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Abstract The Finite Cell Method (FCM) is an embed-
ded domain method, which combines the fictitious domain
approach with high-order finite elements, adaptive integra-
tion, and weak imposition of unfitted Dirichlet boundary
conditions. For smooth problems, FCM has been shown to
achieve exponential rates of convergence in energy norm,
while its structured cell grid guarantees simple mesh gen-
eration irrespective of the geometric complexity involved.
The present contribution first unhinges the FCM concept
from a special high-order basis. Several benchmarks of lin-
ear elasticity and a complex proximal femur bone with
inhomogeneous material demonstrate that for small deforma-
tion analysis, FCM works equally well with basis functions
of the p-version of the finite element method or high-order
B-splines. Turning to large deformation analysis, it is then
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illustrated that a straightforward geometrically nonlinear
FCM formulation leads to the loss of uniqueness of the defor-
mation map in the fictitious domain. Therefore, a modified
FCM formulation is introduced, based on repeated deforma-
tion resetting, which assumes for the fictitious domain the
deformation-free reference configuration after each Newton
iteration. Numerical experiments show that this interven-
tion allows for stable nonlinear FCM analysis, preserving
the full range of advantages of linear elastic FCM, in par-
ticular exponential rates of convergence. Finally, the weak
imposition of unfitted Dirichlet boundary conditions via the
penalty method, the robustness of FCM under severe mesh
distortion, and the large deformation analysis of a complex
voxel-based metal foam are addressed.

Keywords Embedded domain methods · Immersed
boundary methods · Fictitious domain methods · p-Version
of the Finite Cell Method · B-spline version of the Finite
Cell Method · Large deformation solid mechanics · Weak
boundary conditions

1 Introduction

Structural analysis with standard finite elements requires the
discretization of the domain of interest into a finite element
mesh, whose boundaries conform to the physical boundaries
of the structure [1,2]. While this constraint can be easily
achieved for many applications in solid mechanics, it con-
stitutes a severe bottleneck for structures of highly com-
plex geometry. The meshing challenge has recently led to
the rise of isogeometric methods, which directly use the
spline basis of a CAD model for FE analysis (see [3–5]
and the references therein). A more general approach to
avoid time-consuming mesh generation for complex domains
is provided by embedded domain methods, also known as
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immersed boundary methods [6–9], in conjunction with the
fictitious domain concept [10–12]. The main idea consists of
the extension of the physical domain of interest Ωphys beyond
its potentially complex boundaries into a larger embedding
domain of simple geometry Ω , which can be meshed easily
by a structured grid (see Fig. 1). To preserve consistency with
the original problem, the influence of the fictitious domain
extension Ωfict is extinguished by penalizing its material
parameters. The fictitious domain approach has been widely
used in conjunction with penalty methods [12,13], the mortar
approach [14], Lagrange multipliers [11,15–18], Nitsche’s
method [19], extended finite elements [20–23], discontinu-
ous Galerkin [24] and spectral methods [25–27] to address
problems of structural analysis, acoustics, fluid and heat flow,
fluid-structure interaction, topology and shape optimization.

The Finite Cell Method (FCM) [28,29] is an embed-
ded domain method, which combines the fictitious domain
approach of Fig. 1 with the p-version of the finite ele-
ment method (FEM) [30,31], adaptive integration and weak
imposition of unfitted Dirichlet boundary conditions. For
smooth problems of linear elasticity, FCM has been shown
to maintain exponential rates of convergence in energy norm
known from the p-version. FCM thus allows for accurate
structural analysis irrespective of the geometric complexity
involved [32], and can be well combined with voxel-based
geometrical models typical for applications from biome-
chanics and material science [29,33,34]. Within the frame-
work of FCM, the following aspects have been examined so
far: Fluid-structure interaction [35], topology optimization
[36], thin-walled structures [37], local refinement strategies
[34], weak boundary conditions [33,38,39], elasto-plasticity
[40], advection-diffusion problems [41], homogenization of
porous and cellular materials [42], and computational steer-
ing [43]. In this context, the present contribution brings in
two main new aspects: first, the application of high-order and
high-continuity B-spline bases within the generalized Finite
Cell concept, coined the B-spline version of the FCM, and
second, the extension of the FCM concept to geometrically
nonlinear problems based on deformation resetting.

The article at hand is organized as follows: Sect. 2 pro-
vides a generalized presentation of the Finite Cell concept
as well as the p- and B-spline versions, highlighting the
different derivation and characteristics of their high-order

bases. Using linear elastic problems first, Sect. 3 demon-
strates the equivalent solution behavior of the p- and B-spline
versions of the FCM in conjunction with Nitsche’s method
and for a complex three-dimensional proximal femur bone
with inhomogeneous material. Turning to geometrically non-
linear problems, Sect. 4 introduces a FCM formulation based
on the logarithmic strain measure. Section 5 demonstrates
that a standard FCM approach applying the same kinemat-
ics over the complete domain leads to the loss of unique-
ness of the nonlinear deformation map within the fictitious
domain. It motivates its modification by the idea of defor-
mation resetting, which assumes the initial reference con-
figuration within Ωfict after each Newton iteration. Section 6
provides a geometrically nonlinear formulation of the penalty
method for the imposition of unfitted Dirichlet constraints in
elements cut by the geometric boundary. Section 7 presents
a range of numerical benchmarks, which demonstrate stabil-
ity, accuracy, physical consistency and exponential rates of
convergence for the modified geometrically nonlinear FCM
formulation applied within the p- and B-spline versions. Sec-
tion 8 addresses its behavior under severe mesh distortion,
which is fundamental for the representation of very large
deformation states. Section 9 presents an application oriented
large deformation analysis of a complex metal foam sample,
demonstrating the capability of FCM to directly operate on
voxel-based geometrical models. Sections 10 and 11 termi-
nate the present study, giving a comparison of the p- and
B-spline versions as well as some conclusions.

2 The Finite Cell Method with high-order p-version
and B-spline bases

Following a brief review of the Finite Cell concept, the inte-
gration of the p-version and B-spline bases into the FCM
framework is discussed. The resulting two FCM schemes
are referred to as the p- and B-spline versions of the FCM in
the following.

2.1 The fictitious domain concept

As shown in Fig. 1, the embedding domain Ω consists of the
physical domain of interest Ωphys and the fictitious domain

Fig. 1 The fictitious domain concept: the physical domain Ωphys is extended by the fictitious domain Ωfict into an embedding domain Ω to allow
easy meshing of complex geometries. The influence of Ωfict is penalized by α
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Fig. 2 2D sub-cell structure (thin blue lines) for adaptive integration of finite cells (bold black lines) cut by the geometric boundary (dashed line).
(color figure online)

extension Ωfict . Analogous to standard FEM, the FCM for
linear elastic problems is derived from the principle of virtual
work

δW (u, δu) =
∫

Ω

σ : (∇sym δu) dV −
∫

Ωphys

δu · b dV

−
∫

ΓN

δu · t d A = 0 (1)

where σ , b, u, δu and ∇sym denote the Cauchy stress ten-
sor, body forces, displacement vector, test function and the
symmetric part of the gradient, respectively [1,2]. Neumann
boundary conditions are specified over the boundary of the
embedding domain ∂Ω , where tractions are zero by defini-
tion, and over ΓN of the physical domain by traction vector
t (see Fig. 1). The elasticity tensor C [1,2] relating stresses
and strains

σ = αC: ε (2)

is complemented by a scalar factor α, which leaves the mate-
rial parameters unchanged in the physical domain, but penal-
izes the contribution of the fictitious domain

α (x) =
{

1.0 ∀x ∈ Ωphys

10−q ∀x ∈ Ωfict
(3)

In Ωfict, α must be chosen as small as possible, but large
enough to prevent extreme ill-conditioning of the stiffness
matrix [28,29]. Typical values of α range between 10−4 and
10−15. The idea of applying a penalized material for void
regions of a domain has also been frequently used in optimi-
zation, see for example [6,44].

Using a structured grid of high-order elements (see Fig. 1),
which will be called finite cells in the following, kinematic

quantities are discretized as

u =
n∑

a=1

Na ua (4)

δu =
n∑

a=1

Naδua (5)

The sum of Na denotes a finite set of n high-order shape func-
tions, and ua and δua the corresponding vectors of unknown
coefficients [2,45]. Following the standard Bubnov-Galer-
kin approach [1,2], inserting Eqs. 4 and 5 into the weak form
Eq. 1 produces a discrete finite cell representation

K u = f (6)

with stiffness matrix K and load vector f . Due to the similar-
ity to standard FEM, the implementation of FCM can exploit
existing finite element techniques to the full.

2.2 Adaptive integration

The accuracy of numerical integration by Gauss quadrature
[2,46], which assumes smoothness of the integrands, is con-
siderably influenced by discontinuities within cells intro-
duced by the penalization parameter α of Eq. 3 [28,29].
Therefore, the FCM uses composed Gauss quadrature to
improve integration accuracy in cells cut by geometric
boundaries, based on a hierarchical decomposition of the
original cell into integration sub-cells [29]. In two dimen-
sions, the sub-cell structure can be built up in the sense of
a quadtree (see Fig. 2) [47]. Starting from the original finite
cell of level k = 0, each sub-cell of level k = i is first
checked whether it is cut by a geometric boundary. If true, it
is replaced by 4 equally spaced cells of level k = i + 1, each
of which is equipped with (p + 1) × (p + 1) Gauss points.
Partitioning is repeated for all cells of current level k, until
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a predefined maximum depth k = m is reached. The quad-
tree approach can be easily adjusted to 1D or 3D by binary
trees or octrees, respectively [29,47]. To clearly distinguish
between finite cell and sub-cell meshes, finite cells are plot-
ted in black and integration sub-cells are plotted in blue lines
throughout this paper (see Fig. 2).

The adaptive integration scheme is easy to implement,
keeps the regular grid structure of FCM, and requires consid-
erably less computational effort than non-adaptive schemes
such as the Gauss point method [28,48]. However, the major
part of the computational cost of the FCM still stems from
linear algebra operations, which need to be repeated many
times due to the large number of Gauss points in the sub-cell
structure during integration of the stiffness matrix. Note that
a reduction of the (p+1) Gauss points in each sub-cell direc-
tion is not recommended, since this introduces an additional
integration error, which for instance dramatically decreases
the convergence rate of the Newton–Raphson procedure or
can provoke a random failure of the nonlinear deformation
mapping.

2.3 The p-version of the FCM

The high-order basis originally applied in the FCM [28,29]
uses a regular mesh of elements of the p-version of the FEM,
introduced by Szabó and Babuška [30,31,49,50]. Its formu-
lation is based on integrated Legendre polynomials of the
form

φ j (ξ) =
√

2 j − 1

2

ξ∫

−1

Pj−1(t)dt

= 1√
4 j − 2

(
Pj (ξ) − Pj−2(ξ)

)
, j = 2, 3, . . . (7)

where Pj (ξ) are standard Legendre polynomials in local cell
coordinates [30,46]. As illustrated in Fig. 3, the one-dimen-
sional basis is constructed by combining the standard lin-
ear shape functions with higher-order functions provided by
Eq. 7. The basis is hierarchic, so that an increase of the poly-
nomial degree p of the basis by 1 is achieved by the addition
of another φ j [30,49].

Corresponding higher-dimensional bases can be con-
structed by tensor products of the 1D case. 2D shape func-
tions are usually grouped as follows (see Fig. 4):

– Nodal modes are the standard bilinear shape functions
[1,2,30]. The corresponding mode for node n1 of Fig. 4
reads

N n1
1 (ξ, η) = 1

4
(1 − ξ)(1 − η) (8)

– Edge modes are defined separately for each individual
edge and vanish at all other edges. The corresponding
modes for edge e1 of Fig. 4 read
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Fig. 3 Linear nodal modes N j , j = 1, 2 and the first four integrated Legendre basis functions φ j , j = 2, . . . , 5 of the 1D p-version basis in the
parameter space ξ . Their combination yields the shape functions of a 1D finite cell of p = 5
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Fig. 4 Examples of shape functions of the 2D p-version basis in the parameter space [ξ, η]
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Fig. 5 Example of an open
cubic B-spline patch consisting
of three uniform B-splines
and six knot spans. At the
boundaries, knots are repeated
four times to obtain
interpolatory B-splines

Fig. 6 Knot span cells in the parameter space {ξ, η} (left) and corresponding bi-variate cubic B-spline (right)

N e1
i (ξ, η) = 1

2
(1 − η)φi (ξ) (9)

– Internal modes are purely local and vanish at all element
edges. They read

N int
i, j (ξ, η) = φi (ξ)φ j (η) (10)

For the three-dimensional basis, see [30,31,49,50]. To limit
the number of additional unknowns in 2D and 3D, the
so-called trunk space is used instead of the full tensor product
basis [31,49].

The geometry of the structured finite cell mesh in terms
of the position vector X can be represented exactly by the
nodal part alone

X =
nvert∑
i=1

N n
i X i (11)

where X i and N n
i denote the location of the nvert cell ver-

tices and the corresponding nodal modes, respectively. The
p-version of the FCM can thus be regarded as a sub-para-
metric finite element scheme [1]. The resulting FCM stiffness
matrix Eq. 6 inherits all beneficial properties of the p-version
FEM, such as hierarchy of the modal contributions and a
tremendous improvement of the condition number under
p-refinement with respect to standard nodal FE schemes
[30,31,49].

2.4 The B-spline version of the FCM

The B-spline version of the FCM has been recently estab-
lished as a suitable alternative [51,52]. Its formulation is
based on high-order B-spline basis functions Ni,p of polyno-
mial degree p, which are defined by p + 2 knots ξ1 ≤ ξ2 ≤

· · · ≤ ξp+2 in the parameter space ξ [3,4]. The resulting
p + 1 knot spans contain piecewise polynomials of degree
p, which join smoothly up to a continuous differentiability
of C p−1 [53,54]. A number of n basis functions constitute a
patch, defined by a so-called knot vector [4,53,54]

Ξ = {ξ1, ξ2, . . ., ξn+p+1}, ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1 (12)

The knots of each individual basis function Ni,p with patch
index i can be identified as the consecutive entries {i, i +
1, . . . , i + p +1} in Ξ . B-spline basis functions Ni,p of arbi-
trary polynomial degree p can be generated recursively with
the Cox-de Boor formula, starting from piecewise constants
Ni,0 [53,54]

Ni,0 (ξ) =
{

1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(13)

Ni,p (ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) (14)

A uniform B-spline patch with open knot vectors as illus-
trated in Fig. 5 guarantees optimal approximation for smooth
problems due to maximum continuity within the patch, but
also allows for the imposition of boundary conditions by
standard FE techniques [3,4]. Its basis functions away from
the boundary of the patch consist of uniform B-splines con-
structed from equidistant knots, which can be interpreted as
translated copies of each other [55]. At the boundaries, knots
are repeated p + 1 times in order to make the basis interpo-
latory.

The two-dimensional B-spline basis uses two independent
1D open knot vectors with indices {i, j} for local coordinates
{ξ, η}, respectively. The parameter space is then discretized
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Fig. 7 Uni-axial rod example. Geometric boundaries are located at
X = 1.0 and X = 2 1

3 . Parameters: Young’s modulus E = 1.0; Pois-
son’s ratio ν = 0.0; penalization parameter α = 10−q ; area A = 1.0;
length of each part L = 1.0; displacement load Δu = 0.02; Sine load
fsin = 1/20 sin(4π X)

by a structured grid of knot spans, whose nodal positions can
be obtained by permuting all entries {i, j}. Corresponding
multivariate B-spline basis functions are obtained by taking
the tensor product of its univariate components

Ni, j,p (ξ, η) = Ni,p (ξ) · N j,p (η) (15)

An example of two-dimensional knot spans and a corre-
sponding bi-cubic uniform B-spline are shown in Fig. 6. The
three-dimensional B-spline basis can be constructed analo-
gously (see for example [3,52,55]).

In the framework of the FCM, the discretization is accom-
plished with a regular grid of knot spans of width h in the
sense of the fictitious domain concept as illustrated in Fig. 1.
In two and three dimensions, each knot span can be iden-
tified as a quadrilateral or hexahedral finite cell, respec-
tively, with full Gaussian integration [51,52]. The phys-
ical coordinates X of the finite cell grid can be gener-
ated from a simple linear transformation of the parameter
space ξ

X = X0 + h ξ (16)

where X0 denotes the origin of the physical coordinate sys-
tem in the parameter space. The B-spline version of the FCM
is thus also a sub-parametric scheme [1].

2.5 Weak imposition of unfitted Dirichlet constraints

In case of cuboidal domains, where boundaries coincide
with cell boundaries of the structured grid, Dirichlet bound-
ary conditions can be implemented strongly by standard FE
techniques in both FCM versions [4,31]. In case of more
complex domains, Dirichlet constraints are defined along
boundaries of arbitrary geometry cutting through finite cells,
which require an imposition in a weak sense by vari-
ational techniques such as the penalty method [56–58],
the Lagrange multiplier method [11,21,59,60] or Nitsche’s

method [61–64]. In the framework of FCM, Nitsche’s method
is usually preferred [33,39], since it does not introduce addi-
tional unknowns, leads to a symmetric, positive definite stiff-
ness matrix and satisfies variational consistency in the sense
that solutions of the weak form can be shown to be solutions
of the original boundary value problem. In linear elasticity,
Nitsche’s method extends the weak form of Eq. 1 by addi-
tional terms as follows

δWK (u, δu) =
∫

Ω

σ : (∇sym δu)dV + β

∫

ΓD

u · δud A

−
∫

ΓD

δ (σ · n) · ud A −
∫

ΓD

(σ · n) · δud A

(17)

δW f (u, δu) =
∫

Ωphys

δu · bdV +
∫

ΓN

δu · td A

+β

∫

ΓD

û · δud A −
∫

ΓD

δ (σ · n) · ûd A (18)

where δWK = δW f . Function û denotes the prescribed dis-
placements along the Dirichlet boundary ΓD , scalar β is a
stabilization parameter, which can be chosen empirically or
according to a generalized Eigenvalue problem [59,63], and
n is the outward unit normal vector on ΓD . Evaluation of
Eqs. 17 and 18 leads to the stiffness matrix K and the force
vector f , respectively, that form the discrete system of Eq. 6.

3 Numerical examples at small strains

Several examples of linear elasticity are presented in the fol-
lowing to demonstrate the equivalent overall characteristics
of the p- and B-spline versions of the FCM for small defor-
mation analysis.

3.1 Characteristic solution behavior: smooth extension
of solution fields and exponential convergence

In the FCM, the polynomial degree p of the shape func-
tions is increased to reduce the approximation error, while
the structured high-order mesh remains unchanged. For the
illustration of the typical solution behavior, a linear elastic
uni-axial rod is examined, for which geometry, material and
boundary conditions are specified in Fig. 7. Its middle part
represents the fictitious domain Ωfict , whose Young’s mod-
ulus E is penalized with parameter α = 10−8. The example
approximates the situation of two separate rods. The right
one undergoes a rigid body movement Δu and the left one is
subjected to a sine load fsin. The FCM discretizations con-
sidered consist of 2 p-version finite cells and 11 knot span
cells as shown in Fig. 7. Due to the different construction of
the bases, the B-spline version requires a denser knot span

123



Comput Mech (2012) 50:445–478 451
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Fig. 8 Smooth extension of the FCM solutions (p = 15) versus dis-
continuous analytical solution (α = 10−8) for the linear elastic strains
of the 1D example

grid than the p-version in order to achieve a comparable
amount of degrees of freedom (dofs). For all computations
of this section, adaptive sub-cells of depth k = 20 are used
to minimize the integration error in cells cut by geometric
boundaries (see Sect. 2.2).

The corresponding analytical solution fields with finite
α = 10−8 exhibit kinks and jumps in displacements and
strains, respectively, at geometric boundaries X = L and
X = 7/3L . The analytical solution is approximated by an
overkill solution with 1,800 equally-spaced standard cubic
finite elements, where the geometric boundaries coincide
with nodes, so that discontinuities can be represented. The
p- and B-spline versions of the FCM, however, produce solu-
tion fields, which extend smoothly into the fictitious domain
despite the discontinuities of the analytical solution. This is
illustrated in Fig. 8, which compares the analytical strains
to the numerical strains of the p- and B-spline versions.
The importance of the smooth extension of the FCM solu-
tion into the fictitious domain for the overall convergence
behavior of the FCM can be explained with the help of
the penalty parameter α in conjunction with the total strain
energy

U =
∫

Ω

Ψ dV = 1

2

∫

Ω

σ : εdV (19)

where Ψ represents the strain energy function, defined over
the complete domain Ω . The best approximation property
to the total strain energy U states that the solution of a
Galerkin finite element scheme represents a least-squares
best fit to the exact solution in terms of Eq. 19 [2,60].
Due to the penalization with parameter α of Eq. 3, devia-
tions from the exact solution in Ωfict have a considerably
smaller impact on the strain energy Eq. 19 than deviations in
Ωphys. Therefore, a minimization of the strain energy error
by the high-order basis of the FCM scheme results in an
accurate approximation in Ωphys, where potential deviations
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Fig. 9 Convergence in strain energy obtained by p-refinement in the
given p-version and B-spline discretizations of the linear elastic 1D
example

lead to considerable error contributions. In Ωfict , a largely
inaccurate approximation is allowed, since potential devi-
ations lead to negligible error contributions due to penali-
zation. In particular, this implies a smooth extension of the
solution into the fictitious domain, so that its gradients in
Ωphys remain unaffected up to the geometric boundary (see
Fig. 8).

Accuracy and convergence of the FCM versions will be
assessed by

er =
√

|Uex − UFC M |
Uex

× 100% (20)

denoting the relative error in terms of the total strain energy U
of Eq. 19 [2,31,60]. Uex represents the exact strain energy of
the original problem defined over the physical domain Ωphys.
Accordingly, UFC M denotes the strain energy contribution
from Ωphys, obtained numerically with an FCM scheme.
The corresponding rate of convergence q, with which er

decreases from the i th to the (i + 1)th p-refinement step
compared to the number of degrees of freedom ndof is

q = − log10
(
ei+1

r /ei
r

)
log10

(
ni+1

dof /ni
dof

) (21)

The physical reference strain energy Uex for the example
of Fig. 7 consists of the energy contribution by fsin only. An
overkill discretization with 1,000 cubic finite elements taking
into account the left rod only yields Uex = 1.1873576208 ×
10−5. Figure 9 shows the convergence behavior of the pre-
sented FCM schemes, if the polynomial degree of the dis-
cretizations given in Fig. 7 is increased from p = 1–15.
Both the p-version and the B-spline version of the FCM con-
verge exponentially with a maximum rate of q = 23.56 and
q = 23.74, respectively. The penalization parameter α =
10−8 cannot completely erase the influence of the fictitious
domain, and the corresponding error takes control at a value
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Fig. 10 Ring under internal
radial pressure and fixed outer
displacements. Parameters:
Γ1 : û = [0.00.0]T , Γ2 :
t̂ = 1

2
ln 0.25+1

ln 2 ; rin = 0.25;
rout = 1.0; Ωphys : Ephys =
1.0; Ωfict = α · Ephys;
α = 10−15; ν = 0.0

(a) (b)

Fig. 11 Finite cell discretizations with adaptive sub-cells for the ring
example. Open circles denote element nodes and B-spline knots in the
p-version and B-spline meshes, respectively, while the lines in blue

denote integration sub-cells. a 4 × 4 p-version cells and sub-cells of
depth m = 5, b 16 × 16 knot span cells and sub-cells of depth m = 3.
(Color figure online)

around 0.1% in both the p- and B-spline versions, leading to
a flattening of the convergence curves. The present example
shows that the p- and B-spline bases applied in the frame-
work of the Finite Cell concept exhibit an equivalent solution
behavior and achieve comparable performance in terms of
error level, rates of convergence and flattening of the conver-
gence curve, although their high-order approximation bases
are very different.

3.2 Unfitted Dirichlet constraints via Nitsche’s method:
ring example at small strains

The imposition of unfitted Dirichlet boundary conditions
with Nitsche’s method is illustrated by the example of a ring
in plane strain as shown in Fig. 10. For the present example,
curved boundaries are approximated with arbitrary precision
by a polygon

s :
[

Xs

Y s

]
=

nvert∑
i=1

Nlin
i (ϑ) ·

[
Xs

i
Y s

i

]
(22)

Xs
i and Y s

i denote the physical coordinates of the nvert ver-
tices of the polygon in the reference configuration, which lie
on Γ . Nodal basis functions Nlin

i (ϑ) defined over parameter
space ϑ ∈ [−1, 1] linearly interpolate Γ between vertices.
Assuming that wherever polygon s crosses a cell edge, a ver-
tex is placed (see Fig. 10), the surface integrals in Eqs. 17
to 18 can be evaluated by placing p + 1 Gauss points in
the parameter space ϑ of each polygon segment without
introducing an additional error from shape function discon-
tinuities at cell edges. This parameterization concept can be
analogically applied to three-dimensional problems by intro-
ducing a triangular approximation for boundary surfaces of
arbitrary geometry [29,33].
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Fig. 12 Radial displacements of the 2D ring example, plotted along the inclined cutline shown in Fig. 10. a p-version mesh of Fig. 11a, b knot
span mesh of Fig. 11b
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Fig. 13 Von Mises stresses of the 2D ring example, plotted along the inclined cutline shown in Fig. 10. a p-version mesh of Fig. 11a, b knot span
mesh of Fig. 11b

The present example specifies radial and circumferential
displacements over the Dirichlet boundary Γ1

ûr = 0.0; ûθ = 0.0 (23)

and radial traction over the Neumann boundary Γ2

t̂r = 1

2

ln 0.25 + 1

ln 2
(24)

In addition, radial body forces are applied

br = 1

r ln 2
(25)

over the physical domain Ωphys. Assuming the compatible
displacement solution in polar coordinates (r, θ) with origin

in the center of the circular ring

ur = − r

2

ln r

ln 2
(26a)

uθ = 0.0 (26b)

the corresponding analytical stress fields can be derived by
considering basic laws of elastostatics [65]

σr = εr = ∂ur

∂r
= −1

2

1

ln 2
[ln r + 1] (27a)

σθ = εθ = 1

r

∂uθ

∂θ
+ ∂ur

∂r
= −1

2

ln r

ln 2
(27b)

σrθ = 0 (27c)

Note that the influence of material parameters does not appear
explicitly due to the particular choice of Young’s modulus
E = 1.0 and Poisson’s ratio ν = 0.0 (see Fig. 10).
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(a) (b) (c)

Fig. 14 The Finite Cell Method applied for analysis of a CT-based
proximal femur bone. a Slices of the CT scan, indicating the thin cor-
tical shell and the trabecular structure inside, b Finite Cell mesh of the

bone, consisting of 678 p-version finite cells, and boundary conditions,
c Von Mises equivalent strain distribution [με], evaluated for each voxel
of the physical domain

The discretizations with the p- and B-spline versions of
the FCM used in this study consist of 4 × 4p-version finite
cells and 16 × 16 knot span cells, which are equipped with
m = 5 and m = 3 levels of adaptive sub-cells as shown in
Fig. 11a, b, respectively. Boundary constraints are imposed
in a weak sense according to Eqs. 17 and 18. The penalty
parameter β is chosen empirically for each discretization and
polynomial degree in such a way thatβ is small, but still keeps
the stiffness matrix positive definite. Solutions are obtained
from the p-version mesh with polynomial degrees p = 4
(322 dofs), p = 8 (1,090 dofs) and p = 12 (2,370 dofs) and
from the B-spline mesh with p = 2 (648 dofs), p = 4 (800
dofs) and p = 6 (968 dofs).

Figures 12 and 13 compare the radial displacement and
the von Mises stress results, respectively, to the correspond-
ing analytical reference obtained from Eqs. 26a–26b and
27a–27c. The plots refer to a cutline that originates in the
center of the ring and is inclined by an angle of 30◦ against
the horizontal as shown in Fig. 10 to avoid mesh induced sym-
metry effects. The displacement and stress results converge
under p-refinement to the reference and confirm that the weak
imposition of Dirichlet boundary conditions via Nitsche’s

method works well for both the p- and B-spline versions of
the FCM. One can observe that for the examined discretiza-
tions, the B-spline version achieves a comparable quality in
stresses with less degrees of freedom than the p-version due
to its higher-order continuity.

3.3 A complex example: analysis of a proximal femur bone
with inhomogeneous material

The human femur bone of Fig. 14 is analyzed with the
p-and B-spline versions of the FCM on the basis of computed
tomography (CT) derived voxel data. This kind of analysis is
common in biomechanics to mimic patient-specific in vivo
behavior, which allows for a better understanding of bone
stability and strength. The majority of research in this field is
based on traditional finite elements (see e.g. [66,67]), which
are often limited in terms of accuracy and efficiency, the
need for time-consuming segmentation of the CT data and
an element-wise constant material assignment. Before the
discussion of the FCM results, some details on the material
model based on voxels are provided.

123



Comput Mech (2012) 50:445–478 455

−1000 500 1000

−1000

−500

0

500

1000 uz × 103[mm ] – B-spline version
uz × 103[mm ] – p-version

– B-spline version
– p-version

point data
R2 = 0 .975 (p-version)
R2 = 0 .972 (B-spline version)

Numerical analysis

(a)

−500 0 −1000 −500 0 500 1000

−1000

−500

0

500

1000 uz × 103[mm ] – B-spline version
uz × 103[mm ] – p-version

– B-spline version
– p-version

mean face data
R2 = 0 .962 (p-version)
R2 = 0 .968 (B-spline version)

Numerical analysis

(b)

E
xp

er
im

en
t

E
xp

er
im

en
t

Fig. 15 Experimental results versus simulation results obtained with the p- and B-spline versions of the FCM. The target parameter με denotes
von Mises equivalent strains [33,70,71]. a Pointwise values, b element face average

3.3.1 A voxel-based model for the representation
of inhomogeneous material properties

Voxels are volume elements, aligned in a structured spatial
grid in Cartesian directions [68], each of which contains local
material information. Voxel data sets have a limited resolu-
tion, as precise data is only available at the center of each
volume element, and care has to be taken that the chosen
voxel resolution represents changes in material parameters
accurately enough for simulating the corresponding mechan-
ical behavior. Voxel models of real structures can be directly
obtained from computed tomography (CT), magnetic reso-
nance tomography (MRT) or ultrasound scans. For a concise
review of medical imaging technologies, see for example
[69]. The CT scan of the femur shown in Fig. 14a repre-
sents a discrete model1 of the continuous material distribu-
tion with a resolution of 1024 × 1024 × 183 voxels, each
providing a measure for the radiodensity of the cortical and
trabecular bone regions. First, a radiodensity limit needs to
be defined, which separates material from void regions. Since
a heterogeneous isotropic material behavior is sufficient to
accurately represent the experimental observations [70], the
radiodensity scale lying above that limit is translated into a
corresponding scale of equivalent material parameters, i.e.
Young’s modulus E and Poisson’s ratio ν, which are then
stored independently for each voxel location according to
the radiodensity identified there. With the relations given in
[66], this results in a different Young’s modulus for each
voxel and a constant Poisson’s ratio of 0.3.

1 Courtesy of Prof. Zohar Yosibash, Dept. of Mechanical Engineer-
ing, Ben-Gurion University, Beer-Sheva, Israel; http://www.bgu.ac.il/
~zohary/.

3.3.2 FCM analysis with the p- and B-spline versions

In the p-version of the FCM, the bone is embedded in 678
finite cells, each covering 40×40×10 voxels (see Fig. 14b).
Cells that are completely outside the bone are neglected to
minimize the computational effort. An equivalent voxel reso-
lution per cell is chosen for the B-spline version of the FCM,
but due to the support of the B-spline functions in adjacent
cells, none of the cells of the fictitious domain Ωfict can be
removed, resulting in a full rectangular grid of 1,729 knot
span cells. The inhomogeneity of the material is captured by
20×20×10 sub-cells per knot span cell, applying 23 integra-
tion points per sub-cell. Thus the material properties of each
voxel within the bone contributes to the analysis model. Inte-
gration points outside the physical domain Ωphys are penal-
ized with α = 10−4 in the sense of Fig. 1. The proximal
femur bone is loaded with 1,000 N on top of the femur head
and Nitsche’s method according to Eqs. 17 and 18 is applied
to weakly satisfy the homogeneous Dirichlet boundary con-
ditions at the distal face (see Fig. 14b) in both FCM ver-
sions. Figure 14c illustrates the von Mises equivalent strains
obtained from the p-version FCM discretization, visualized
pointwise for each voxel.

For validation of the numerical results, the linear elas-
ticity response in terms of strains is compared with results
from a corresponding in-vitro experiment [33,71]. Figure 15
provides a comparison of the numerical predictions and the
experimental results for points located at the strain gauge
position of the experiment and averaged results over small
surface patches embedding the measuring points. A linear
regression analysis shows a good correlation (>0.96) between
numerical predictions and measurements for both the p- and
B-spline versions of the FCM. Sufficient convergence was
found for both FCM versions at p = 4. For this polynomial
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degree, the 678 finite cells of the p-version result in about
35,000 degrees of freedom, whereas the 1,729 knot span cells
of the B-spline version only require about 13,000 degrees
of freedom to yield equivalent results at the same accuracy
level. The simulation results demonstrate that from an over-
all point of view, the p- and B-spline version of the FCM
achieve comparable accuracy in the framework of a very
complex example. Readers interested in a detailed descrip-
tion of experiments and FCM analysis are referred to the
in-depth study by Ruess et al. [33].

4 A geometrically nonlinear FCM formulation
in principal directions

Turning to large deformation analysis, the linear elastic for-
mulation of Sect. 2 is extended in a straightforward manner
to a geometrically nonlinear FCM formulation based on log-
arithmic strains. The adaptation directly follows the standard
FE formulation, for which details can be found in [45,72–74].

4.1 Kinematics

In geometrically nonlinear statics, the deformation map ϕ

describes the motion of each material particle from its initial
reference configuration X to its spatial or deformed config-
uration x.

x = ϕ(X) (28)

The deformation map Eq. 28 is required to be one-to-one
[45,75]. The displacement field u and the deformation gra-
dient F follow as

u = x − X (29)

F = ∂x
∂ X

(30)

In view of its polar decomposition, F = V R can be repre-
sented by the rotation tensor R and the spatial stretch tensor
V . Therefore, V 2 can be obtained from the left Cauchy-Green
tensor

b = F FT = (V R)
(

RT V
)

= V 2 (31)

Evaluation of the principal directions of V 2 yields the orthog-
onal spatial Eigenvector triad {n1, n2, n3} and the associated
Eigenvalues {λ2

1, λ
2
2, λ

2
3}, which are identified as the squared

principal stretches. The spatial logarithmic strain tensor ε =
ln V in spectral form reads

ε =
3∑

a=1

ln λa na ⊗ na (32)

Logarithmic strains, also known as true or natural strains,
represent a suitable strain measure for the entire deformation
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Fig. 16 Engineering, logarithmic, Green-Lagrange and Almansi strain
measures εlin, εlog, εGL , εA, respectively, in one dimension

range [45,73], and are compared in 1D to other common
nonlinear strain measures in Fig. 16.

In the framework of the Finite Cell concept as described
in Sect. 2, the nonlinear kinematic relations Eqs. 28 to 32
can be applied throughout the complete embedding domain
Ω (see Fig. 1). This approach is referred to as the standard
geometrically nonlinear FCM formulation in the following.
Due to the discontinuous penalization parameter α of Eq. 3,
the analytical deformation map and corresponding displace-
ments Eqs. 28 and 29 exhibit a weak discontinuity (kink)
along the geometric boundaries of the physical domainΩphys.
Accordingly, the analytical deformation gradient and related
stretches and strains Eqs. 30 to 32 exhibit a strong disconti-
nuity (jump).

4.2 Constitutive equations in principal directions

The Hencky hyperelastic model is the finite logarithmic strain
based extension of the standard linear elastic material, whose
strain energy function Ψ reads [45,73]

Ψ = α ·
[

E

2(1 + ν)

(
(ln λ1)

2 + (ln λ2)
2 + (ln λ3)

2
)

+ νE

2(1 + ν)(1 − 2ν)
(ln J )2

]
(33)

with J = det F = λ1λ2λ3 and material parameters Young’s
modulus E and Poisson’s ratio ν. In the standard FCM
formulation, geometric nonlinearity is applied throughout
the complete domain Ω . Therefore, Eq. 33 is factorized
by parameter α of Eq. 3, which penalizes the strain energy
function Ψ within the fictitious domain Ωfict . The principal
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(a) (b) (c)

Fig. 17 Stresses of the geometrically nonlinear rod example, obtained with the standard FCM formulation and p = 15, are compared to the
analytical solution with a finite value α = 10−5. a Analytical, b p-version, c B-spline version

Cauchy stresses along principal axes a = {1, 2, 3} follow
with Eq. 33 as

σa = 1

J

∂Ψ

∂ ln λa

= α

J

[
E

(1 + ν)
ln λa + νE

(1 + ν)(1 − 2ν)
ln J

]
(34)

The fourth order spatial elasticity tensor in Cartesian coordi-
nates can then be computed as

ci jkl =
3∑

a,b=1

1

J

∂2Ψ

∂ ln λa∂ ln λb
ηaabb −

3∑
a=1

2σaηaaaa

+
3∑

α,β=1

σaλ2
b − σbλ

2
a

λ2
a − λ2

b

(
ηabab + ηabba

)
(35)

implying the fourth order dyadic product ηi jkl = ni ⊗ n j ⊗
nk ⊗nl . Due to the strong discontinuity in α, all derived ana-
lytical quantities exhibit a loss of regularity along geometric
boundaries.

4.3 Discretization, linearization and the Newton–Raphson
procedure

Taking into account Eqs. 28 to 35, the variational formula-
tion of standard FCM for large deformation elasticity can be
derived from the principle of virtual work

δW (ϕ, δu) =
∫

ϕ(Ω)

σ : ∇x δudv −
∫

ϕ(Ωphys)

b · δudv

−
∫

ϕ(ΓN )

t · δuda = 0 (36)

with body forces b, traction vector t and test function δu.
Integrals are evaluated in the deformed configuration, where
dv and da denote infinitesimal volume and area elements,
respectively, since a spatial formulation is computationally
more efficient in the case of p-version elements [76–78].

The basic kinematic quantities u, δu and F can be dis-
cretized in the sense of Eqs. 4, 5 and by

F = I +
n∑

a=1

∇X Na ua (37)

where Na denote shape functions of a suitable high-order
basis. In case of finite cells based on p-version basis func-
tions, insertion of the displacement approximation Eq. 4 and
the reference configuration, interpolated subparametrically
by Eq. 11, into Eq. 29 yields an interpolation of the deformed
configuration

x =
nvert∑
i=1

N nod
i X i +

n∑
a=1

Na ua (38)

For finite cells based on high-order B-splines, the corre-
sponding expression can be found with Eq. 16 as

x = X0 + h ξ +
n∑

a=1

Na ua (39)

where h is the uniform width of the knot span cells and X0

the physical origin in the parameter space ξ .
Using these expressions in Eq. 36, the discretized virtual

work per high-order mode shape a can be formulated as the
difference between the internal and external equivalent force
vectors f int and f ext , called residual r

δW (ϕ, Naδua) = δuT
a

(
f int

a − f ext
a

)
= δuT

a ra (40)

f int
a =

∫

ϕ(Ω)

BT
a σdv (41)

f ext
a =

∫

ϕ(Ωphys)

Na bdv +
∫

ϕ(ΓN )

Na tda (42)

with the strain–displacement matrix B [1,2,45]. The lineari-
zation of the discretized weak form Eq. 36 in the direction of
an incremental displacement Δu can be expressed in terms
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(a) (b) (c)

Fig. 18 Displacements of the geometrically nonlinear rod example, obtained with the modified FCM formulation and p = 15. The reference
solution was computed with three conforming standard linear elements. a Reference, b p-version, c B-spline version

(a) (b) (c)

Fig. 19 Stresses of the geometrically nonlinear rod example, obtained with the modified FCM formulation and p = 15. The reference solution
was computed with three conforming standard linear elements. a Reference, b p-version, c B-spline version

of material and geometric parts DδWc and DδWσ , respec-
tively, as

DδW (ϕ, Naδua) [NbΔub] = DδWc + DδWσ (43)

DδWc = δuT
a

⎛
⎜⎝

∫

ϕ(Ω)

BT
a c Bbdv

⎞
⎟⎠ Δub (44)

DδWσ = δuT
a

⎛
⎜⎝

∫

ϕ(Ω)

(∇X Na · σ ∇X Nb) Idv

⎞
⎟⎠ Δub (45)

with c being the matrix representation of the spatial elastic-
ity tensor Eq. 35 [45]. In Eqs. 44 and 45, the expressions in
brackets can be identified as the entries Kc,ab and Kσ,ab of
the material and geometric tangent stiffness matrices, respec-
tively. Combining Eqs. 36 and 40 yields

(K c + Kσ ) Δu = −r (46)

from which the classical Newton–Raphson procedure can be
derived. In each Newton step, the linearized system Eq. 46
is solved for Δu, which updates the total displacements u,

until the norm of the residual vector r has converged below
a tolerance close to zero. In the scope of the present article,
the stiffness contribution due to deformation dependent loads
[45,74] is not discussed. For a treatment within the frame-
work of the p-version and B-spline version of the FCM, see
[34] and [52], respectively.

5 Deformation resetting: a modified geometrically
nonlinear FCM formulation

The geometrically nonlinear formulation for the one-dimen-
sional rod of Fig. 7 simplifies to

Ψ = α
E

2
(ln λ)2 (47)

σ = α
E

J
ln λ (48)

c = α
E

J
− 2σ (49)
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with axial stretch λ and the determinant of the deformation
gradient J = λ1−2ν [45]. To illustrate the influence of large
deformations within the fictitious domain, the sine load fsin

of Fig. 7 is neglected for a moment and the prescribed dis-
placement is set to a large value of Δu = 1.0. Nonetheless,
the physical stresses should be zero, since a rigid body move-
ment of the right part of the rod is approximated. Thus, the
resulting non-zero stresses directly reflect the modeling error
due to the finite value of α and the numerical error. In all com-
putations of the present section, the total displacement load
is divided into 10 increments, each of which needs 2 to 4
Newton–Raphson iterations to converge to a L2-norm of the
residual below 10−12, and Dirichlet boundary conditions are
imposed strongly. The exact stress solution, which can be
derived analytically according to [51], is plotted in Fig. 17a
for 10 displacement load increments between 0 and Δu and
α = 10−5.

5.1 The standard FCM formulation with geometric
nonlinearity in Ωphys and Ωfict

First, the behavior of the 1D rod example is examined, if the
same geometrically nonlinear formulation is applied over
the complete embedding domain Ω as described in Sect. 4.
The only difference between Ωphys and Ωfict in this case
constitutes the penalization of the strain energy function Ψ

Eq. 33 and its derivatives with α of Eq. 3. However, numer-
ical experiments with the 1D example reveal that the small-
est penalty parameter, which could be used successfully for
each tested polynomial degree p, is α = 10−4 and α = 10−5

for the p- and B-spline version, respectively. Corresponding
solution fields obtained with 2 p-version finite cells and 16
knot span cells in the sense of Fig. 7 are plotted in Fig. 17b,
c. For α smaller than these bounds, the determinant of the
deformation gradient F falls below zero at some integration
point within Ωfict , which inevitably terminates the compu-
tation. From a mathematical point of view, this implies the
loss of uniqueness of the deformation map, which is not one-
to-one anymore. From a physical point of view, this can be
interpreted as a penetration of material, which constitutes
a severe violation of the principles of continuum mechan-
ics [45,74,75]. With α as large as 10−4, the penalization of
Eq. 3 is unable to sufficiently eliminate the influence of Ωfict ,
so that a considerable modeling error is introduced. In addi-
tion, the strain energy contribution of Ωfict is amplified by
the nonlinear strain measure. Whereas engineering strains of
linear elasticity are bound by definition to very small val-
ues |εlin| 	 1.0, logarithmic strains of nonlinear elasticity
are able to grow without bounds in order to yield physically
meaningful measures for very large deformation states. How-
ever, in case of large deformations in the fictitious domain,
nonlinear strains thus act as an additional counterbalance to
α and increasingly outweigh the penalization.

As a consequence, the contribution of Ωfict to the total
strain energy Eq. 19 grows, so that the nonlinear FCM scheme
tries to accurately fit the solution in both the fictitious and
physical domains due to the best approximation property
discussed in Sect. 3.1. Thus, solution fields do not extend
smoothly into the fictitious domain, but develop large oscil-
lations throughout the discontinuous cells (see Fig. 17). The
corresponding convergence deteriorates to a low algebraic
rate, which is a well-known issue for high-order elements
with inter-element discontinuities [30]. Numerical experi-
ments indicate that standard FCM formulations based on
other nonlinear strain measures (see [45,73] and Fig. 16)
in combination with corresponding constitutive equations
affect the stability of the deformation map in the same way.
The standard FCM formulation of Sect. 4 thus suffers from
a conflict of interest between stable analysis (increase of α)
on the one hand and a reduction of the contribution of Ωfict

(decrease of α) on the other.

5.2 A modified formulation based on repeated deformation
resetting in Ωfict

To avoid the stability problem of the deformation map in
the fictitious domain Ωfict , the physical consistency of the
geometrically nonlinear FCM formulation is restricted to
the physical domain Ωphys. Within Ωfict , the formulation is
manipulated in such a way that stable geometrically nonlin-
ear analysis with very small values α < 10−10 is possible.
Numerical experiments reveal that problems with the unique-
ness of the deformation map occur at the location of max-
imum deformation within the fictitious domain Ωfict . This
motivates the following simple manipulation after each New-
ton iteration i

ϕi (X) =

⎧⎪⎨
⎪⎩

xi deformed configuration ∀X ∈ Ωphys

X reset to reference
configuration ∀X ∈ Ωfict

(50)

where ϕi and xi denote the deformation map and the
deformed configuration after the i th Newton step. Accord-
ing to Eq. 50, the deformation is repeatedly reset to the initial
undeformed state to erase the complete deformation history
within Ωfict . Thus, at the beginning of the (i + 1)th Newton
iteration, the deformation gradient Eq. 30 inΩfict is defined as

F = I (51)

with I being the unit tensor. From Eq. 51, the correspond-
ing principal stretches Eq. 32 and stresses Eq. 34 directly
follow as

λa = 1.0, a = {1, 2, 3} (52)

σ = 0 (53)
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The resulting formulation is inconsistent, because it violates
the principles of continuum mechanics and its analytical solu-
tion in Ωfict turns unphysical. However, in the sense of the
fictitious domain approach (see Fig. 1), it does not affect the
physical consistency and accuracy of the solution in the phys-
ical domain Ωphys, provided that the influence of Ωfict and its
contribution to the total strain energy Eq. 19 are extenuated
by a sufficiently strong penalization.

The assumption of Eq. 51 supersedes the calculation of
the deformation gradient, so that any stability issues resulting
from the numerical computation of the deformation gradient
are automatically avoided and a very small penalty parameter
of α = 10−15 can be applied without any further problems.
The corresponding stress and displacement fields obtained
with the p- and B-spline versions are plotted in Figs. 18
and 19, respectively. The repeated resetting of the deforma-
tion allows for a smooth extension of FCM solution fields
into the fictitious domain despite the presence of discontinu-
ities in the corresponding analytical solutions (see Figs. 18,
19). The oscillatory behavior demonstrated in Fig. 17 for the
stress solutions obtained with the standard FCM formulation
is still present, but is considerably reduced by several orders
of magnitude.

For a computationally efficient implementation of the
deformation resetting, the coincidence of linear and geomet-
rically nonlinear elasticity at the deformation and stress free
reference configuration can be exploited [45,72–74]. Since
the deformation resetting switches Ωfict back to its reference
configuration after each Newton iteration, it is fully equiva-
lent to carrying out repeated linear elastic computations

δW=
{

δW (ϕ, δu) large deformation ∀X ∈ Ωphys

δW (u, δu) small displacements ∀X ∈ Ωfict
(54)

Numerical experiments show that provided a sufficiently
small penalty parameter, the quadratic rate of convergence
of the Newton algorithm can be fully maintained.

5.3 Convergence in strain energy

To test convergence in energy measure in terms of Eqs. 20
and 21 [79], the uni-axial rod of Fig. 7 is considered with
sine load fsin and Δu = 1.0. An overkill discretization
with 1,000 cubic finite elements taking into account the left
rod yields Uex = 1.17182588 × 10−5. The convergence for
p-refinement in the p- and B-spline versions with a standard
geometrically nonlinear formulation is plotted in Fig. 20.
It illustrates the convergence decay to a low algebraic rate
of around q = 1.0 on average, which can be attributed to
the modeling error introduced by insufficient penalization in
conjunction with oscillatory stresses (see Fig. 17). The mod-
ified geometrically nonlinear formulation allows for a con-
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Fig. 20 Convergence of the nonlinear 1D example

siderable decrease of the penalty parameter to α = 10−15,
which reduces the modeling error and the oscillatory behav-
ior in stresses considerably (see Fig. 19). Using the modified
formulation, both p- and B-spline versions of the FCM are
able to achieve exponential convergence with maximum rates
of q = 18.13 and q = 28.09, respectively (see Fig. 20). The
flattening of the convergence curves indicate a take-over of
the influence from Ωfict at a value of around 0.04%. Under
the assumption that the rate of the standard FCM formula-
tion could be continued, approximately 30,000 times as many
degrees of freedom (around 1 million) would be required to
achieve a comparable level of accuracy.

6 A geometrically nonlinear penalty method
for the weak imposition of Dirichlet constraints

In the 1D example shown so far, Dirichlet boundary condi-
tions could be imposed strongly by standard FE techniques.
More complex examples in two- and three dimensions
require their imposition along boundaries cutting through
cells, which can be achieved in a weak sense with the help
of Nitsche’s method as presented in Sects. 2 and 3 for linear
elastic problems.

6.1 Penalty versus Nitsche’s method

The penalty method [56–58] is a subset of Nitsche’s method
and can be obtained from Eqs. 17 and 18 by omitting the
so-called consistency terms that involve the computation of
the normal vector n [59,63]. It is based on the remaining
terms that involve the penalty parameter β and has simi-
lar advantages as Nitsche’s method, e.g. it creates no addi-
tional unknowns and preserves the banded structure, sym-
metry and positive definiteness of the stiffness matrix. How-
ever, in contrast to Nitsche’s method, it is not consistent in a
variational sense [59,63] and can lead to strongly ill-condi-
tioned system matrices. At least the latter does not affect the
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Fig. 21 Benchmark examples:
parameters are width/height a;
plate thickness t; radius r;
Young’s modulus E; domains
Ωphys and Ωfict ; Poisson’s ratio
ν; prescribed displacements Δu;
cut line AB. a 2D plate with
circular hole, parameters:
a = 2.0; b = 0.45; t = 0.1;
Δu = 0.3, rc = 0.75,
Ωphys : E = 1.0; Ωfict : αE ;
ν = 0.2. b 3D cube with
spherical hole, parameters:
a = 2.0; Δu = 0.3; rs = 0.6;
Ωphys : E = 1.0; Ωfict : αE ;
ν = 0.2

(a) (b)

FCM in the present form, since system matrices are already
ill-conditioned due to the penalization of the fictitious domain
with α of Eq. 3.

In the framework of geometrically nonlinear problems,
Nitsche’s method requires the consistent linearization of all
additional terms in Eqs. 17 and 18. Due to the missing consis-
tency terms, the linearization of the penalty method is consid-
erably simplified. Therefore, the penalty method is applied in
the following for the weak imposition of Dirichlet boundary
conditions.

6.2 Discretization and linearization

The penalty method in variational form [57,58] is based on
the addition of a penalty term δWp to the geometrically non-
linear variational equation of the principle of virtual work
Eq. 36 [1,2]. The penalty term, obtained by integration over
the Dirichlet boundary ΓD (see Fig. 1), can be formulated in
the reference configuration as

δWp (u, δu) = β

∫

ΓD

(
u − û

) · δud A (55)

where u, û and δu denote vectors of unknown displacements,
prescribed displacements on ΓD and test functions, and β is
a scalar penalty parameter. The consistent derivation of the
penalty method is based on a constrained minimization prob-
lem, formulated with the help of Lagrange multipliers, for
which Eq. 55 constitutes an approximation (see for exam-
ple [1,2] for an overview and [80] for details). Note that
inhomogeneous Dirichlet boundary conditions, which con-
strain displacements in one special direction, can be easily
implemented by applying the penalty parameter β only to
the vector components of the constrained direction.

Using Eqs. 4 and 5 in Eq. 55, the discretized virtual work
of the penalty term δWp at a known displacement state u
results in the internal and external equivalent force vectors
f int

p and f ext
p , respectively, which can be expressed per high-

order mode shape a as

f int
a,p = β

∫

ΓD

u Nad A (56)

f ext
a,p = β

∫

ΓD

û Nad A (57)

The linearization of the discretized virtual work of the
penalty term Eq. 55 in the direction of an incremental dis-
placement Δu can be found by taking the Gâteaux derivative
[45,75], which simply yields

DδWp = δuT
a

⎛
⎜⎝β

∫

ΓD

Na Nbd A

⎞
⎟⎠ Δub (58)

The expression in brackets can be identified as the entries
K p,ab of the penalty contribution to the tangent stiffness
matrix. Equation 58 is independent of the current state of
deformation u and remains therefore constant throughout all
iterations. Note that all quantities resulting from the penalty
term are evaluated in the reference configuration [45,75],
since a push-forward to the deformed configuration leads to
a more involved expression due to the vector format of the
area mapping (Nanson’s formula) [75].

Combining the penalty tangent stiffness K p with mate-
rial and geometric tangent stiffnesses K c and Kσ , respec-
tively, and adding the equivalent internal and external forces
Eqs. 56 and 57 to the right hand side results in the following
discrete system of equations

(
K c + Kσ + K p

)
Δu = −r (59)

r =
(

f int + f int
p

)
−

(
f ext + f ext

p

)
(60)

from which the classical Newton–Raphson procedure can be
derived in the sense of Eq. 46.
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(a) (b) (c)

Fig. 22 2D plate with circular hole, computed with the p-version of the FCM. a FCM mesh consisting of 4 × 4 p-version cells, b integration
sub-cells displayed up to level k = 4, c Von Mises stresses on the deformed configuration, obtained with p = 15

(a) (b) (c)

Fig. 23 2D plate with circular hole, computed with the B-spline version of the FCM. a FCM mesh consisting of 25 × 25 p-version cells,
b integration sub-cells displayed up to level k = 3, c Von Mises stresses on the deformed configuration, obtained with p = 15

7 Numerical examples at large strains (1): benchmarks
in 2D and 3D

Accuracy and computational efficiency of the modified geo-
metrically nonlinear FCM formulation are further examined
for three benchmark problems. Our implementation of both
FCM versions is based on Sandia’s library framework Trili-
nos [81] and uses the direct solver Pardiso [82]. Its results are
compared to overkill solutions derived with standard linear
quadrilateral and quadratic tetrahedral elements on conform-
ing meshes, provided by the open-source nonlinear finite ele-
ment code FlagShyp [83]. Conforming mesh generation is
accomplished by the meshers Visual Domesh [84] and Net-
gen [85], visualization is done with ParaView [86].

7.1 Plate with a circular hole

The first example problem consists of a 2D square plate in
plane stress, which is perforated by a circular hole. Material
and geometric parameters as well as boundary conditions are
given in Fig. 21a. For the FCM computations, the origin of

the coordinate system is placed in the center of the circu-
lar hole. Thus, its geometry can be implicitly represented
by the inequality X2 + Y 2 ≤ r2

c , which allows for an effi-
cient point location query at each Gauss point to determine
the corresponding penalty parameter α of Eq. 3. The com-
plete domain Ω is discretized by a structured FCM mesh
of 4 × 4p-version finite cells and 25 × 25 knot span cells
shown in Figs. 22a and 23a, respectively, and complemented
by integration sub-cells displayed in Figs. 22b and 23b. The
adaptive structure of the sub-cells, each of which is equipped
with (p + 1)× (p + 1) Gauss points, leads to an aggregation
of integration points around geometric boundaries, so that
the discontinuity in α can be accurately resolved. To min-
imize the integration error, a sub-cell quadtree with overly
large depths m = 8 and m = 4 is applied throughout all
computations with the p- and B-spline version, respectively.
Dirichlet constraints can be imposed strongly, since Dirich-
let boundaries conform to cell boundaries. The displacement
load is divided in three equally sized increments, each of
which requires not more than 3–4 Newton iterations in both
FCM versions to converge to a value of the L2-norm of the
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Fig. 24 Von Mises stresses along cut line A–B of the 2D plate with circular hole, obtained with the p-version and B-spline discretizations shown
in Figs. 22 and 23, respectively. p-version (a) and B-spline version (b) of the FCM

residual below 10−12. The modified FCM formulation allows
for a penalization of Ωfict with α = 10−15.

A first impression of the quality of the geometrically non-
linear FCM solutions can be obtained from the von Mises
stress plots shown in Figs. 22c and 23c obtained with poly-
nomial degree p = 15. Both FCM versions are able to accu-
rately localize the typical stress concentration at the vertical
edges of the circular hole and are free of stress oscillations
in the physical domain. For the computation of a reference
solution in terms of strain energy, the symmetry in geom-
etry and boundary conditions is made use of to reduce the
plate to 1/4 of the original system. The considered FlagShyp
discretization with a mesh conforming to the geometric
boundaries consists of 224,312 standard linear quadrilat-
eral elements and 449,723 degrees of freedom, taking into
account the physical domain Ωphys only. Figure 24a, b give
a more detailed view of the quality of the stress solution by
plotting von Mises stresses along cut line A–B (see Fig. 21a),
obtained from the p- and B-spline discretization, respec-
tively, and the FlagShyp reference solution. Both FCM ver-
sions converge to the reference, while stresses are accurate
and smooth up to the geometric boundary at point B. Com-
paring the p-version solution of p = 12 (2,270 dofs) and the
B-spline solution of p = 3 (1,299 dofs), one can observe that
the high-order continuity of B-splines achieves a more accu-
rate stress solution at a lower polynomial degree with less
degrees of freedom, while the reduced C0-continuity along
the p-version cell boundary leads to jumps.

Multiplying the strain energy, which has been obtained
by the FlagShyp discretization of the quarter system, by four
yields a reference Uex = 2.305691 × 10−3 for the complete
system. Convergence studies with different mesh sizes indi-
cate that the given Uex is correct up to the sixth decimal,

so that relative errors in terms of Eq. 20 being larger than
0.1% can be reliably determined. For the finite cell meshes
of the p- and B-spline versions given in Figs. 22a and 23a,
respectively, a p-refinement study is performed. Using the
overkill result from the Flagshyp discretization as a refer-
ence, Fig. 25a reveals that both FCM versions are able to
achieve exponential rates of convergence in strain energy. At
an error level of 0.1%, the convergence curves level off due
to the impact of the finite value of the penalty parameter α.
The jumps in the convergence curve of the B-spline version
can be attributed to the influence of the integration error.

The reason for the different mesh sizes in the p- and
B-spline versions lies in the different behaviour of the support
of the corresponding basis functions under p-refinement. To
illustrate that statement, let us consider the 4 × 4p-version
mesh of Fig. 22a. According to Sect. 2.3, the support of the
nodal, edge and internal modes under p-refinement is invari-
ant, being a maximum of 4 × 4, 2 × 2 and 1 × 1 finite cells,
respectively. However, for B-spline basis functions, the max-
imum support spans (p+1)×(p+1)finite cells (see Sect. 2.4)
and thus rapidly increases with the polynomial degree p con-
sidered. A corresponding 4 × 4 knot span mesh exhibits one
basis function with global support at p = 3, nine at p = 5,
and almost all of its basis functions are global at p = 15. On
the one hand, such a discretization will lead to an almost
fully populated stiffness matrix with full bandwidth. The
B-spline version in this form can thus be characterized a
spectral method rather than a finite element scheme. At the
same time, it is considerably less accurate than a p-version
mesh, since it contains much less degrees of freedom. At
p = 15 for example, 4 × 4 knot span cells exhibit approx.
750 dofs, while approx. 3,500 dofs are created in a 4 × 4
p-version mesh. Therefore, a comparison of p-version and
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Fig. 25 Convergence behavior of the 2D and 3D benchmark examples obtained with the modified FCM formulation. a 2D plate with circular hole,
b 3D cube with spherical hole

B-spline discretizations with the same number of cells seems
not appropriate to us and is not presented in the scope of this
study. Instead, the number of knot span cells is increased
in such a way that p-version and B-spline meshes exhibit
approximately the same amount of degrees of freedom and
the maximum support of a single B-spline basis function
is smaller than the complete domain Ω under consider-
ation.

7.2 Cube with a spherical hole

The 3D analogue of the perforated square plate is a cube with
a spherical hole, whose geometry, material and boundary
conditions are given in Fig. 21b. The geometry of the sphere
is again described implicitly by the inequality X2+Y 2+Z2 ≤
r2

s , which allows for efficient point location queries in 3D.
The complete domain Ω is discretized by a structured FCM
mesh of 2×2×2p-version cells and 7×7×7 knot span cells
as shown in Figs. 26a and 27a, respectively. The finite cell
meshes are complemented by adaptive sub-cells to take into
account the discontinuity in α during numerical integration.
In Figs. 26b and 27b, only one half of the symmetric sub-cell
structures are displayed to uncover their adaptive resolution
of the spherical boundary. Dirichlet constraints can again be
imposed strongly, since Dirichlet boundaries coincide with
cell faces. For the solution of the geometrically nonlinear sys-
tem, the displacement load is divided in three equally sized
increments, each of which requires in both FCM versions
only 3–4 Newton iterations to converge to a value of the
L2-norm of the residual below 10−10. The modified FCM
formulation allows for a penalization with α = 10−15.

A first impression of the quality of the geometrically
nonlinear FCM solutions can be obtained from the von
Mises stress plots given in Figs. 26c and 27c obtained with
polynomial degree p = 7. To allow an insight into the
3D stress state, only 1/8 of the symmetric system is dis-
played. Both FCM versions are able to accurately localize the
stress concentration around the spherical boundary. More-
over, the physical domain Ωphys does not exhibit stress oscil-
lations. For the computation of a strain energy reference, the
symmetry in geometry and boundary conditions is again
made use of to reduce the cube to 1/8 of the original system.
The considered FlagShyp discretization with a mesh con-
forming to the geometric boundaries consists of 15,300 stan-
dard 10-node quadratic tetrahedrals with 69,862 degrees of
freedom. Multiplying the resulting strain energy by 8 yields
Uex = 6.6008376 × 10−2. Convergence studies with differ-
ent mesh sizes indicate a accuracy up to the fourth decimal,
so that relative errors being larger than 1.0% can be reliably
determined. Performing a p-refinement study on the given
finite cell discretizations, one can determine the convergence
behavior in strain energy with respect to the given reference.
The results shown in Fig. 25b confirm also for the 3D case
that exponential rates of convergence can be achieved with
both the p-version and the B-spline version of the FCM.

7.3 Unfitted Dirichlet constraints via the penalty method:
ring example at large strains

The performance of the penalty method for the imposition
of unfitted Dirichlet boundary conditions in the framework
of the geometrically nonlinear FCM is examined by the ring

123



Comput Mech (2012) 50:445–478 465

(a) (b) (c)

Fig. 26 3D cube with spherical hole, computed with the p-version of
the FCM. Note that only one half of the symmetric sub-cell structure is
displayed to uncover their adaptive resolution of the spherical bound-

ary of the hole. a FCM mesh consisting of 2 × 2 × 2 p-version cells,
b adaptive integration sub-cells of level m = 5, c Von Mises stresses
on the deformed configuration (p = 7)

(a) (b) (c)

Fig. 27 3D cube with spherical hole, computed with the B-spline ver-
sion of the FCM. Note that only one half of the symmetric sub-cell
structure is displayed to uncover their adaptive resolution of the spher-

ical boundary of the hole. a FCM mesh consisting of 7 × 7 × 7 knot
span cells, b adaptive integration sub-cells of level m = 3, c Von Mises
stresses on the deformed configuration (p = 7)

example of Fig. 10. The problem set is maintained with the
only exceptions that geometrically nonlinear kinematics are
assumed, body forces are omitted and traction over the inner
boundary Γ2 is replaced by a non-zero displacement bound-
ary condition

ûr = 0.25; ûθ = 0.0 (61)

The ring is discretized with the p- and B-spline versions of the
FCM as shown in Fig. 11a, b, where the inner and outer cir-
cles are approximated in the sense of Eq. 22 by an overly large
number of 20,212 and 38,612 polygon segments in order to
minimize the corresponding error influence. For the solution
of the geometrically nonlinear system, the displacements on
Γ2 are divided into three equally sized increments, each of
which requires 4–5 Newton–Raphson iterations to converge
to a norm of the residual below 10−12. Figure 28a, b shows
the regular and symmetric mesh deformation in the physi-
cal domain for the p-version and B-spline discretizations,

respectively, which confirms that the physical domain is not
influenced by the presence or the modified FCM formula-
tion of the surrounding fictitious domain. Figure 29a, b plot
the corresponding total displacement solutions on the initial
configuration, which show the expected circular pattern. The
maximum values are located at the inner Dirichlet bound-
ary and are accurate with respect to Eq. 61 up to the fourth
decimal in both FCM versions.

For the computation of the corresponding relative errors
in strain energy Eq. 20, Uex is computed by an overkill dis-
cretization in FlagShyp, which applies 41,400 linear quadri-
laterals conforming to geometric boundaries for one quarter
of the symmetric ring. Multiplying the resulting total strain
energy by four yields a reference for the complete system
of Uex = 0.2855052. Figure 30 shows the convergence
in strain energy measure, obtained by p-refinement of the
p-version and B-spline discretizations. For each polynomial
degree p, parameter β is empirically chosen in both FCM
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(a) (b)

Fig. 28 Deformed finite cell meshes of Fig. 11, plotted over the physical domain, for the ring example at large strains. a 4 × 4 p-version cells,
b 16 × 16 knot span cells

(a) (b)

Fig. 29 Total displacements plotted on the initial configuration, obtained with the above meshes at p = 7. a p-version, b B-spline version

version within the interval
[
105, 107

]
, so that the correspond-

ing solution yields a minimum error in strain energy. It can
be observed that exponential rates of convergence can be
achieved for the p- and B-spline versions. However, the con-
vergence curve flattens at an error level of around 1%, due to
the influence of the finite penalization parameters α and β. A
detailed examination and discussion of possible effects of the
penalty parameter β on the condition number of the stiffness
matrix and the convergence of the p-version of the FCM are
provided in [38]. The present example confirms the poten-
tial of the penalty method for incorporating unfitted Dirichlet
boundary conditions, while maintaining the key advantages
of FCM in terms of simple mesh generation and exponential
rates of convergence.

8 Numerical examples at large strains (2): robustness
under severe mesh distortion

Previous studies on large deformation analysis with p-version
[77,87] and isogeometric finite elements [4,88,89] show that
higher-order and higher-continuity shape functions permit
increased levels of mesh distortion. In large deformation
FCM, severe distortion of the structured FCM mesh may
occur as a result of the mapping of cells from the reference
to the deformed configuration. In the scope of the present
paper, the ability of the p- and B-spline versions of the FCM
to use the robustness of their high-order bases for the repre-
sentation of very large deformation states is illustrated by the
geometrically nonlinear benchmark of a beam under torsion,
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Fig. 30 Convergence of the relative error in strain energy measure for
the ring example at large strains

Fig. 31 Beam under torsion

for which a system sketch and material properties are given in
Fig. 31. The dimensions of the beam are chosen according to
Lipton et al. [89], where the example is examined for incom-
pressible large deformation elasticity. Torsion is imposed by
a Dirichlet boundary constraint, rotating the cross-sectional
plane at one end of the beam by angle θ , while the cross-
section at the opposite end of the beam is completely fixed.

For testing the solution behavior of the FCM, the beam is
embedded in a fictitious domain Ωfict of dimensions 5×2×2,
which contains the physical domain Ωphys in its center as
illustrated in Fig. 31 and is penalized by parameter α =
10−15 in the sense of Fig. 1. The modified geometrically
nonlinear formulation introduced in Sect. 5 is applied. Cor-
responding discretizations with the p- and B-spline versions
of the FCM, consisting of 8×3×3 p-version cells of p = 3
with 2,508 degrees of freedom and 11 × 5 × 5 knot span
cells of p = 3 with 2,688 degrees of freedom, are displayed
in Fig. 32a, b, respectively, and are comparable in terms of

polynomial degree and number of degrees of freedom. Due to
the cuboidal geometry of the beam, integration of the FCM
stiffness matrix contributions can be accomplished exactly
with m = 2 levels of integration sub-cells, which conform to
the discontinuity in α. Unfitted Dirichlet boundary conditions
at both ends are imposed weakly via the penalty method with
β = 106, leaving all boundary parts of Ωfict unconstrained.

First, the behavior of the finite cell versions for moder-
ately large deformations is examined by imposing a rota-
tion angle of θ = 180◦ (half a rotation around the beam
axis). To obtain a qualitative reference, a regular finite
element analysis with the p-version of the FEM is per-
formed. The conforming FE mesh consists of 20 × 4 × 4
high-order elements of polynomial degree p = 6 with
43,110 degrees of freedom. In analogy to the FCM, Dirich-
let constraints are enforced via the geometrically nonlinear
penalty formulation presented in Sect. 6. The resulting von
Mises stress and the corresponding deformation pattern are
shown in Fig. 33. Corresponding solutions obtained with the
p- and B-spline version of the FCM are displayed in Figs. 34
and 35, respectively. The deformed FCM meshes illustrat-
ing the behavior of the parts of the finite cells in the physi-
cal domain show a regular deformation pattern, in particular
the cells cut by the geometric boundary. The corresponding
von Mises stresses match well with the reference of Fig. 33
despite the presence of the fictitious domain. One can iden-
tify a slight advantage of the B-spline version, which comes
closer in terms of the maximum and minimum stress val-
ues and provides a C2-continuous stress pattern, while
the p-version exhibits jumps across the C0-continuous cell
boundaries. The displacement and stress results show no
observable effect from the distortion of the FCM meshes
on the displacement and stress accuracy.

Second, the behavior of the finite cell versions under
extreme deformations is examined by imposing a rotation
angle of θ = 1,080◦ (three complete rotations around
the beam axis). Corresponding solutions obtained with the
p- and B-spline versions of the FCM are displayed in Figs. 36
and 37, respectively. Deformed FCM meshes in the physi-
cal domain, in particular the finite cells cut by the geometric
boundary, still show a regular deformation pattern with the
expected helix-like shape despite a considerable distortion
of the cells. The corresponding von Mises stresses show a
qualitative agreement at first sight, but a closer look reveals
that there are some differences in terms of maximum and
minimum values and the location of stress peaks. Due to
its higher-order continuity, the B-spline results lead again to
smoother deformation and stress patterns than the p-version
results. To find the limit deformation states for the present
example, representable with the p-version and B-spline dis-
cretizations of Fig. 32a, b, the rotation angle θ is continuously
increased in increments of Δθ = 9◦, until the nonlinear map-
ping in the physical domain fails due to numerical problems.
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(a) (b)

Fig. 32 Discretization of the complete domain with the p- and B-spline versions of the FCM. a 72 cubic p-version finite cells with 2,508 degrees
of freedom, b 265 cubic knot span finite cells with 2,688 degrees of freedom

The p-version of the FCM is able to represent a maximum
rotation of the beam of θ = 1,107◦, whereas the knot span
finite cell mesh of the B-spline version achieves a slightly
larger maximum of θ = 1,143◦.

Figures 38 and 39 illustrate the distortion of the fictitious
domain for moderately and extremely large deformations by
plotting the corresponding deformed meshes in Ωfict . From
the point of view of the typical FCM solution behavior dis-
cussed in Sect. 3.1, it is beneficial for the quality of the
FCM results, if the solution fields in the fictitious domain
can “move” as freely as possible to permit a smooth exten-
sion of the physical solution into the fictitious domain. For
the moderately large rotation of the beam, this freedom is
provided to a comparable extent by both FCM versions (see
Fig. 38). For the very large rotation of the beam, the deforma-
tion in the fictitious domain of the p-version discretization
is considerably larger than the corresponding deformation in
the B-spline discretization. Note that Fig. 39a, b exhibit dif-

Fig. 33 Qualitative reference for the beam rotated by θ = 180◦,
obtained with standard high-order FEM

ferent scales, and can be related to each other only by com-
parison with the deformed physical mesh. The difference
in deformation indicates that in the presence of extremely
large deformations, the C0-continuous p-version can bet-
ter accomplish a smooth extension of the solution fields
than the B-spline version, where the higher-order continu-
ity of the basis functions seems to constrain larger deforma-
tions in the fictitious domain. Due to the modified formu-
lation with deformation resetting in Ωfict , the extreme dis-
tortion of the mesh in the fictitious domain does not affect
the overall numerical stability of the FCM scheme, since
the corresponding geometrically linear computations always
assume the reference configuration and a nonlinear mapping
does not need to be computed. The resulting deformation
in the fictitious domain completely lacks physical mean-
ing and an arbitrary penetration of the deformed meshes
may occur.

The results of the beam under extremely large rotation
clearly indicate that the FCM fully inherits the robustness of
the high-order bases. Both FCM versions are able to represent
extremely large deformation states despite severe distortion
of the physical part of the corresponding mesh. However, the
influence of the fictitious domain on the solution fields of
the physical part might be increased, in particular in higher-
continuity B-spline discretizations.

9 Numerical examples at large strains (3): analysis
of complex voxel-based geometries

The fundamental advantage of the FCM is the very simple
and fast grid generation irrespective of the geometric com-
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(a) (b)

Fig. 34 The beam under a moderately large rotation of θ = 180◦ computed with the B-spline version of the FCM. a Deformed p-version cell
mesh in the physical domain. The fictitious domain part is cut away, b Von Mises stress plotted on the deformed configuration

(a) (b)

Fig. 35 The beam under a moderately large rotation of θ = 180◦, computed with the B-spline version of the FCM. a Deformed knot span cell
mesh in the physical domain. The fictitious domain part is cut away, b Von Mises stress plotted on the deformed configuration

plexity involved. It is based on the disconnection of the high-
order grid from the geometry, which is instead represented
by the change of parameter α at integration point level. In the
following, the straightforward integration of complex voxel-
based geometries in FCM analysis is demonstrated by the
geometrically nonlinear simulation of a metal foam.

9.1 Efficient generation of adaptive integration sub-cells
from voxel models

The standard way of representing very complex three-dimen-
sional geometries are volumetric models based on voxel
partitioning [68]. The example of a voxel-based geometri-
cal model of a bone structure, accommodating inhomoge-
neous material properties, has been presented in Sect. 3.3. If
the structure consists of a single material, the voxel infor-
mation required for FCM analysis consists solely of the
penalty parameter α. The information necessary at each voxel
location can then be reduced to a bit code bvox ∈ {0, 1},

which determines whether there is material (bvox = 1) or a
void (bvox = 0). Thus, geometric boundaries of the physi-
cal domain Ωfict are represented by the change of bvox from
one voxel to the next. The bit encoding significantly speeds
up input/output operations and minimizes memory require-
ments with respect to a direct storage of the floating point
number α. The bit code can be simply generated from a
CT scan by defining a radiodensity limit, below which bvox

is set to zero, while everything above is set to one. The
CT-based open cell aluminium foam sample2 shown in
Fig. 40 illustrates this concept. The voxel model has also been
transferred to a conventional triangulated surface parameter-
ization in STL format3 given in Fig. 41, which gives a clear
image of the geometry.

2 Courtesy of IZFP Fraunhofer Institute for Non-Destructive Testing,
Saarbrücken, Germany; http://www.izfp.fraunhofer.de.
3 Surface Tesselation Language, also Standard Triangulation Lan-
guage.
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(a) (b)

Fig. 36 The beam under an extreme rotation of θ = 1,080◦, computed with the p-version of the FCM. a Deformed p-version cell mesh in the
physical domain. The fictitious domain part is cut away, b Von Mises stress plotted on the deformed configuration

(a) (b)

Fig. 37 The beam under an extreme rotation of θ = 1,080◦, computed with the B-spline version of the FCM. a Deformed knot span cell mesh in
the physical domain. The fictitious domain part is cut away, b Von Mises stress plotted on the deformed configuration

With the help of the bit code, an adaptive integration struc-
ture that decomposes finite cells cut by geometric boundaries
into sub-cells to accurately take into account the discontinuity
in α (see Sect. 2.2), can then be established by the following
simple algorithm

1. Traverse all sub-cells of the currently finest level k (start
with the finite cells at k = 0) and query each Gauss point
if it is in Ωphys or Ωfict .

2. If Gauss points of the same sub-cell are located in dif-
ferent domains (hence, a geometric boundary must be
present), split the sub-cell into sub-cells of the next level
k = k + 1.

3. Provide all new sub-cells with (p + 1)n Gauss
points, where n denotes the number of Cartesian
directions.

4. Repeat this process, until a sufficient sub-cell depth k =
m is reached.

The voxel-based bit code provides an ideal geometrical
basis for the corresponding location query, which determines
for an arbitrary point in space, if it is located in the physical
or fictitious domain. Assuming a lexicographical ordering of
the voxel data, the integration point position {X, Y, Z}T in
the reference configuration can be related to the voxel index
kvox with corresponding bvox by

kvox =
⌊

(X − X0) nx

Lx

⌋
nynz +

⌊
(Y − Y0) ny

L y

⌋
nz

+
⌊

(Z − Z0) nz

Lz

⌋
+ 1 (62)

where {X0, Y0, Z0}, {Lx , L y, Lz} and {nx , ny, nz}denote the
origin, the length and the number of voxels in each Cartesian
direction, and 
 � is the floor function.

To illustrate the efficiency of the algorithm, the voxel-
based geometry of the metal foam shown in Fig. 40 is dis-
cretized with 5 × 5 × 5p-version finite cells of polynomial
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Fig. 38 Deformed finite cell
mesh including the fictitious
domain for a beam rotation of
θ = 180◦. a Deformed
p-version cells of Fig. 32a,
b deformed knot span cells of
Fig. 32b

(a) (b)

(a) (b)

Fig. 39 Deformed finite cell mesh including the fictitious domain for a
beam rotation of θ = 1,080◦, given by the contours of the cell faces cov-
ering the fictitious domain. The deformed physical part of the meshes

shown in Figs. 36a and 37a are also plotted to give an idea of the size of
the deformation of the fictitious domain. a Deformed p-version cells,
b deformed knot span cells

degree p = 7 and m = 3 levels of adaptive sub-cells. The
fully automated generation of the corresponding discreti-
zation shown in Fig. 42 can be accomplished in only 42
seconds.4 The main costs result from the loading of voxel
information encoded by approximately 109 (1 billion) bits,
the generation of 25,247 adaptive sub-cells and about
680,000 integration point queries according to Eq. 62. It can
be easily observed that the adaptive aggregation of sub-cells
around geometric boundaries increases quickly with k.

4 On a Intel(R) Core(TM)2 P8800 @ 2.66 GHz.

9.2 Large deformation analysis of an open-cell aluminium
foam

Metal foams provide high stiffness at reduced weights, and
are therefore frequently used for lightweight structures in
automotive and aerospace applications [90]. The p- and
B-spline versions of the FCM are applied to simulate a
compression test for an aluminium foam sample of size
20×20×20 mm. Its internal geometry is provided by voxels
with a resolution of 10243 in each Cartesian direction, each
of which encodes α. Figure 40b shows all voxels of material
index 1 associated with aluminium in a coarsened resolution
of 1283.
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(a) (b)

Fig. 40 CT-based voxel model of an aluminium foam sample. For better visibility, the original resolution of 10243 voxels is reduced to 1283.
a Voxelized sample cube, b voxels with bvox = 1

Fig. 41 STL surface parameterization

The foam sample is assumed as part of a larger specimen,
which is uniformly compressed along the vertical axis. A
corresponding RVE5 model [78,91] specifies boundary con-
ditions as follows: displacements normal to the top surface
are gradually increased to 1.6 mm (8% compressive deforma-
tion), modelling the influence of a testing machine, whereas
the displacements normal to all other surfaces are fixed due
to the bottom support and the influence of the surrounding
material of the specimen. Since Dirichlet boundaries coincide
with cell faces, Dirichlet constraints are imposed strongly.
The aluminium foam is characterized by Young’s modulus

5 Representative volume element.

E = 70.000 N/mm2, penalized by α = 10−12 at all inte-
gration points in Ωfict , and Poisson’s ratio ν = 0.35. For the
p-version of the FCM, the discretization shown in Fig. 42 is
used, while the B-spline version discretizes the sample with
12 × 12 × 12 knot span cells and m = 2 levels of adaptive
sub-cells. Thus, the smallest sub-cells of the p-version and
B-spline discretizations, respectively, contain approx. 25 and
21 voxels in each direction.

Our in-house FCM code implements both FCM versions
in the same framework based on Sandia’s library package
Trilinos [81], the direct solver Lapack [92] and paralleliza-
tion with OpenMP [93], where the same routines are applied
for linear algebra operations, adaptive integration, the lin-
ear elastic material, assembly of the stiffness matrix and the
Newton–Raphson iterative procedure, and the only differ-
ence consists of the numbering and evaluation of the shape
functions. For the p-version mesh (21,492 dofs; 24,947 sub-
cells; approx. 12.75 million Gauss points), analysis of the
foam could be accomplished by our in-house FCM code in
about 4 h,6 whereas the B-spline mesh (18,411 dofs; 37,414
sub-cells; approx. 19.16 million Gauss points) took about
9.5 h. Since the major cost of FCM results from integra-
tion of the large number of sub-cells with (p + 1) Gauss
points in each local direction, a major performance gain is
achieved by the shared memory parallelization of the loop
that computes local stiffness matrices for cells and sub-cells
with subsequent assembly into the global system matrix. A

6 Using 8 threads on 2 interconnected Intel(R) Xeon(R) W5590 @
3.33 GHz with 70 GB RAM.
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(a) (b)

(c) (d)

Fig. 42 Discretization of the metal foam sample with the p-version
of the FCM with m = 3 levels of sub-cells, each with (p + 1)3 Gauss
points, leading to an adaptive aggregation of integration points around
geometric boundaries. a Structured high-order mesh (k = 0), consist-
ing of 125 p-version finite cells, b first level k = 1 of the adaptive

integration structure, consisting of 306 sub-cells,c second level k = 2
of the adaptive integration structure, consisting of 2,197 sub-cells, d
third level k = 3 of the adaptive integration structure, consisting of
22,744 sub-cells

parallel for construct creates a team of n threads to execute
the main loop over sub-cells in parallel, where n is the num-
ber of threads available. With n = 8, we achieved a strong
speed up of the loop of around 5.

The resulting von Mises stresses computed with the
p- and B-spline versions at p = 7 are shown in Fig. 43a,
b, respectively. They exhibit accurate localization of stress
concentrations at the convex sides of the foam members,
which agrees well with engineering experience. Both plots
show good accordance in terms of stress patterns, absolute

values and locations of stress peaks. Both discretizations
converge in three load increments with 4–5 Newton itera-
tions to a L2-norm of the residual below 10−6. Figure 44a
plots the equivalent force obtained from integration of the
normal stress over the top surface versus the prescribed dis-
placement of the top surface for different polynomial degrees
p, computed with the p-version mesh of Fig. 42. It can be
observed that the increase of p improves the reproduction of
the geometrically nonlinear behavior of the foam. Figure 44b
illustrates the convergence of the equivalent top force under
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(a) (b)

Fig. 43 Von Mises stress of the metal foam sample plotted on the deformed configuration. The results are obtained from the FCM discretizations
of polynomial degree p = 7 as described above. a p-version and b B-spline version of the FCM

p-refinement, obtained with the p- and B-spline versions of
the FCM. Both schemes converge towards a final load of
around 54 kN, where the B-spline discretization achieves a
comparable accuracy with less degrees of freedom.

10 Comparison of the p- and B-spline versions
of the Finite Cell Method

The numerical examples presented in this article clearly dem-
onstrate that basis functions of the p-version of the FEM and
high-order B-splines are both well-suited for the applica-
tion in the framework of the generalized Finite Cell concept.
Apart from the general validity of both approaches, a more
detailed assessment of the benchmark tests of Sects. 7 and 8
as well as the application oriented examples of Sects. 3.3
and 9 reveals that each of the two methods has its specific
strengths, which are briefly highlighted in the following.

Comparing p- and B-spline discretizations of the same
polynomial degree p with a comparable amount of degrees of
freedom, the p-version of the FCM has advantages in terms
of computational efficiency. Hierarchic shape functions of
the p-version are defined over only a few adjacent cells as
opposed to B-splines, which are supported by a much larger
number of knot spans due to their piecewise definition. This
results in a smaller number of cells necessary to achieve the
same amount of degrees of freedom and a higher degree of
adaptivity of the integration sub-cells, which can be clearly

observed for example in the p-version and B-spline discreti-
zations shown in Fig. 11. A further consequence is a smaller
degree of population of the stiffness matrix in the p-version
of the FCM, in particular for high-order computations in 3D.
The combination of less sub-cells at a comparable resolution
of geometric boundaries and smaller degree of population at
the same polynomial degree makes the p-version of the FCM
computationally more efficient than the B-spline version, as
illustrated by the computational times given in Sect. 9 for the
foam example.

The B-spline version of the FCM has advantages in
terms of accuracy. Due to the smooth extension of solu-
tion fields into the fictitious domain, the FCM can make use
of the higher-order continuity of the B-spline basis. In con-
trast, the p-version basis is only C0-continuous along cell
boundaries, and therefore leads to discontinuities in stresses.
Consequently, the p-version basis can be considered richer
than actually required by the target solution, for which a
best approximation in terms of the strain energy is to be
found. Therefore, the smooth approximation space of the
B-spline version can achieve the same level of accuracy with
less degrees of freedom than the p-version of the FCM,
which “wastes” part of its approximation power to unnec-
essary solution components. This characteristic feature can
be observed in the strain energy results of the benchmark
examples presented in Sect. 7, in particular for the cube
with a spherical hole, as well as in the application related
examples of the proximal femur bone of Sect. 3.3 and the
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Fig. 44 Convergence behavior under p-refinement for the given p- and B-spline discretizations of the foam sample. a Force–displacement behavior
with increasing p, obtained from the discretization given in Fig. 42, b convergence of the equivalent vertical force for the p- and B-spline versions
of the FCM

metal foam of Sect. 9. It partly compensates the efficiency
drawback in comparison to the p-version described above.
The beam under very large torsion presented in Sect. 8
indicated that C0-continuous p-version cells show some
advantages over higher-order continuity B-spline cells in the
presence of extremely large deformations, since they per-
mit a greater freedom for solution fields in the fictitious
domain.

11 Summary and conclusions

The article at hand deals with two main new aspects: the
application of high-order and high-continuity B-spline bases
within the FCM and the extension of the FCM concept to
geometrically nonlinear problems. First, a review of the basic
ingredients of the generalized FCM concept was provided,
i.e. the fictitious domain idea, a structured grid of high-order
elements, adaptive integration of geometric boundaries,
weak imposition of unfitted Dirichlet boundary conditions.
The p-version and B-spline bases were introduced as exam-
ples of suitable high-order Ansatz spaces, which success-
fully instantiate the characteristic FCM properties, i.e. easy
mesh generation irrespective of the geometric complex-
ity involved and exponential rates of convergence under
p-refinement. The corresponding FCM schemes were coined
the p- and B-spline versions of the FCM. Considering several
linear elastic examples, it was shown that for small deforma-
tion analysis, both FCM versions provide a comparable over-
all solution behavior in conjunction with Nitsche’s method
and for a complex three-dimensional proximal femur bone
with inhomogeneous material parameters.

Both FCM versions were then combined with standard
finite element technology for large deformation analysis,
based on geometrically nonlinear elasticity in principal direc-
tions. It was shown that a standard geometrically nonlinear
FCM formulation, using the same kinematics over the com-
plete domain, leads to the loss of uniqueness of the defor-
mation map in the fictitious domain. A stabilization can be
achieved by increasing the penalty parameter, which in turn
provokes a larger modeling error and excessive stress oscil-
lations in cells cut by geometric boundaries. This motivated
a modified FCM formulation, based on repeated deforma-
tion resetting, which assumes for the fictitious domain the
deformation-free reference configuration after each Newton
iteration. Thus, the stability issue in the fictitious domain
can be completely circumvented, since the deformation map
and related quantities are inherently known and do not need
to be computed. In particular, the deformation resetting is
equivalent to performing repeated linear analyses in the fic-
titious domain, which considerably reduces the computa-
tional cost. In addition, the consistent linearization of the
penalty method was derived and integrated into the modi-
fied FCM formulation for the imposition of unfitted Dirich-
let boundary conditions in the geometrically nonlinear con-
text.

It was demonstrated by a range of numerical experiments
in one, two and three dimensions that the modified formu-
lation allows for stable FCM analysis with both the p- and
B-spline versions, while preserving the accuracy, physical
consistency and exponential rates of convergence of the geo-
metrically nonlinear solution within the physical domain.
It was furthermore demonstrated that both FCM versions
inherit the robustness of the corresponding high-order basis.
They proved to be able to accurately represent very large
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deformation states despite the presence of the fictitious
domain and severe distortion of the physical parts of the
FCM meshes. The capability of the FCM to directly operate
on voxel-based geometrical models without any pre-process-
ing, segmentation of the voxel data or time-consuming mesh
generation was illustrated by the large deformation analysis
of a CT-based metal foam sample. A p-refinement study, the
accurate localization of stress peaks and the good accordance
of p-version and B-spline results corroborated the high accu-
racy of the foam analysis. While the overall solution charac-
teristics were found to be equivalent, a detailed comparison
revealed specific strengths of each FCM version: for knot
span and p-version discretizations with a comparable num-
ber of degrees of freedom, the B-spline version tends to yield
more accurate results due to the higher-order continuity of
its basis. The p-version tends to be computationally more
efficient due to a lower degree of population and bandwidth
of the stiffness matrix.

Based on these results, we believe that both FCM versions
have great potential for the accurate analysis of very com-
plex geometries, and a plethora of very promising aspects
are still open, such as the analysis of topology changes and
moving boundaries, for which embedded domain methods
such as the FCM offer significant advantages over ALE-type
approaches, or the introduction of FCM suitable coupling
schemes for multiphysics problems, which stand at the fore-
front of today’s challenges in computational science.
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