq. (26) yields

M f
I J

τ+1v
f
J i − τ v

f
J i

�t
= M f

I J

(
τ+1ṽ

f
J i +�v

f
J i

)
− τ v

f
J i

�t

= τ+1 RH S f
I i + τ+1 f f,F SI

I i

(
for x f

I ∈ τ+1� f s
)
. (27)

Next, one can recast the above equation considering Eqs. (15)
and (17) as
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τ+1 f f,F SI
I i = M f

I J

τ+1v
f
J i − τ v

f
J i

�t
− τ+1 RH S f

I i

= M f
I J

τ+1v
f
J i − τ v

f
J i

�t
− ∗ RH S f

I i

+ G f
I J i

τ+1 p f
J . (28)

According to the FSI forcing condition, the FSI forces
as applied on the solid can be obtained by τ+1 f s,F SI

i =
−τ+1 f f,F SI

i . However, because the solid mesh usually does

not coincide with the fluid mesh, the FSI force τ+1 f s,F SI
i

can not be directly achieved by the integrations in Eq. (18)
on the fluid mesh.

Note the assumption that the fluid particles are bound to
the solid particles, so that each solid node τ+1xs

I carries one

fictitious fluid node τ+1x f c
I = τ+1xs

I . Naturally, these ficti-
tious fluid nodes can be used to construct a mesh coinciding
with the solid mesh, so called the fictitious fluid mesh. The
fictitious nodes and fictitious fluid mesh defined on the ficti-
tious fluid domain τ+1� f c are illustrated in Fig. 3d. All these
fictitious fluid particles possess the fluid properties, velocity
and pressure. Due to the FSI velocity condition, the nodal
velocities τ+1v

f c
I i of these fictitious fluid nodes τ+1x f c

I can
be immediately obtained via

τ v
f c
I i = τ vs

I i ; τ+1v
f c
I i = τ+1vs

I i

(
τ+1x f c

I = τ+1xs
I

)
(29)

A search process is invoked to find the fluid element
covering the fictitious fluid node τ+1x f c

I of interest for
obtaining the value of the fluid pressure field on these fic-
titious fluid nodes. Suppose the fluid element with the nodes
τ+1x f

I ,
τ+1x f

J ,
τ+1x f

K , and τ+1x f
L is found which covers the

fictitious fluid node τ+1x f c
I of interest, one can perform the

following interpolation to calculate the pressure value on
the fictitious fluid node x f c

I

τ p f c
I =

∑

a=I,J,K ,L

�
f
a

(
τ+1x f c

I

)
τ p f

a (30)

where � f
a

(
τ+1x f c

I

)
is the shape function of the fluid ele-

ment. It is worth noting that, the fictitious fluid mesh is not
featured in the calculations for the fluid part as outlined in
the Subsect. 4.5, and is only used to perform the FEM inter-
polation and to evaluate the following numerical integration.

The FSI force τ+1 f s,F SI
I i can be evaluated on the fictitious

fluid mesh, as follows

τ+1 f s,F SI
I i = −τ+1 f f c,F SI

I i

= −M f c
I J

τ+1v
f c
J i − τ v

f c
J i

�t

−τC f c
I J
τ v

f c
J i − τ F f c

I i − �t

2
τ K f c

I J
τ v

f c
J i + G f c

I J i
τ p f c

J

= −M f c
I J

τ+1v
f c
J i − τ v

f c
J i

�t

−
∫

τ+1� f c

ρ f�
f c
I

∂
(
τ v

f c
j �

f c
J

)

∂x f c
j

τ v
f c
J i d�

−
∫

τ+1� f c

∂�
f c
I

∂x f c
j

τ
T

f c
i j d�

−�t

2

∫

τ+1� f c

ρ f
∂

(
τ v

f c
k �

f c
I

)

∂x f c
k

∂
(
τ v

f c
j �

f c
J

)

∂x f c
j

τ v
f c
J i d�

+
∫

τ+1� f c

�
f c
I

∂�
f c
J

∂x f c
i

τ p f c
J d�. (31)

The gradient of the velocity ∂τ v
f c

i /∂x f c
j and the spatial

derivatives of the shape function ∂τ� f c
I /∂x f c

i need to be
updated at the current configuration τ+1� f c, and the inte-
grations are computed numerically using the fictitious fluid
mesh.

Strictly, the components of the FSI force in Eq. (31) are
equivalent to the drag and lift forces applied on the solid
immersed in the fluid. Neglecting the second order term of
�t on the right hand side of Eq. (31), one can recast Eq. (31)
in terms of the divergence theorem

f s,F SI
I i = −

∫

�

ρ�I
�vi

�t
d�−

∫

�

ρ�I
∂

(
v jvi

)

∂x j
d�

−
∫

�

∂�I

∂x j
Ti j d�+

∫

�

�I
∂p

∂xi
d�

= −
∫

�

ρ�I
�vi

�t
d�−

∫

�

ρ�I vi ni d�

−
∫

�

�I Ti j n j d�+
∫

�

�I pni d�. (32)

The summing up of the nodal forces f s,F SI
I i yields the fol-

lowing which are the same as the drag and lift forces found
in [45] often used in CFD,

f s,F SI
i =

∑

I

f s,F SI
I i = −

∫

�

ρ
�vi

�t
d�−

∫

�

ρvi ni d�

−
∫

�

Ti j n j d�+
∫

�

pni d�. (33)

4.5 Solution procedure for IS-FEM

Following the detailed discussions in the above subsections,
the overall procedure for 3D IS-FEM is presented below.
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Flowchart 3: 3D IS-FEM for FSI problems

(1) Initialization: Discretize the fluid domain � f and
solid domain 0�s at initial configuration; compute
0�s

I ,
0�̄s

I,i ,�
f
I ,�

f
I,i , the lumped the mass matrices

Ms
I J ,M f

I J ,M f c
I J = Ms

I J and the matrix H f
I J .

(2) Set up the I.C.: for fluid, 0v
f
I i and 0 p f

I i ; for solid, 0vs
I i

and 0 Ps
I i j ; and the initial FSI force 0 f s,F SI

I i .
(3) Set the time step counter τ = 0 and t (τ ) = 0.
(4) Calculate τ+1 f̃ s,ext

I i = τ+1 f s,ext
I i + τ f s,F SI

I i .
(5) Call the subroutineSolid_ExDyna_3D (τ, �t, τus

I i ,
τ vs

I i ,
τas

I i , Ms
I J ,

τ+1 f̃ s,ext
I i ) and obtain τ+1us

I i ,
τ+1vs

I i , and τ+1as
I i . Update the coordinates of solid

nodes as τ+1xs
I i = τ xs

I i + τ+1us
I i .

(6) Calculate τ+1v̂
f
I i for x f

I ∈ τ+1� f s via the FEM
interpolation in Eq. (21).

(7) Construct the new modified fluid V.B.C. τ+1g f
vbc∪F SI(

v
f
I i

)
in Eq. (23).

(8) Call the subroutine Fluid_CBS_3D(τ,�t, τ v f
I i ,

τ p f
I i ,

M f
I J , H f

I J ,
τ+1g f

vbc∪F SI

(
v

f
I i

)
) and obtainτ+1v

f
I i and

τ+1 p f
I .

(9) Call the subroutine FSI_Force_3D
(τ+1xs

I i ,
τ+1vs

I i ,
τ+1 p f c

I ).

9.1 Update the coordinates of fictitious fluid node
τ+1x f c

I i = τ+1xs
I i ;

9.2 Calculate τ+1�
f c
I,i .

9.3 Get the nodal fluid velocities at fictitious fluid
nodes τ+1v

f c
I i = τ+1vs

I i ,
τ v

f c
I i = τ vs

I i .

9.4 Calculate τ+1 p f c
I via the FEM interpolation in

Eq. (30).
9.5 Calculate τ+1 f s,F SI

I i using Eq. (31), and return
to the main routine.

(10) Update the variables: τ v f
I i = τ+1v

f
I i ,

τ p f
I = τ+1 p f

I ,
τ

us
I i = τ+1us

I i ,
τ vs

I i = τ+1vs
I i ,

τas
I i = τ+1as

I i ,
τ f f,F SI

I i

= τ+1 f f,F SI
I i , τ xs

I i = τ+1xs
I i , τ = τ + 1, t (τ ) =

t (τ )+�t ; go to Step. (6) and continue with the next
time step.

In the solution procedure, both the CBS for the fluid part
and the explicit time integration for the solid part are con-
ditionally stable, so the time step �t has to be chosen care-
fully. The critical time step �tcr is determined by �tcr =
min

(
�t s

cr ,�t f
cr

)
. The �t s

cr is the critical time step for the

solid problem, determined by the size of solid elements and
material properties (see details in [43]). The CBS method in
[41,42] provides the means to determine the critical time step
�t f

cr . In this research, the constant time step is used which
satisfies �t < �tcr .

Previous works on finite element immersed boundary
method have reported that the ratio h f /hs between the Eule-
rian fluid mesh size h f and Lagrangian solid mesh size hs

can affect the stability of IB method [22,46]. There is also
a suggestion that the size of the fluid mesh should not be
too small compared to the solid mesh in order to prevent
any unphysical “leaking” phenomenon [20,23] in IFEM. In
the proposed 2D IS-FEM [25], the effect of the ratio h f /hs

is investigated numerically, which clearly demonstrates no
numerical artifact is observed even for very fine fluid mesh
used, and the stability fairly independent of a wide range of
the mesh size ratio is assured. In the 3D IS-FEM, the numer-
ical examples in Sect. 5 also demonstrate the stability of the
3D IS-FEM is not affected by the ratio h f /hs for a wide
range similar to the 2D IS-FEM. In the 3D IS-FEM, there is
no strict limitation to h f /hs , which is usually selected to be
0.25–2.0.

Another common numerical issue is the incompressibility
constraint of the solid. Some numerical methods require com-
putational expensive volume correction algorithms [23]. For
the IS-FEM using volumetric-locking-free Selective S-FEM,
there is no additional volume correction operation required to
satisfy the incompressibility constraint, because it is able to
solve the physical deformation of the nearly-incompressible
solids in terms of the constitutive law. If the solid material is
compressible, the IS-FEM using FS-FEM for 3D or ES-FEM
for 2D also works for the cases with small strains or small
volume changes such as beam bending problem.

5 Numerical examples

5.1 Piston in a tunnel with incompressible viscous fluid
(Example 5.1)

A solid piston moving inside a tunnel with a square cross sec-
tion is analyzed in this example, as illustrated in Fig. 4. The
geometry parameters of the fluid and solid domains are given
by a = 0.5 m, b = 2 m, d = 0.5 m. At the initial position
of the piston, l = 0.1 m. The properties of the incompress-
ible viscous fluid are ρ f = 1.0 kg/m3 and μ f = 0.1 Pa s.
The solid piston is modeled as St. Venant material with the
following properties: the density ρs = 1.0 × 103 kg/m3,
Young’s modulus Es = 1.0 × 106 Pa and Poisson’s ratio
νs = 0.3. The deformation of the piston is very small; hence,
the piston can be viewed as a “rigid” body. The fluid and solid
domains are discretized using irregular T4 elements, as plot-
ted in Fig. 4. In order to study the convergence properties
of 3D IS-FEM in space, the fluid domain is discretized by a
series of meshes as tabulated in Table 1.

The solid piston is forced to move inside the fluid tun-
nel along the x2 direction with a constant velocity vs

2. Con-
sequently, a laminar fluid flow will be induced due to the
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Fig. 4 Example 5.1: a moving piston in a tunnel. Left fluid domain and T4 mesh for solid piston; right T4 mesh for the fluid domain

Table 1 Meshes for Example 5.1

Meshes for fluid Meshes for solid

MS(1) MS(2) MS(3) MS(4) MS(i) MS(ii)

Nnd 2,745 10,956 43,754 182,819 1,383 135

Nele 12,674 56,844 239,925 104,0793 6,081 400

h 1/16 1/24 1/40 1/64 h/24 h/8

Nnd number of nodes, Nele number of elements, h average element size

motion of the solid piston. The I.C. and B.C. for the fluid and
solid piston are given as follows.

V.B.C. for fluid: slip boundary condition on x f
1 = 0, x f

1 =
a, x f

3 = 0 and x f
3 = a;

P.B.C. for fluid: p f = 0 on x f
2 = 0 and x f

2 = b;

I.C. for fluid: 0v
f

i = 0, (i = 1, 2, 3).
V.B.C. for solid: vs

1 = 0, vs
3 = 0 and vs

2 = 2.0 m/s on
xs

1 = 0, xs
1 = a, xs

3 = 0 and xs
3 = a.

I.C. for solid: 0vs
i = 0, (i = 1, 2, 3).

Under the above boundary and initial conditions, the exact
velocity solution of the fluid flow can be determined as v f

1 =
v

f
3 = 0 andv f

2 = 2.0 m/s. Using the proposed IS-FEM pro-
cedure and the standard FEM discretization for the fluid and
solid parts, one can easily solve this simple 3D FSI prob-
lem and implement the convergence and accuracy studies.
Figure 5 shows the contour plots of the velocity component
v

f
2 and the pressure p f with the streamlines on the slice sur-

faces x f
1 = a/2 and x f

3 = a/2 at the time t = 0.6 s. The

Fig. 5 Results for Example 5.1: contour plots of the fluid velocity component and pressure with streamlines on the slice surfaces at the time
t=0.6 s solved using meshes a MS(3) and MS(ii) and b MS(4) and MS(i)
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Fig. 6 Spatial convergence properties based on Example 5.1 for a fluid velocity solution and b pressure solution (c: convergence rate; h: average
element size)

streamlines and the velocity contour plots clearly show the
stable laminar flow solved using different combinations of
the solid and fluid meshes.

Notably, Fig. 5b shows that, when using quite small mesh
size ratio h f /hs = 1/8, the proposed IS-FEM still works
well and can produce the stable fluid velocity and pressure
solutions with no numerical artifact and unphysical oscilla-
tions observed.

The spatial convergence and accuracy studies are carried
out in virtue of the errors in the fluid velocity and pressure
solutions. The L2 error norms ev and ep in the fluid velocity
and pressure solutions are defined by

ev=
√√√
√

NDO F∑

I=1

(
vnum

i −vre f
i

)2; ep=
√√√
√

Nnd∑

I=1

(
pnum

i −pre f
i

)2
.

(34)

In this example, the reference solution vre f
i is given by the

exact solution. All the errors are calculated at the time t =
0.6 s.

Figure 6 shows that the convergence rates for the fluid
velocity solutions are 1.88 using the finer solid mesh MS(i)
and 1.84 using the coarser solid mesh MS(ii), and the con-
vergence rates for the fluid pressure solutions are 1.86 using
the finer solid mesh MS(i) and 1.80 using the coarser solid
mesh MS(ii).The convergence rates are very close to the the-
oretical convergence rate 2.0. One can clearly observe that
the coarse solid mesh degrades the convergence rate and the
computation accuracy.

5.2 3D lid-driven cavity flow with a hyperelastic solid wall
(Example 5.2)

A 3D lid-driven cavity fluid flow with an incompressible
hyperelastic solid wall is analyzed in this example as illus-
trated in Fig. 7. The length and the height of the fluid domain
are l = 2.0 m, and the thickness is b = 0.2 m. The solid

wall is located at the bottom surface of the fluid domain,
with the length l = 2.0 m, the thickness b = 0.2 m and the
height a = 0.5 m. The properties of the fluid are given as
ρ f = 1.0 kg m3 and μ f = 0.2 kg (m s)−1. In this example,
the constitutive model of the solid wall is set to be the incom-
pressible neo-Hookean material, with the material constant
A10 = 0.1 kg

(
m s2

)−1
, A01 = 0 and κ = 0.

This example has been solved in 2D cases under plane
strain condition as a benchmark problem to examine the
interactions between the incompressible viscous fluid and
the hyperelastic nonlinear solid, using immersed-type meth-
ods and the ALE method [23,25,47]. In order to compare the
3D solution with the reported 2D plane strain solution, the
proper boundary conditions for the fluid and solid should be
enforced. Under the following boundary conditions, the 3D
solution in the x1x2 plane is comparable with the 2D plane
strain solution.

V.B.C. for fluid: v f
1 = v̄, v

f
2 = v

f
3 = 0 on the top lid

surface x2 = l; non-slip conditions on four surfaces x1 =
0, x1 = a, and x2 = 0; and v f

3 = 0 on two surfaces x3 = 0
and x3 = b.The fluid lid velocity v̄ is defined as follows in
order to remove the singularities at the left-top and right-top
corners of the fluid field,

v̄ =
⎧
⎨

⎩

sin2 (πx1/0.6) x1 ∈ [0.0, 0.3]
1.0 x1 ∈ (0.3, 1.7)
sin2 (π (x1 − 2.0) /0.6) x1 ∈ [1.7, 2.0]

(35)

P.B.C. for fluid: p f = 0 on the line (l/2, 0, x3).
I.C. for fluid: v f

i = 0 and p f = 0 at the time t = 0.
V.B.C. for solid: vs

i = 0 (i = 1, 2, 3)on four surfaces x1 =
0, x1 = a, and x2 = 0; and vs

3 = 0 on two surfaces x3 = 0
and x3 = b.
I.C. for solid: vs

i = 0 and p f = 0 at the time t = 0.

Both the fluid and solid domains are discretized irregu-
larly using T4 elements, as illustrated in Fig. 7. Several sets
of the fluid and solid meshes are employed for the spatial
convergence and accuracy studies, as listed in Table 2. The
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Fig. 7 Example 5.2: 3D
lid-driven cavity flow with a
hyperelastic solid wall

Table 2 Meshes for Example
5.2

Nnd number of nodes, Nele
number of elements, h average
element size

Meshes for fluid Meshes for solid

MS(1) MS(2) MS(3) MS(4) MS(5) MS(6) MS(7) MS(i) MS(ii)

Nnd 1,392 4,603 7,626 9,413 13,172 18,416 218,636 240 1,083

h 1/20 1/30 1/36 1/40 1/44 1/50 1/160 1/16 1/30

deformation of the solid wall is analyzed using Selective S-
FEM. The cavity fluid flow driven by the moving lid produces
the FSI force applied on the top surface of the solid wall and
causes the soft solid wall to deform largely. The deforma-
tion continues until the steady state is reached where the FSI
force and the internal force of the solid are in balance. In
this example, the FSI system is considered to have reached
the steady state if the kinematics energy of the solid wall is∥
∥nvs

i

∥
∥2 ≤ 10−4. The fluid velocity and pressure fields and the

deformed mesh of the solid are visualized in Fig. 8. The veloc-

ity amplitude is calculated by v = (
v2

1 + v2
2 + v2

3

)1/2
. Fig-

ure 8 evidently shows the fluid solutions calculated using the
coarser fluid and solid meshes still agree reasonably well with
those using finer meshes. In particular, the employment of
much finer fluid mesh than solid mesh, i.e., the mesh size ratio
h f /hs is at very small value of 1/10 (see Fig. 8c), the pro-
posed method is still quite stable and does not lead to numer-
ical artifact solution. No unphysical velocity and pressure
solutions are observed, which has been reported in [23].

Under the properly prescribed boundary conditions, the
motions of the fluid and solid particles remain mainly in the
x1x2 plane, depicted by the iso-surfaces of the fluid veloc-
ity at the values v = 0.05, v = 0.20 and v = 0.25 m/s
in Fig. 8. The planar motions of the fluid and solid parti-
cles satisfy essentially the plane strain assumption. As such,
the solutions in this 3D FSI problem can be compared with
the referenced 2D FSI problem under plane strain condition.

The comparisons are shown in Fig. 9 with the 2D reference
solutions found in the references [23,25,47], respectively.
The profiles of the 3D FSI solutions at the steady state are
given by the nodes located on the slice surface x3 = b/2.
There is a good agreement between the 2D and 3D FSI solu-
tions.

Spatial convergence studies are carried out using the solid
mesh MS(ii) and the fluid meshes MS(k), (k=1 to 6). The
L2 error norms in the fluid velocity and pressure solutions
are given in Fig. 10. The reference solutions vre f

i and pre f in
Eq. (34) are computed using the very fine fluid mesh MS(7)
and the solid mesh MS(ii). In as much as the fluid and solid
meshes are all irregular meshes, the nodal solutions of the
fluid velocity and pressure on the meshes MS(k), (k=1 to 6)
are obtained by the linear interpolations from the reference
nodal solutions on MS(7). The spatial convergence rate for
the fluid velocity and pressure solutions are 1.85 and 1.61.

5.3 Sphere falling inside fluid under gravity (Example 5.3)

A solid sphere falling under the gravity inside a cylinder tank
filled with incompressible viscous fluid is analyzed in this
example. The sphere starts falling from the state of rest under
the gravity force. During the falling process, the FSI force is
applied on the sphere, including buoyant force, viscous force
and others. The sphere accelerates from the initial rest state
due to the imbalance between the gravity and FSI forces.
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Fig. 8 Results for Example 5.2 solved using meshes: a MS(3) and MS(i); b MS(3) and MS(ii); c MS(7) and MS(i); d MS(7) and MS(ii) (top row
slice contour plots of the fluid velocity amplitude; mid row slice contour plots of the fluid pressure; bottom row iso-surfaces of the fluid velocity at
0.05, 0.2 and 0.25 m/s)

Fig. 9 Profiles of the deformed hyperelastic wall solved using different meshes

As the velocity increases, the FSI force becomes larger and
larger and finally balances the gravity force leading to the
terminal settling velocity v̄.

In this example, the diameter of the solid sphere is given
as D and the diameter of the cylinder tank is 5D. The
height of the tank is H , as shown in Fig. 11. The values
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Fig. 10 Spatial convergence properties of Example 5.2 in a fluid velocity solutions and b pressure solutions (h: average element size)

Fig. 11 Example 5.3: sphere falling inside the fluid medium under gravity (only T4 mesh for half of the fluid domain is plotted)

of D and H are given in Table 3. The fluid is the water
at 25 ◦C, with the properties: ρ f = 997.13 kg m−3 and
μ f = 8.91 × 10−4 kg (m s)−1. Three experiments with dif-
ferent solid spheres are tested, and the corresponding material
properties and sizes are tabulated in the Table 3. The termi-
nal settling velocities for the three cases have been reported
in experiments [48]. In terms of the experimental data, the
Reynolds number can be determined according to the fall-
ing velocity and the diameter D. In both the experiment and
numerical simulation, the fluid in the tank is initially unper-
turbed and in hydrostatic state. The Young’s modulus and
Poisson ratio of the spheres in the three numerical simula-
tions are given as Es = 1 × 104 kg

(
m s2

)−1
and υs = 0.3.

The deformations of the solid spheres are very small, so the
spheres can be viewed as essentially “rigid”. Therefore this,
for all practical purposes, becomes a fluid–particle interac-
tion (FPI) problem. Much has been accomplished in com-
putation for FPI problems during the period 1996–2001.
Reference [49] reported the first 3D finite element FPI com-
putation, where the number of particles ranged from 2 to 5,
and particle–particle interactions (collisions) were taken into
account. The reference [50] reported the 3D computations
with the number of particles reaching 100 for the first time,
and reference [51] reported the 3D computations where the

number of particles reached 1,000 for the first time. Refer-
ence [52] is where methods were introduced for FPI computa-
tions in spatially-periodic 3D domains, results were reported
with the number of particles reaching 128, and an extensive
study was presented focusing on the number particle needed
in a periodic cell.

The initial distance between the center of the spheres and
the top surface of the tank is set at 2D. The boundary and
initial conditions are given as follows:

V.B.C for fluid: v f
i = 0 (i = 1, 2, 3) on all surfaces of

the tank (e.g., non-slip condition);
P.B.C for fluid: p f = 0 on the surface x3 = 0;
I.C. for fluid: v f

i = 0 (i = 1, 2, 3);
V.B.C for solid: no velocity boundary conditions are
applied;
I.C. for solid: v f

i = 0 (i = 1, 2, 3).

The acceleration of the gravity is g = 9.8m s−2.
For the Case #1, the cylindrical fluid domain and the

solid sphere are discretized using two sets of fluid and solid
meshes: MS(1) irregular T4 meshes with 56248 nodes for the
fluid and 514 nodes for the solid, as shown in Fig. 11; MS(2)
irregular T4 meshes with 185329 nodes for the fluid and 1534
nodes for the solid. The Case #2 and Case #3 employ MS(3):
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Table 3 Experimental set-up of sphere falling inside the fluid medium under gravity

Density ρs
(
kg m−3

)
DiameterD(m) Height of tankH(m) Settling velocity v̄ Reynolds number Re = (

ρ f v̄D
)
/μ f

Case #1 2,560 5 × 10−4 10 D 0.0741 41

Case #2 7,670 2 × 10−3 30 D 0.636 1,400

Case #3 7,700 4 × 10−3 30 D 0.973 4,300

Fig. 12 Results for Example 5.3. Snapshots of iso-surfaces of v3: a v3 = −0.01 m/s for Case #1; b v3 = −0.2 m/s for Case #2; c v3 = −0.2 m/s
for Case #3

irregular T4 meshes with 367461 nodes for the fluid and 1534
nodes for the solid.

The results of the numerical simulations are visualized in
Figs. 12 and 13. Figure 12 shows the snapshots of the iso-
surfaces of the fluid velocity component v3 at the values
of v3 = −0.01, v3 = −0.2 and v3 = −0.2 hboxm/s for
the three cases, respectively. Figure 13 plots the contours
of the fluid velocity component vz and the fluid pressure on
the slice plane x = 0 at the settling stage. For Case #1, the
maximum Reynolds number at the settling stage is a small
value at Re = 41. As such, the fluid flow around the sphere
always remains axisymmetric about the vertical axis pass-
ing through the center of the sphere. In this case, the tra-
jectory is vertical and produces a stable wake flow, which
can be clearly observed in Figs. 12a and 13a. The pressure
contour plots in Fig. 13a clearly show that, in Case#1 the
movement of the sphere only perturbs the fluid hydrostatic
pressure field slightly in the regions near the solid sphere.
In the far-zone of the wake region the fluid pressure field
still retains the characteristics of the hydrostatic pressure.
The Reynolds numbers for Case #2 and Case #3 at the set-
tling stage are relatively larger at Re=1,400 and Re=4,300,
respectively. In the short period after the sphere begins fall-
ing, due to the small falling velocity the instantaneous Rey-
nolds number is small. Hence, the fluid flow around the
sphere in the wake region is fairly axisymmetric, as shown
in the Fig. 12b at t = 0.06 s and Fig. 12c at t = 0.08 s,
respectively. Once the falling velocity and the associated
Reynolds number increase to sufficiently large values, the
fluid wake flow becomes unsteady and cannot keep to the

axisymmetric behavior, as illustrated in Figs. 12b and 12c.
One can observe that at the settling stage the wake flow of
Case #3 as shown in Figs. 12c and 13c is more unsteady
than that of Case #2 as depicted in Figs. 12b and 13b. This
is attributed to the much higher Reynolds number at the
settling stage for Case #3. The pressure fields for Case #2
and Case #3, as depicted in Fig. 13b, c, are significantly dis-
turbed.

The histories of the average velocity v3 of the solid sphere
are compared with the experimental results in Fig. 14. The
figure shows that for all the three cases the terminal set-
tling velocities achieved by the numerical simulations dis-
play good agreements with the experimental results when
fine meshes are used. It clearly demonstrates that the pro-
posed IS-FEM scheme provides the valid FSI force, which
is in final equilibrium with the gravity force.

5.4 Flow passing a cylinder with a flexible flag
(Example 5.4)

In two dimensional FSI analysis, a benchmark FSI problem
of a cylinder with a flexible flag in the downstream side is
often used to verify the numerical FSI scheme [53,54]. In this
example, this benchmark is extended to three dimensions as
illustrated in Fig. 15. The fluid domain is a cuboid channel
with the geometry parameters given as: L = 2.5 m,W =
0.02 m and H = 0.41 m. The geometry parameters of the
solid cylinder and flag are: w = 0.05 m, l = 0.35 m and
h = 0.02 m. The location of the cylinder is determined by
c = 0.2 m. The inflow velocity v̄ f (t) is prescribed at the left
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Fig. 13 Results for Example 5.3. Snapshots of contours of the fluid velocity v3 (top row) and the fluid pressure (bottom row) in the slice plane
x1 = 0: a Case #1; b Case #2; c Case #3

surface x1 = 0 with the following parabolic profile

v̄ f (t) =
{
v̄

1−cos(π t/2)
2 t < 2.0

v̄ t ≥ 2.0

where v̄ = 1.5Ū x2 (H − x2) /(H/2)
2. (36)

The mean inflow velocity is Ū when the inflow is steady after
about t = 2.0 s.

Using the same geometric model of the fluid and solid
domains, three cases examined in [53] are tested in this exam-

ple with the different solid material properties and inflow
velocity, as tabulated in Table 4.

The calculation starts at the rest state of the fluid and solid
for all the cases. And the boundary conditions are prescribed
as follows:

V.B.C. for fluid: τ vs
1 = v̄ f (t) , τ vs

2 = τ vs
3 = 0 at x1 =

0; τ vs
i = 0 (i = 1, 2, 3) at x2 = 0 and x2 = H ; τ vs

3 =
0 at x3 = 0 and x2 = W ;
P.B.C. for fluid: τ p f = 0 at x1 = L;
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Fig. 14 History of the falling
velocity v3 a Case #1; b Case
#2; c Case #3

Fig. 15 Example 5.4: fluid flow past a cylinder with a flag

Table 4 Problem set-ups for Example 5.4

Parameter FSI-1 FSI-2 FSI-3

ρs 103 kg m−3 1 10 1

υs 0.4 0.4 0.4

μs 106 kg
(
m s2

)−1
0.5 0.5 2.0

ρ f 103 kg m−3 1 1 1

μ f kg (m s)−1 1 1 1

Ū m s−1 0.2 1 2

Re = 2ρ f rŪ/μ f 20 100 200

V.B.C. for solid: τ vs
1 = 0 (i = 1, 2, 3)

if
√
(x1 − c)2 + (x2 − c)2 = r .

The fluid domain is discretized by the irregular T4 mesh
with 145344 nodes and the solid domain is discretized by the
irregular T4 meshes with 2084 nodes. The average mesh size
for the solid flag is approximately hs = h/4, and the average
mesh size for the fluid domain in the vicinity of the flag is
h f = h/8 as shown in Fig. 15. FS-FEM-T3 is employed for
analyzing the large deformation of the flexible flag. The dis-
placement solution at the point A (0.6, 0.2, 0.01) on the right
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Fig. 16 Results for Example
5.4 (case FSI-1): the contour
plots of the fluid pressure and
streamlines on the slice
x3 = W/2 at the steady state

Fig. 17 Results for Example 5.4 (case FSI-2) a snapshots of the fluid pressure contours and streamlines on the slice x3 = W/2; b history of
displacement component of the point A

tip of the flag is measured and compared with the reported
reference solutions.

Due to the low Reynolds number Re = 20 for the case FSI-
1, it finally results in a steady state solution. At the steady state

the FSI force applied on the deformed flag are in balance with
the internal force, and us

2 of the point A takes on a constant
value us

2 = 8.314 × 10−4 m, which agrees very well with the
reference solution us

2 = 8.209 × 10−4 m [53]. The contour
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Fig. 18 Results for Example 5.4 (case FSI-3) a snapshots of the fluid pressure contours and streamlines on the slice x3 = W/2; b history of
displacement component of the point A

of the fluid pressure field with streamlines at the steady state
is plotted in Fig. 16. The Reynolds number of the case FSI-2
is Re = 100, hence, the system settles into a large-amplitude
self-excited oscillation following the initial transient quies-
cent period. The oscillating flag produces a regular vortex
pattern that is advected along the channel, which is shown
in Fig. 17. Figure 17a provides the snapshots of the pressure
contour with instantaneous streamlines in one period of the
flag oscillation. The vertical tip displacement at point A in is
us

2 ≈ 0.001 ± 0.083 m, fairly comparable with the reference
solution us

2 ≈ 0.00123±0.0806 m. The histories of us
2 at the

point A are given in Fig. 17b. The period of the oscillation
is T ≈ 0.52 s. The case FSI-3 with Re = 200 also develops a
periodically oscillating fluid flow with regular vortex pattern
similar to the case FSI-2, shown in Fig. 18. The period of the
FSI-3 is approximately T ≈ 0.19 s. The vertical tip displace-
ment at point A is us

2 ≈ 0.001±0.036 m, agreeing well with
the reference solution us

2 ≈ 0.00148 ± 0.03438 m.

6 Conclusions

In this work, 3D FSI problems are successfully solved by
the proposed immersed smoothed finite element method

(IS-FEM). The IS-FEM is a kind of partitioned approach,
consisting of three main modules: semi-implicit Galerkin
procedure based on CBS scheme for the transient incom-
pressible viscous flows; S-FEM using explicit time integra-
tion for dynamics analysis of the nonlinear solids; immersed
methodology for evaluating FSIs based on a set of novel
Lagrangian fictitious fluid mesh. The Lagrangian fictitious
fluid mesh coincides with the moving solid mesh, in which
the geometry information can be naturally achieved with
ease. The method is implemented via the simplest four-node
tetrahedral element, which has advantages in simple pre-pro-
cessing, adaptive analysis and convenient data exchange of
the velocity and pressure fields between the Eulerian fluid
mesh and the Lagrangian solid mesh. Numerical examples
are compared with the reported reference numerical and
experimental results leading to the following conclusions:

(1) The moving boundary in the fluid flow can be tracked
without any difficulty using the immersed methodol-
ogy in 3D IS-FEM. No sophisticated re-meshing is
required.

(2) Good agreements with the published reference numer-
ical and experimental results verify the validity and
accuracy of the 3D IS-FEM.
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(3) IS-FEM possesses the second order convergence rate
for the fluid velocity and pressure in space, which
arise from the Galerkin procedures of CBS and S-FEM
schemes.

(4) No reported “leaking” phenomena and unphysical
solutions are observed while employing both coarse
and fine fluid mesh. The stability of 3D IS-FEM is
not affected for a wide range of the size ratio (up to
h f /hs = 1/10 is examined in this research).

(5) It is worthy to note that the calculation of FSI force
only needs the fluid pressure being interpolated, and
the implementation of the nodal FSI velocity condition
can be interpolated easily from the solid velocity field.
All these interpolations are performed by simple linear
interpolation based on T4 element.

(6) The proposed operations in Sect. 4 are general algo-
rithms, and provide possibility and flexibility for users
to choose other fluid solvers, e.g., finite volume method
(FVM) and finite difference method (FDM), and so on.
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