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Abstract In this paper a model reduction approach for elas-
tic-viscoplastic evolution problems is considered. Enhance-
ment of the PGD reduced model by a new iterative technique
involving only elastic problems is investigated and allows to
reduce CPU cost. The accuracy of the solution and conver-
gence properties are tested on an academic example and a
calculation time comparison with the commercial finite ele-
ment code Abaqus is presented in the case of an industrial
structure.

Keywords PGD - LATIN method - Elastic-viscoplastic -
Model reduction

1 Introduction

Numerical simulation has been playing an increasingly
important role in science and engineering. However, when
dealing with high-fidelity models, the number of degrees of
freedom can lead to systems so large that direct techniques
are inapplicable. Model reduction techniques constitute an
efficient way to circumvent this difficulty by seeking the
solution of a problem in a reduced-order basis (ROB), whose
dimension is much lower than the original vector space. A
posteriori methods usually consist in defining this ROB by
the decomposition of the solution of a surrogate model rel-
evant to the initial model (see e.g. [2,3,11,13,18]). A priori
methods follow a different path by building progressively an
approximate separated representation of the solution, without
assuming any basis (seee.g. [1,6,7,10,14,16,17,20,24,26]).
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This work focuses on the Proper Generalized Decom-
position (PGD) which belongs to the second family and is
used herein to solve elastic-viscoplastic evolution problems
defined over the time-space domain. This type of problems,
especially when they involve a large number of time steps
and degrees of freedom are particularly CPU expensive [19].
To make these computations affordable, the PGD, originally
introduced as the “radial loading approximation” in [14],
consists in seeking a separated time-space representation of
the unknowns and the iterative LATIN method is used to gen-
erate the approximation by successive enrichments [15]. Ata
particular iteration, the ROB which has been already formed
is first used to compute a reduced-order model (ROM) and
find a new approximation of the solution. If the quality of
this approximation is not sufficient, the ROB is enriched by
determining a new functional product using a greedy algo-
rithm. The PGD has been applied for solving many types of
problems in the context of the LATIN method and allowed to
decrease the CPU cost drastically. Elastic-viscoplastic prob-
lems have already been solved with this method in [8,9] but,
since these works, more efficient algorithms have been intro-
duced to built the PGD approximation. These algorithms
(a review can be found in [22]) have only been applied to
visco-elasticity [16,23] and this paper demonstrates their use
in the elastic-viscoplastic case.

However, model reduction techniques are more particu-
larly efficient when the ROM needs to be constructed only
once, which is not the case when dealing with nonlinear as-
pects. In that case, the various operators must be updated
along the iterations and the calculation of the ROM and its
inversion represents a large part of the global CPU cost. This
issue has been highlighted and some dedicated techniques
proposed in the context of a posteriori methods (eg. [4,5,21]).

This work focusses on a new technique which allows,
in the context of the PGD method, to avoid the previous
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Fig. 1 The reference problem in domain £2

drawback by dealing only with the inversion of the equi-
librium equation, instead of the inversion of the operator
corresponding to the ROM. Taking advantage of the time
independence of the equilibrium equation, the associated dis-
crete problem can be assembled and factorized only one time,
which leads to significant decrease in CPU cost.

The present paper is organized as follows. The reference
problem to be solved, the LATIN algorithm and the introduc-
tion of the PGD for elastic-viscoplastic constitutive formula-
tion are presented in Sect. 2. Section 3 is focused on the new
algorithm to determined the PGD. A gain of 4 in term of CPU
time is estimated by the introduction of the new algorithm.
In Sect. 4, some properties of this new reduced model are
studied. The quality of the PGD obtained along LATIN iter-
ations is compared with a direct PGD of the solution which
is obtained at the convergence of the algorithm, showing that
this decomposition is of good quality. The influence of the
mesh refinement and the number of time steps on the num-
ber of pairs in the decomposition is shown. Our conclusion
is that the PGD is linked to the problem to be solved, not
on the discretization, as soon as the discretization is accurate
enough to capture all the physics. A comparison of the results
and CPU times obtained with our research software and the
industrial code Abaqus is then presented, showing a gain of
30 % in favor of the method developed herein.

2 The reference problem and the LATIN method

The reference problem is a quasi-static isothermal evolution
of a structure defined over the time-space domain 7 x 2,
with Z = [0, T'] the interval of study, assuming small pertur-
bations. The structure is subjected to prescribed body forces
id, to traction forces F'; over a part 022 of the boundary,
and to prescribed displacements U ; over the complementary
part 0152 (see Fig. 1).

The state of the structure is defined by the set of fields
s(o, &,) (where the upper point denotes the derivative with
respect to time), in which:
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— & designates the inelastic part of the strain field & corre-
sponding to displacement field U, with the classic addi-
tive decomposition into an elastic part &, and an inelastic
part Ep = & — &

— o designates the Cauchy stress field.

All these quantities are defined over the time-space
domain Z x £2 and assumed to be sufficiently regular.

2.1 Constitutive formulation

To fix the idea, we consider herein the case of a Chaboche’s
type elastic-visco-plastic formulation. The state equation of
this formulation is

o = Heg, €))

where H is the Hooke’s operator, and the evolution equation
is

s _ 320"
=P e

where p = ((J2(0) — ay)/K)i, with K, n and o, material
dependent scalars. Superscript D denotes the deviatoric part
of the tensor, and J>(o) the Von-Mises equivalent stress.
The evolution equation is nonlinear and we formally intro-
duce operator B such as £, = B(o). Let us define the space
I’ of fields s such that (2) is fulfilled.

2

2.2 Admissibility conditions

Let us introduce the following spaces and the corresponding
vector spaces (with superscript *):

— the space U of the kinematically admissible fields U such
that

g,,zozgoandgzgdonalsz 3)

— the space F of the statically admissible fields o such that
YU* e U*

- / o e(U")dRde

Ix$2
+/£d~g*d9dt+ / F,-U*dSdr = 0(4)
Ix$2 Ix0r82

— the space & of the kinematically admissible fields & such

that 3U € U, & = VU thatis, in a weak form,

Yo € F*,

—/a*:sdﬂdt—}— / o'n-U,=0 5)
Ix2 Ix0182
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— the space Agq of the admissible fields s such that H o+
g,)efando € F

2.3 Brief overview of the LATIN method

Solving such a nonlinear problem arises both difficulties of
satisfying the linear equilibrium of the structure and solving
the local nonlinear equations of the material constitutive for-
mulation. With the spaces introduced before, the difficulty is
to find the solution field s such thats € Agq N I'. Usual non-
linear solvers are incremental in time. The LATIN method is
non-incremental. It is an iterative procedure which consists
in finding alternatively an approximation of the solution over
the entire time-space domain between the space Ag (linear
equations eventually global in space) and the space I' (local
equations eventually nonlinear). More details can be found
in [15].

A local stage and a linear stage are defined in the method
as follows:
— knowing a linear solution s in Ay, the local stage consist

in finding a local solution § in I' such as a local search

direction (6) is fulfilled,

G — o)+ (&, — &) =0 ©6)

where G is an operator, parameter of the method;

— knowing a local solution § in I', the linear stage consist
in finding a linear solution s in A4 such as a linear search
direction (7) is fulfilled,

Ao - &)~ (&,— &) =0 7

where A is an operator, parameter of the method.

The choice of G and A will be discussed later.

An iteration of the LATIN method is made of a local stage
and a linear stage. A simple initialization is an elastic solu-
tion, which is in Ag4.

An indicator of the quality of the solution can be calcu-
lated at each iteration of the LATIN method as the distance
between the local solution and the linear one

& -] 6 -o]

Gre)| lotal

®)

NLATIN =

We made the following choice for the search directions, sim-
ilar to the search directions in a Newton tangent algorithm:

— the local search direction (which can be seen as a local
approximation of the Aq space) is defined by,

G=c0 = 6=0 ©))

— the linear search direction (which can be seen as a linear
approximation of the I' space) is defined at each time-
space point (¢, M) by,

OB ap _3/2aP
A = 22 0P g e
00 |g_g 00O Jr (o)
D D
e 32 (Jz(”)ﬂ_yz%) (10)
P (o)
h B — i) )b 326" o
where 575 = n(( 2(0) —0y)/ )+ 7o) - One can

notice that this operator evolves along LATIN iterations.

2.4 PGD model reduction technique

At the linear stage of the LATIN method, a linear approx-
imation of the elastic-viscoplastic problem is known. The
PGD technique can be introduced easily in this context as
the superposition principle is valid for linear problems.

The unknowns are searched as sums of products of time
functions «;(¢) and space functions (C; (M), E, ; (M)), for
example with m — 1 pairs,

m—1
o (1, M) = D" ai(NC; (M) (11a)
i=1

m—1
p (6. M) =" 6i(OE,; (M) (11b)
i=1

The interested reader can refer to [22] for a review of the
different algorithms to solve a linear problem with the PGD.
A progressive algorithm with update is considered in our
case, based on the minimization of a constitutive error. The
linear search direction (7) is used to define the error.

Let first consider the case of the update of the time func-
tions, m — 1 space functions (C; £, ;) and time functions «;
being known, which corresponds to seek a better approxima-
tion of the solution in the ROB which has been already built,

m—1
o= > (0 + Aay)C; (12a)
i=1
m—1
Ep= D (@ +A&)Ep; (12b)
i=1
Writing (7) as a minimization problem, one seeks
{Aa; Y such that,
{Aai}l’-'gl = arg min
(g Yt ern!
m—1 m—1
x | A Z A&i(Ci — Z A&,-Ep,,- — A]
i=1 i=1 M
(13)

@ Springer



86

Comput Mech (2013) 51:83-92

where H is the space of continuous functions with continu-
A] = A (&—Z;n:_ll Ol,'(ci) -

g,— > d,-]E,),i), is known and [[Ofly; = [, 0 M
Uds2 de.

The operator M, defining the norm, is chosen to be A~!

to ensure a good convergence rate of the PGD.
The minimization problem (13) can be rewritten as a multi-
variables differential equation, which can be solved by using
the algorithm presented in [16,25].

Knowing the correction of the time function, an indicator
of the quality of the approximation with the PGD is defined,

ous first derivative,

HA 271:_11 AO(,'(C,’ - Z:n:_]l Adl’El,,,’ - A] HM
A1 lm

npGp =

(14)

If this indicator exceeds a threshold value after the update of
the time functions (chosen equal to 0.95 after our numerical
studies) a new pair of functions is added.

The addition of a new pair (o, Cy,, E ) corresponds
to an enrichment phase of the ROB,

m—1

o = D (@ + 4a))Ci + anCy (15a)
i=1
m—1

&y = Z(d‘i + AGHE i + @nEp (15b)

i=1

The new pair is built by solving,

(@m, Cp, Ep )
= arg min HA&m@m — &mﬁp,m — N> ”
am€7—ll M
CneF"
HC,+E, e&”
(16)
where

m—1
by = A(& - D (i + Aa»@-)

i=1

m—1
- (2-,, - @+ Adi)E,,,,-)

i=1

is known.
A fixed point algorithm is used to solve problem (16).
The algorithm is initialized with a random time function,
then
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— knowing the time function «,,, the space functions are
searched as

((CH’M IEp,m)

= arg _min
_CueF”
(HC,,+E,, )€€

HAamﬁm — dmﬁp,m — Az HM

a7)

whose resolution is detailed in the next section,
— knowing the space functions (Cy,;, E) ), the time func-
tion is searched as

o, = arg Emei]ll:lﬂl | A&, Cp — Ay — o (e (18)

which can be rewritten as a differential equation and
solved [16,25].

This algorithm converges quickly and in practice only
3-10 iterations are necessary to reach a stagnation of the
time function.

At each linear stage of LATIN iteration, we decided to
enrich the ROB by at most one vector. At the first iteration, a
new vector is generated, then for the next iterations, an update
of the time functions is first performed and new vectors added
only if necessary. The way the PGD pairs are obtained could
be called LATIN progressive PGD.

The PGD of the solution obtained at the end of LATIN
iterations is not optimal for this last iteration as the search
direction A evolves along the iterations. This point is detailed
in Sect. 4.1.

3 A new algorithm to find the space functions

A major difficulty in the fixed point method to determine
a new pair of functions consists in ensuring the static and
kinematic admissibilities of the space functions (17), which
is mandatory to reuse the PGD pairs along LATIN iterations.
Removing the subscript m for the sake of simplicity, let
us define ¢? = |AaC — ¢E, — 4, ;. which must be min-
imized under the constrains that E € £* and C € F*.

3.1 Previous algorithm

The method proposed in previous works [16,25] consisted
in a fixed point algorithm. The space function [E associ-
ated to the total strain was introduced and e? written as a
function of E and C through the use of the Hooke equa-
tion and the partition of strain E, = E — H7!C,¢? =
|[AaC+eH'C—aE— A .
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resolution leads to one assembly of a finite elements prob-
lem and one inversion the obtained rigidity matrix after
dualization.

— C being known find E = arg ming_g~ ¢*(C, E), whose
resolution leads to one assembly of a finite elements prob-
lem and one inversion.

It is important to note that these minimization problems
involve both the search direction A, which is updated at each
iterations of the LATIN to capture the nonlinear behavior,
and the time function «, which varies during the iterations of
the space-time fixed point algorithm.

In that case no convergence property was proved and after
discretization numerous assemblies of matrices must be per-
formed, which induced a huge computational cost.

The calculation cost of this algorithm can be estimated on
an academic example. Let consider the example of a plate
with a hole with imposed displacement. The symmetry con-
ditions allow to consider only a eight of the plate (Fig. 2). A
two periods sinusoidal displacement is prescribed.

One can notice on Fig. 3 that the method converges to the
solution. LATIN indicator of 10~ is reached in 34 iterations.
17 pairs of functions are generated during these iterations. In
17 others iterations, the solution is improved only through
the update of the time functions, i.e. by the use of the ROM.

Let now detailed the calculation cost of space function in
the enrichment of the ROB with 17 pairs. The number of pairs
and the number of iterations in the space-time fixed point
(Egs. 17 and 18) determines the number of space problems
to be solved in total. 10 iterations in the time-space fixed point
algorithm were used in the case of the plate, witch makes a
total of 170 space problems to be solved.

Two assemblies and factorizations, one for the kinematic
problem and one for the static problem of the linear systems
are necessary at each space resolution (170 x 2 = 340). The
number of inversions depends on the number of iterations in
the static-kinematic fixed point, which was 10 in the example
(340 x 10 = 3,400). Let us introduce a time unit (fu) as the
time of one iteration of a classic Newton tangent algorithm.

Number of iterations

Fig. 3 LATIN indicator versus number of iterations and number of
pairs, plate with a hole

During one iteration we evaluate the cost as follows 10 % to
assemble the matrice associated to the finite elements prob-
lem, 88 % to factorize it and 2 % to solve the linear system
of equations. With this orders of magnitude the total time
dedicated to the space problem (17) with the old algorithm
can be evaluated.

Operation Number Unitary cost (fu) Total (fu)
Assembly 340 0.1 34
Factorization 340 0.88 299.2
Inversion 3,400 0.02 68
Total 401.2

A total of 401.2 time units are necessary to generate the
17 spaces functions with this algorithm.

This number can be compared with a classic Newton tan-
gent algorithm. For 120 time steps and a mean of two itera-
tions per time step, calculation cost is 2 x 120 = 240 time
units, which is less than 401.2.

3.2 New algorithm

To avoid the drawbacks of previous algorithm we propose
here a new algorithm that will be shown to involve matrices
that do not depend on the search direction and the time func-
tion and then will decrease the computational cost. With the
new algorithm, the solution of a nonlinear problem is solved
using only the discrete matrices related to the same linear
elastic problem, taking advantage at the time independence
of the equilibrium equation.

Let us first remark that the plastic strain rate space func-
tion [, is the main unknown of the minimization problem
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(17). Indeed, introducing the state law (1) in the static admis-
sibility condition of C (4) reads,

VE* € %, /H(IE —E,):E*dQ =0 (19)
2

which allows to define an operator E and C such that E =
EE, and C = CE, (C = H(E-I)). The error 2 is then only
a function of E,, and the minimization problem (17) consists
in finding £, such that,

E, = arg min |AaCE, — 6K, — Aoy (20)
)4

E and C are obtained as a post-treatment by

E=EE,, (21)

C=CE, (22)

one can notice that the admissibility conditions E € £* and
C € F* are fulfilled by construction.

3.2.1 Residual problem

Minimization problem (20) is formally rewritten by intro-
ducing an intermediate variable Z that only depends on [E,,

E-1I

7 = [IE -E, IE,,]T = ( I )E[,. The error €2 is then,

e = I/Z/ZTQZdQ +/LTZdQ +d?)2 (23)
2 2

where, Q is a symmetric matrix and LT alinear form and a
a scalar (24), which are known quantities at this stage,

oAHMoAH —«AHM&
Q= / [ —wAHM&  aMé }d’ (242)
A
_ —OlAHMAz
L_/[ 4Mb, ]dt (24b)
A
a’/2 = / MMA, dt (24c)
T

One can recognize a classic quadratic form in ¢?. The
stagnation of ¢? with respect to E p is found for,

9e? 3¢’ 97

OE, 9ZOE,

r(E-1\ ., .

<~ [ (QZ+L) I E,d2 =0, VE],
2

(25)
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E—-1

Letusdefinedg = [,(QZ+L)" ( I

two integrals

) ]E’I', d$2; splitinto

q= /(le—HLl) D (B~ EY)de
2
- / (QZ +Ly) : E}, df2 (26)
2

where Qp, L; and Q», L, are respectively the first and the
second line of operators Q and L. In this expression, the
stagnation still bring in E*. Using the equilibrium, it can be
expressed only with E7. Indeed, as the static admissibility
C* € F* is enforced, VX € £,

/cc*;»;dsz=0¢>/H(E*—]E;,);zdsz=o
2 2

@/H)Z:IE*d.Q:/H)Z:E;d.Q
2
2

27)

That means that any kinematically admissible to zero field
has the same virtual energy with respect to E* or E7, when
the Hooke operator is involved.

A particular ¥ € £* is chosen, such that VE* € £*,

/HX:E*dQ+/(Q12+]L1):E*d.Q:O (28)
2 2

The calculation of ¥ is performed through a classic finite
elements problem.
By using (27), (28) is written as,

/(QlZ—i—]Ll):IE*d.Q:—/H}Z:E;d.Q (29)
2 2

This last equation enables to write g (26) only as a function
of E;,

qg= /R(Z, Y): E; ds2 (30)
Q

where

R(Z,Y) = = (Qi1Z +Ly) — HY + (Q2Z + L») (31)

R(Z, Y) is a residual, only function of E,. The solution is
found when R is equal to zero.

3.2.2 Iterative procedure

We use an iterative procedure, similar to a conjugate gradient
algorithm, to find E,, such as e? is minimum (Algorithm 1).
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This iterative procedure is initialized with E, o = 0,
which gives through the equilibrium (19) that Eg = 0 and
then Zo = 07, with 0 the field with null value at any point.

At iteration n, a correction Z, of Z is searched. One must
first determined the residual R with (31), where ¥ is calcu-
lated through problem (28), Z being known from previous
iteration,

Then a direction E/, , must be chosen,

E,,=(Qx»—-Qn) 'R (32)

The equilibrium (19) enables to determine E], associated with
this direction (33), with a finite element method.

VE* € £*, /H (Eg - ]E;’n) L E*d2 =0 (33)
2

The direction Z, = [E;; — E, , E} ] is then set orthogonal
to previous iterations directions by a Graam-Schmitt proce-

dure to find Z, such as

n—1
Z// — 'Z/. —i—Z/
PR R (34)
fQ(QZ})ng, d2=0 Vj<n

In practice orthogonalization with the direction of iteration
n — 1 is enough.
With this search direction, one searched the intensity of
descent A
Z, = )\Z;1 (35)
such as €2 is minimum.
The new value of Z is

n—1

Z=> 7+,
j=0

which gives an evolution of the error,

e (Zy) = €& (AZy,)

1
= -)\2/ (Qz,)" 7, de +A/JLTZ§, a2 (36)

2
Q Q

The minimum of ¢2 (AZ)) is found for,

T
A= __Jel Zyd2 (37)
fQ QzZ)TZ!, ds2
With this value of A,
2
1 LT7 d
ez(Zn) — __M (38)

2 [,QZ)TZ;,ds2

One can remarks that €2(Z,,) is always negative, while e2(7)
is always positive. The correction by Z, always induces a
diminution of ¢?(Z). Iterations of the algorithm are stopped
when €2(Z,) / 1Az || 18 less than a threshold value. A value
of 10~2 appears in the numerical test to be small enough and
is reached in average in 10 iterations.

Algorithm 1: Space function determination

1 Initialization E, o = 0;

2 while €%(Z,)/ | A2y > 1072 do

3 Y (28) (FE problem);

Residual calculation R (31);

Descent direction E ,, (32);

Descent direction E;, (33) (FE problem);
Graam-Schmitt Z,, (34);

Descent intensity A (37);

Correction Z, = AZj,;
10 Update of Z < Z + Zy;

11 Error evolution ¢%(Z,) (38);

12 end

o e S e

3.2.3 Evaluation of the calculation cost

The calculation cost can be estimated on the academic exam-
ple with this new algorithm. The discrete matrix associated
to [, HE, : E*d$2 (33) and [, HY : E*ds2 (28) is assem-
bled and factorized only one time. The number of inversions
depend on the number of pairs, the number of iterations in
the time-space fixed point algorithm and the number of iter-
ations in the iterative procedure of the space function algo-
rithm (17 x 10 x 10 x 2 = 3,400).

Operation Number Unitary cost (fu) Total (tu)
Assembly 1 0.1 0.1
Factorization 1 0.88 0.88
Inversion 3,400 0.02 68

Total 8.98

The total number of time units is 68.98 which is around
6 times less than using the previous algorithm and 3.5 times
less than using a Newton tangent algorithm. This total is just
an estimation of the calculation time with the proposed algo-
rithm, the real one is higher because of all operations not
taken into account.

4 Some numerical properties of the PGD

Some properties of the PGD, as the fact that it is obtained
along LATIN iterations, the number of functions depending
on the mesh refinement or the time step size, remain unclear.
We tested the influence of these parameters on the number of
generated functions and on the computational time to reach
a constant quality of solution.
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--- space functions generated at last iteration
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Fig. 5 Number of pairs versus number and dofs and time steps
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Fig. 4 Comparison PGD error versus number of pairs, when approx-
imating the last LATIN iteration with space functions generated along
LATIN iterations or generated at the last iteration

4.1 LATIN PGD

The LATIN PGD consists in finding the pairs along the iter-
ations of the LATIN method. The linear problem on which
the PGD is build evolves along the iterations as the PGD
is introduced at the linear stage of the LATIN. The LATIN
PGD is then not optimal with respect to the linear stage at
the last LATIN iteration, which is the best linear approxima-
tion of the problem. This fact is highlighted by comparing
the convergence rate of the PGD with space functions gen-
erated along LATIN iterations or generated at the last itera-
tion.

One can remark on Fig. 4 that the convergence rate of the
LATIN PGD is less than the progressive PGD for the first
functions. For the last functions the convergence rate is the
same. This can be explained by the fact that the tangent evo-
lution law operator evolves quickly in the first iterations of
the LATIN method and becomes constant in next iterations.
Nevertheless the number of pairs do not increases dramat-
ically (16 using LATIN PGD compared to 14 using space
function generated at the last iteration).

4.2 Influence of mesh characteristic length and time step
We compared the number of pairs to reach a LATIN indicator
of 10~2 when using different meshes and time steps. One can

observe on Fig. 5 that the number of pairs does not evolve
when increasing the number of degrees of freedom. How-
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ever, it depends on the number of time steps until it reaches
a plateau. This is related to the influence of the time step
on the calculation of the evolution law of the constitutive
relation.

4.3 Performance of the algorithm, comparison with Abaqus

Model reduction techniques do not always allow to save com-
putational time. The calculation of the reduced model, inte-
gral in time or space, can lead to be less efficient than a direct
method. The control of the error added by the reduced model
is also a critical point. To check this, the LATIN method
has been implemented in a C++ code linked to standard
library of linear algebra in the code platform of the LMT-Ca-
chan. Then the efficiency of the method is compared to the
commercial software Abaqus on an example on an example
provided with its documention. The elastic-viscoplastic con-
stitutive formulation is calculated in Abaqus through a Umat
generated by the Zmat program. !

The example considered herein is the upper part of a ves-
sel (Fig. 6) from the Abaqus documentation. The symmetry
conditions allow us to take a quarter of the part. An inter-
nal pressure is imposed with a sinusoidal variation in time
(Fig. 6). The part is meshed with 160,587 quadratic tetrahe-
drons (10 nodes), which leads to 740,097 degrees of free-
dom. An Euler implicit time scheme is used with 60 time
intervals.

100 iterations are necessary to reach a LATIN error indi-
cator of 1072 (Fig. 7). 20 pairs of time and space functions
are generated, the quality of the solution is improved only
by an update of the time functions in most of the iterations
reuse of the ROB without enrichment).

As shown in Table 1, calculation times obtained with Aba-
qus and the LATIN program are similar. The Abaqus calcu-

! http://www.nwnum\discretionary-er\discretionary-ics.com/Z-mat/.
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Table 1 Comparison of LATIN and Abaqus calculation times

Wallclock time ()

12,308
8,920

Abaqus + Zmat
LATIN

lation time is increased by the use of the Zmat program, but
the elastic-viscoplastic behavior law is not present natively
in this program.

5 Conclusions

In this paper, we showed that it is possible to build a
reduced model with the PGD in the case of a nonlinear con-
stitutive law through the use of the LATIN method, which
allows to build a linear approximation of the problem at
each of its iterations on which the PGD is computed
easily.

We have presented a new algorithm for the calculation of
the ROB of the Proper Generalized Decomposition for the
a priori construction of a separated variable representation
of the solution of time-dependent problem, based on a min-
imum residual problem. This new algorithm is 6 times less
computationally expensive than fixed point techniques used
in previous works, as the discrete operator involved in the
finite element problems does not change along the LATIN
iterations, even if the solution of a problem with an elastic-
viscoplastic formulation is searched.

We have highlighted some properties of the reduced model
built along LATIN iterations. We checked the quality of the
PGD reduced model obtained along LATIN iterations com-
pared to a PGD performed on the best linear approximation
of the problem. We concluded that the PGD model built along
LATIN iterations is not optimal but of good quality as very
few additional pairs are generated in that case compared to
the PGD performed on the best linear approximation of the
problem. On a simple academic example, we showed that
the number of pairs does not depend on the mesh size, and
depends on the number of time steps until convergence of
the time integration scheme.

We finally have illustrated the performances of the LATIN
method with this new algorithm on an example of the Abaqus
documentation, by comparing the calculation time obtained
with the LATIN and with Abaqus in the case of an elastic
viscoplastic material formulation. We obtained a gain of 30 %
in CPU time in favor of the LATIN method.

This work shows that it is possible to generate a good
quality PGD reduced model associated to a design configu-
ration defined by a set of parameters (material parameters,
boundary conditions...). The next step is is to deal with a
parametric study and then to compute the solution for sev-
eral sets of parameters. For a new set of parameters, the idea
is to initialize the algorithm using the ROB already gener-
ated for the previous set. It is quite inexpensive and gen-
erally sufficient if the two sets of data are closed. The error
indicators already defined allow to know if the required qual-
ity is achieved and to automatically enrich the approxima-
tion by adding new functional products by performing new
LATIN iterations if it is not the case. Using this strategy
based on the PGD reduced model, we can expect to drasti-
cally reduce the computational time associated to a paramet-
ric study [12].

@ Springer
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