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Abstract This paper presents a novel method for convert-
ing any unstructured quadrilateral or hexahedral mesh to a
generalized T-spline surface or solid T-spline, based on the
rational T-spline basis functions. Our conversion algorithm
consists of two stages: the topology stage and the geome-
try stage. In the topology stage, the input quadrilateral or
hexahedral mesh is taken as the initial T-mesh. To construct
a gap-free T-spline, templates are designed for each type of
node and applied to elements in the input mesh. In the geom-
etry stage, an efficient surface fitting technique is developed
to improve the surface accuracy with sharp feature preser-
vation. The constructed T-spline surface and solid T-spline
interpolate every boundary node in the input mesh, with
C2-continuity everywhere except the local region around
irregular nodes. Finally, a Bézier extraction technique is
developed and linear independence of the constructed
T-splines is studied to facilitate T-spline based isogeomet-
ric analysis.
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1 Introduction

For the sake of integration of engineering design and analy-
sis, isogeometric analysis was proposed [4,1] which utilizes
NURBS (Non-Uniform Rational B-Spline) or T-splines as a
basis. Over the 40 year history of commercial finite element
analysis, there are a large number of polygonal meshes accu-
mulated with the development of automatic mesh generation
techniques and finite element analysis technology based on
polygonal meshes. For example, Figure 1a shows an unstruc-
tured hexahedral mesh of a gear assembly. Hence, a solution
to converting these polygonal meshes to T-splines is needed,
which provides engineers with the opportunity to transition
legacy bilinear quadrilateral surface meshes or trilinear hexa-
hedral meshes to T-splines, analyze them using isogeometric
analysis and compare the results with traditional finite ele-
ment technology. In addition, the T-spline representation is
a more compact way to represent geometry compared with
polygonal meshes and has better continuity.

Previous approaches on converting meshes to spline rep-
resentations involved approximating the data by determining
the topology and choosing a parameterization. In [5,6], a con-
version method from a triangle mesh of arbitrary topology
into a T-spline surface was proposed based on periodic global
parameterization. A polycube map, which mimics the input
mesh in a topologically correct and geometrically meaning-
ful manner, was utilized as parametric domain to construct
T-splines [14].

In our earlier work, we developed an algorithm for con-
verting any unstructured quadrilateral mesh to a standard
T-spline, whose basis functions form a partition of unity [15].
In this method, many nodes need to be inserted in order to
make the T-spline standard. To reduce the number of inserted
nodes, as a follow-up we generalize the T-spline definition to
the rational T-spline in this paper. The new rational T-spline
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Fig. 1 The gear assembly. a The input unstructured hexahedral mesh; b the constructed solid T-spline and T-mesh; and c the extracted solid Bézier
elements with some elements removed to show the interior mesh. d–f show details

basis functions have the property of a partition of unity not
only for standard T-splines, but also for semi-standard and
non-standard T-splines. For semi-standard and non-standard
T-splines, basis functions do not satisfy a partition of unity
based on the traditional T-spline definition. Here, we focus
on converting an arbitrary unstructured quadrilateral or hexa-
hedral mesh to a rational bicubic T-spline surface or tricubic
solid T-spline. There are two main stages in the conversion
algorithm: the topology stage and the geometry stage. We
take the input mesh directly as the initial T-mesh, and the
topology stage aims to make the initial T-mesh gap-free by
designing templates for each type of node and applying them
to elements. In the geometry stage, an efficient surface fit-
ting technique is developed to improve surface accuracy. The
constructed T-splines interpolate every boundary node in the
input mesh, with C2-continuity everywhere except the local
region around irregular nodes. Finally, Bézier elements are
extracted and linear independence of the constructed T-spline
is studied to facilitate isogeometric analysis [2,10].

The remainder of this paper is organized as follows.
Section 2 reviews T-splines and defines rational T-splines.
Section 3 explains the converting algorithm in detail.
Section 4 discusses sharp feature preservation and surface
fitting. Section 5 describes a Bézier extraction technique to
facilitate isogeometric analysis and studies the linear inde-
pendence of T-splines. Section 6 presents results, and Sect. 7
draws conclusions.

2 Rational T-spline

T-splines [13] are generalized from NURBS [8], the
prevailing industrial standard for surface modeling in Com-
puter Aided Design (CAD) and Computer Aided Manufac-
turing (CAM). Given a set of (m + 1) × (n + 1) control
points Ci j (i = 0, 1, · · · , m; j = 0, 1, · · · , n), non-neg-
ative weights wi j associated with Ci j , degree d and two
global knot vectors, u = [u0, u1, · · · , um+d , um+d+1] and
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Fig. 2 One local region of a T-mesh. Node A is a T-junction and node
B is an L-junction

v = [v0, v1, · · · , vn+d , vn+d+1], the NURBS surface is
defined as

SN (u, v) =
∑m

i=0

∑n

j=0
Ci jwi j Ni,d(u)N j,d(v)

∑m

i=0

∑n

j=0
wi j Ni,d(u)N j,d(v)

, (1)

where Ni,d(u) and N j,d(v) are B-spline basis functions
defined by the two knot vectors. NURBS provides a uni-
fied geometry representation of standard analytical shapes
(e.g., conics) and free-form shapes. Additionally, NURBS
are invariant under affine as well as perspective transfor-
mations. However, NURBS have two drawbacks: they do
not allow local refinement and all the control points must
lie topologically in a rectangular grid. To overcome these
two drawbacks, Sederberg et al. developed T-splines [13],
which allow T-junctions and L-junctions in their control grid.
A T-junction terminates a row or column of control points
in the control grid, for example node A in Fig. 2. An L-junc-
tion terminates a row and a column of control points, like
node B in Fig. 2, which is not permitted in analysis-suitable
T-splines [7,2,11]. An analysis-suitable T-spline was defined
as a T-spline for which no horizontal T-junction extension
intersects a vertical T-junction extension [7]. A T-spline sur-
face is defined by

S(ξ, η) =
∑n

i=0
wi Ci Bi (ξ, η)

∑n

i=0
wi Bi (ξ, η)

, (ξ, η) ∈ �, (2)

where wi is the weight for the control point Ci , Bi (ξ, η) =
N ξ

i (ξ)Nη
i (η), N ξ

i and Nη
i are B-spline basis functions

defined by two local knot vectors, ξ i = [ξi0, ξi1, ξi2, ξi3, ξi4]
and ηi = [ηi0, ηi1, ηi2, ηi3, ηi4] when degree d = 3, and �

is the local domain1 of the T-spline in parameter space.
A T-mesh provides the connectivity of the control points

and a knot interval is assigned to each edge in the T-mesh
to indicate the parametric length of that edge. The local knot

1 In this paper, “domain” refers to one parametric area in 2D or one
parametric volume in 3D and “patch” refers to the T-spline surface or
solid T-spline defined on one domain.

vectors for each node are inferred from the T-mesh. In [12],
Sederberg et al. introduced three types of T-spline spaces:
standard, semi-standard and non-standard, based on whether
the basis functions or the weighted basis functions can pro-
vide a partition of unity. T-splines provide more flexibili-
ties for modeling. However, there are several open problems
which limit their application, such as how to characterize
T-mesh configurations for a standard, semi-standard, or non-
standard T-spline, and how to calculate the weights for a
semi-standard T-spline.

In order to obtain basis functions satisfying a partition
of unity, we choose the rational basis functions to construct
T-splines. The rational T-spline surface is defined as

S(ξ, η) =
∑n

i=0
wi Ci Ri (ξ, η)

∑n

i=0
wi Ri (ξ, η)

, (ξ, η) ∈ �, (3)

where

Ri (ξ, η) = N ξ
i (ξ)Nη

i (η)
∑n

j=0 N ξ
j (ξ)Nη

j (η)
(4)

is the newly defined rational B-spline basis function, N ξ
i

and Nη
i are B-spline basis functions defined by the local

knot vectors at node Ci , ξ i = [ξi0, ξi1, ξi2, ξi3, ξi4] and
ηi = [ηi0, ηi1, ηi2, ηi3, ηi4] when degree d = 3. Similarly,
the formula for a rational solid T-spline is

S(ξ, η, ζ ) =
∑n

i=0
wi Ci Ri (ξ, η, ζ )

∑n

i=0
wi Ri (ξ, η, ζ )

, (ξ, η, ζ ) ∈ �, (5)

where

Ri (ξ, η, ζ ) = N ξ
i (ξ)Nη

i (η)N ζ
i (ζ )

∑n
j=0 N ξ

j (ξ)Nη
j (η)N ζ

j (ζ )
(6)

is the newly defined rational B-spline basis function, N ξ
i , Nη

i

and N ζ
i are B-spline basis functions defined by the local

knot vectors at node Ci , ξ i = [ξi0, ξi1, ξi2, ξi3, ξi4], ηi =
[ηi0, ηi1, ηi2, ηi3, ηi4] and ζ i = [ζi0, ζi1, ζi2, ζi3, ζi4] when
degree d = 3. It is obvious that the rational B-spline basis
functions automatically satisfy

∑n
i=0 Ri = 1, for any (ξ, η)

in 2D and (ξ, η, ζ ) in 3D. In this way, we obtain one set of
basis functions satisfying a partition of unity even for non-
standard T-splines, and successfully avoid the difficulty of
checking the type of T-splines from the T-mesh configura-
tion and calculating the weights for semi-standard cases.

3 Converting algorithm

As shown in Fig. 3, there are two main stages in converting an
unstructured quadrilateral or hexahedral mesh to a T-spline
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Fig. 3 An overview of the algorithm to convert an unstructured quad-
rilateral or hexahedral mesh to a T-spline surface or solid T-spline

surface or solid T-spline: the topology stage and the geom-
etry stage. We take the input mesh as the initial T-mesh and
the topology stage aims to make the initial T-mesh gap-free
by designing templates for each type of node and applying
them to elements. Additional nodes and edges are inserted
to preserve sharp features in the input mesh. We assign a
unit knot interval to each edge in the input quadrilateral or
hexahedral mesh. All the new edges inserted in the topol-
ogy stage have either zero or unit parametric edge length.
As a result, a quasi-uniform T-mesh is constructed, which
contains edges with only zero or unit knot interval. Edges
with zero knot interval are called zero-length edges. In the
geometry stage, the goal is to minimize the error between
the input mesh and the output T-spline. Then a T-spline sur-
face or solid T-spline is constructed based on the obtained
T-mesh. In addition, Bézier elements are extracted and linear
independence is studied in order to facilitate isogeometric
analysis. Here are some definitions which will be needed in
the following algorithm description.

Definition 3.1 A pair of reflection edges are two adjacent
edges with one common node and all the elements sharing
one edge are topologically symmetric with all the elements
sharing the other one, with respect to a line of symmetry in
2D or a plane of symmetry in 3D. The line of symmetry in
2D is formed by all the adjacent edges of the shared node
except for these two edges. The plane of symmetry in 3D
is formed by the adjacent quadrilaterals of the shared node
which do not contain any of these two edges. In a pair of
reflection edges, one edge is also called the reflection edge
of the other one about the shared node and vice versa.

Let us take node A and its adjacent edges AB and AC in
Fig. 4a as an example. The blue line DE is the symmetry
line, formed by the adjacent edges of A except for AB and
AC . The two quadrilaterals adjacent to AB and the two adja-
cent to AC are topologically symmetric with respect to the
symmetry line DE , hence AC is the reflection edge of AB
about node A and vice versa. For node A and its two adjacent
edges AB and AC in Fig. 4d–e, the blue face is the symmetry
plane, formed by the quadrilateral elements adjacent to node
A but not containing AB or AC . The hexahedral elements
adjacent to AB and all the elements adjacent to AC are topo-

logically symmetric with respect to the blue symmetry plane,
hence AB and AC are a pair of reflection edges.

Definition 3.2 A regular node is a node about which each
adjacent edge has a reflection edge.

In Fig. 4a, each edge adjacent to A has a reflection edge.
By definition, node A is a regular node in 2D. Node A in
Fig. 4d is a regular node as well, because each edge adjacent
to A has a reflection edge about A in 3D. A regular node
always has a valence of four in 2D (for a regular node on
the boundary in 3D, its valence is also always four), and a
valence of eight in 3D. However in 3D, a node with a valence
of four (on the boundary) or eight may not be a regular node
in general.

Definition 3.3 A partial extraordinary node is an irregular
node about which some but not all of its adjacent edges have
reflection edges.

Let us take node A in Fig. 4e as an example, its two adja-
cent edges, AB and AC , are a pair of reflection edges. How-
ever, the other adjacent edges do not have reflection edges.
Therefore, by definition node A is a partial extraordinary
node. Partial extraordinary nodes can only be found in 3D.

Definition 3.4 An extraordinary node is an irregular node
about which none of its adjacent edges has a reflection edge.

For example, node A in Fig. 4b, c is an extraordinary node.
In 2D, an extraordinary node has a valence other than four.
Figures 4f, g show two extraordinary nodes in 3D, and for
the two local regions, none of the edges adjacent to A has
a reflection edge. In 2D, we can use the valence number to
identity whether a node is regular or extraordinary. How-
ever in 3D, situations are more complicated and there is no
such direct relationship. In 3D, a regular node has a valence
of eight, but a valence-eight node may not be regular. For
example, node A in Fig. 4g has a valence of eight but it is an
extraordinary one.

We classify all the nodes in the input mesh into three
categories: regular, partial extraordinary and extraordinary
nodes, and treat them differently during template design.
Regular nodes do not introduce gaps in the T-spline or
decrease the surface continuity. If all the nodes in the input
mesh are regular, for example a structured mesh, the ini-
tial T-mesh is topologically correct and gap-free. Unlike
regular nodes, partial extraordinary nodes and extraordinary
nodes need to be handled properly, otherwise they may intro-
duce gaps in the T-spline model. Hence, a rule is defined
for the template design: for each partial extraordinary node
or extraordinary node, the template should ensure the con-
structed T-mesh is gap-free.

123



Comput Mech (2012) 50:65–84 69

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4 Regular node, partial extraordinary node and extraordinary node in 2D and 3D. Node A rendered in white is a regular node (a, b), the
magenta node is a partial extraordinary node (e), and red nodes are extraordinary nodes (b, c, f, g)

3.1 Converting a quadrilateral mesh to a T-spline surface

Figure 5 shows three general templates for an extraordinary
node in 2D. (a) was derived using T-NURCCs (Non-Uniform
Rational Catmull-Clark Surfaces with T-junctions) [13], (b)
and (c) are two simplified templates based on (a) with fewer
newly inserted nodes and edges. Based on these templates,
we design four sets of templates for each quadrilateral ele-
ment type, see Table 1. There are six types of elements in
the initial T-mesh classified by the number of extraordinary
nodes: elements with none, one, two (neighboring or diago-
nal), three and four extraordinary nodes. In the following, we
will discuss how to derive these four sets of templates and
which set is optimal (with the fewest inserted nodes).

First, let us take set 1 as an example to see how to derive
these templates in Table 1 from the template in Fig. 5a. Fig-
ure 6 demonstrates the derivation process for element type
2. We first apply the template to the extraordinary node A

(a) (b) (c)

Fig. 5 The general templates for an extraordinary node in 2D, which
are used to design templates for each type of element for set 1 (a), sets
2 and 3 (b), and set 4 (c) in Table 1

to obtain the result in Fig. 6b, and then apply the template
to the other ordinary node B to get the final result. The
other templates for set 1 can be derived in the same man-
ner. For sets 2, 3 and 4, we can proceed similarly to derive
templates for each type of element using the general tem-
plates in Fig. 5b–c. Note that the template in Fig. 5b has two
possible orientations. We always choose the one which intro-
duces a minimum number of newly inserted nodes and edges.
Figure 7 shows three possible results for element type 2 (sets
2 and 3) after applying the template in Fig. 5b by choosing
different orientations. Obviously, (a) is the best result because
it introduces the minimum number of new nodes. Figure 8
shows the template derivation process for element type 2
(set 4) from the template in Fig. 5c. Figure 8a is obtained
by applying the template to the extraordinary nodes A and
B. The blue edge in Fig. 8b is added according to a T-spline
rule [13]: if a T-junction or L-junction on one edge of a face
can “legally” be connected to a T-junction or L-junction on
an opposing edge of this face, the two T-junctions or L-junc-
tions must be connected in the T-mesh. “Legal” here means
that the sum of knot intervals on opposing edges of any face
must always be equal.

Sets 1 and 2 were given in [15], and set 2 was simplified
from set 1 in order to insert fewer nodes and get better conti-
nuity. In [15], the designed templates, together with a T-mesh
standardization algorithm, were used to convert an unstruc-
tured quadrilateral mesh to a standard T-spline surface. In
this paper, we choose the rational basis functions and do not
need to get a standard T-spline. We also simplify the template
of type 4 elements in set 2 to obtain set 3. Sets 1, 2 and 3
guarantee a gap-free T-spline surface as proved in [15]: for a
T-mesh without L-junctions, if the region formed by all the

123



70 Comput Mech (2012) 50:65–84

Table 1 Templates for six quadrilateral element types

Type 0 Type 1 Type 2 Type 3 Type 4 Type 5

Set 1

Set 2

Set 3

Set 4

(a) (b) (c)

Fig. 6 The template derivation process for element type 2 (set 1) from
the template in Fig. 5a. a The quadrilateral element with two extraordi-
nary nodes; b the result after applying the template to the extraordinary
node A; and c the final result after applying the template to the other
extraordinary node B

(a) (b) (c)

Fig. 7 Three possible results for element type 2 (sets 2 and 3) after
applying the template in Fig. 5b by choosing different orientations

adjacent elements of one extraordinary node does not con-
tain any T-junctions and all the edges in it have zero knot
intervals, the local region around this extraordinary node is
gap-free. These three sets work for any T-mesh. Since we
focus on quasi-uniform T-meshes in this paper, we simplify
set 3 further and obtain set 4, which is specially designed
for quasi-uniform T-meshes and with L-junctions involved.

(a) (b)

Fig. 8 The template derivation process for element type 2 (set 4) from
the template in Fig. 5c. a The result after applying the template to the
extraordinary nodes A and B; and b the final result after adding the blue
edge according to a T-spline rule

Set 4 can also generate gap-free T-splines as stated in the
following lemma.

Lemma 1 For any input unstructured quadrilateral mesh,
the quasi-uniform T-mesh obtained by applying template set
4 is gap-free.

Proof We first prove this lemma for a valence-3 node and
then extend it to other extraordinary nodes. As shown in
Table 2, there are three non-zero domains around a valence-3
extraordinary node O and we first prove the patch defined by
�0 is continuous or gap-free with the patch defined by �1.
In other words, we need to prove that all the nodes share the
same basis function value at the boundary of the two neigh-
boring domains �0 and �1. In Table 2, the top row pictures
show the local region of the T-mesh around the extraordinary
node O . The second and third rows show the nodes around
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Table 2 Local region around one valence-3 extraordinary node

Case 1 Case 2 Case 3 Case 4

the extraordinary node with non-zero basis function values
and their parametric position for �0 and �1, respectively.
Node O is the parametric origin. There are four cases for
domains �0 and �1: Nodes L and J are both extraordinary
nodes (case 1); either L or J is an extraordinary node (case
2); nodes L , J and K are all regular (case 3); and nodes L
and J are regular while node K is extraordinary (case 4). The
type of nodes G, H, I will not influence the continuity of the
two patches defined by �0 and �1.

In case 1, we can observe that except for node O , all the
other nodes with non-zero basis function values in �0 and
�1 share the same knot vectors. In other words, they share
the same basis function in these two domains. In addition,
although node O has different basis functions for these two
domains, it shares the same basis function value at the shared
boundary of the two domains (ξ = 0, η ∈ [−1, 0]), because
N ξ

O,�0(0) = N ξ

O,�1(0) = 1 and Nη

O,�0 = Nη

O,�1 when
η ∈ [−1, 0]. Therefore, we can conclude that for case 1, the
two patches defined by �0 and �1 are gap-free.

In case 2, except for nodes O and K , all the other nodes
with non-zero basis function values in �0 and �1 share the
same knot vectors. Similar to case 1, node O shares the same
basis function value at the shared boundary. Node K has zero
basis function value in �0, and although it has non-zero basis
function value in �1, the function value is zero at the shared
boundary. Hence again, we can conclude that for case 2, the
two patches are gap-free.

In case 3, nodes O and K do not share the same knot vec-
tors in �0 and �1 and the other nodes share the same knot
vectors. Again, node O shares the same basis function value
at the shared boundary. Then we only need to prove node K
has the same basis function or the same basis function value
at the shared boundary. Suppose nodes M and N are the other
two adjacent nodes of node K , besides L and J . There are
three possibilities for this case classified by the node types
of M and N : both of them are regular; both of them are
extraordinary; one is regular and the other is extraordinary.

– When M and N are both regular, the two knot vec-
tors of node K for �0 are ξ K ,�0 = [−3,−2,−1, 0, 1],
ηK ,�0 = [−1, 0, 1, 2, 3] and the two knot vectors for �1

are ξ K ,�1 = [−1, 0, 1, 2, 3], ηK ,�1 = [−1, 0, 1, 2, 3].
Since N ξ

K ,�0
(0) = N ξ

K ,�1
(0) = 1

6 , we have N ξ
K ,�0

(0)Nη
K ,�0

(η) = N ξ
K ,�1

(0)Nη
K ,�1

(η) when η ∈ [−1, 0].
– When M and N are both extraordinary, the two knot vec-

tors of node K for �0 are ξ K ,�0 = [−2,−2,−1, 0, 1],
ηK ,�0 = [−1, 0, 1, 2, 2] and the two knot vectors for �1

are ξ K ,�1 = [−1, 0, 1, 2, 2], ηK ,�1 = [−1, 0, 1, 2, 2].
Since N ξ

K ,�0
(0) = N ξ

K ,�1
(0) = 1

6 , we have N ξ
K ,�0

(0)

Nη
K ,�0

(η) = N ξ
K ,�1

(0)Nη
K ,�1

(η) when η ∈ [−1, 0].
– Suppose M is extraordinary and N is regular. The

two knot vectors of node K for �0 are ξ K ,�0 =
[−2,−2,−1, 0, 1], ηK ,�0 = [−1, 0, 1, 2, 3] and the
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two knot vectors for �1 are ξ K ,�1 = [−1, 0, 1, 2, 3],
ηK ,�1 = [−1, 0, 1, 2, 2]. Since N ξ

K ,�0
(0) = N ξ

K ,�1

(0) = 1
6 , and using the Oslo knot insertion algorithm [3],

we have Nη
K ,�0

(η) = Nη
K ,�1

(η), η ∈ [−1, 0]. Hence we

can obtain N ξ
K ,�0

(0)Nη
K ,�0

(η) = N ξ
K ,�1

(0)Nη
K ,�1

(η)

when η ∈ [−1, 0].

In conclusion, for all the three possibilities, node K always
has the same basis function values at the shared boundary of
the two adjacent domains. Therefore, the two patches defined
by �0 and �1 are gap-free.

In case 4, except for nodes O, P, Q and R, all the
other nodes with non-zero basis function values in �0

and �1 share the same knot vectors. In addition, node O
has the same basis function value at the shared bound-
ary of the two domains (ξ = 0, η ∈ [−1, 0]). Node
P has non-zero basis function value in �0, but the func-
tion value is zero at the shared boundary and also it has
zero basis function value in �1. Node R has the same
situation with node P . The knot vectors of node Q are
ξ Q,�0 = [−1,−1,−1, 0, 1], ηQ,�0 = [−1, 0, 1, 1, 1] for
�0, and ξ Q,�1 = [−1, 0, 1, 1, 1], ηQ,�1 = [−1, 0, 1, 1, 1]
for �1. Since N ξ

Q,�0
(0) = N ξ

Q,�1
(0) = 1

4 , we have

N ξ
Q,�0

(0)Nη
Q,�0

(η) = N ξ
Q,�1

(0)Nη
Q,�1

(η), η ∈ [−1, 0].
Therefore, we can conclude that for case 4, the two patches
defined by �0 and �1 are gap-free.

In summary, for all these four cases, the two patches
defined by �0 and �1 share the same curve when ξ = 0
and η ∈ [−1, 0]. In other words, the two patches are con-
tinuous or gap-free across the shared boundary. Due to sym-
metry, the surface is gap-free across the boundary shared by
the two patches defined by �1 and �2 and likewise for �2

and �0. Hence the surface is gap-free for the local region of
the quasi-uniform T-mesh around a valence-3 extraordinary
node obtained by applying template set 4. Here, we utilize a
valence-3 node in the proof, but the proof can be generalized
to other valence numbers. Let us take one valence-5 node O
in Fig. 9a as an example, if we treat nodes K , L and J in the
same way as the nodes K , L and J in the valence-3 proof,
the proof proceeds in the same way. ��

Discussion In summary, sets 1 and 2 were designed in
[15] to obtain a standard T-mesh, sets 3 and 4 are based
on the rational T-spline basis functions. Sets 1, 2 and 3
work for arbitrary T-meshes and set 4 can only be used for
quasi-uniform T-mesh. Template set 4 inserts many fewer
nodes and zero-length edges, leading to a better surface
continuity. For the rational T-spline, we can use all four
sets of templates, and we do not need the standardiza-
tion step. Thus we successfully avoid the propagation in
[15], and the results have fewer nodes and better surface
continuity.

Let us check the surface continuity around an extraordi-
nary node after applying the four sets of templates. We define
the p-ring neighborhood around an extraordinary node
as follows: The one-ring neighborhood consists of all the
T-mesh faces adjacent to the extraordinary node. The two-
ring neighborhood consists of the one-ring neighborhood
plus all the T-mesh faces adjacent to faces on the one-ring
neighborhood. This process is repeated as many times as
necessary to construct the p-ring neighborhood [15]. Fig-
ure 10 shows 1-ring and 2-ring neighborhoods after apply-
ing the four template sets. Using set 1, the surface con-
tinuity is C0 at the knot coordinate corresponding to the
extraordinary point O , and C0 across the shared curve of the
nonzero area parametric domain for each ring until the 4-ring
neighborhood. Using set 2 or 3, the surface continuity is again
C0 at the knot coordinate corresponding to O, C0 across the
shared curve of the nonzero area parametric domain for each
ring until the 3-ring neighborhood, and C1 outside the 3-
ring neighborhood until the 4-ring neighborhood. Using set
4, the surface continuity is C0 at the knot coordinate corre-
sponding to O , and C0 across the shared curve of the non-
zero area parametric domain for each ring until the 3-ring
neighborhood. Beyond the 3-ring neighborhood, the surface
is C2-continuous. Therefore, set 4 is the best choice for us
due to its better surface continuity and fewer nodes intro-
duced.

Figure 11 shows a comparison of using template sets 1–4.
(a) shows the rational T-mesh after applying set 1. The blue
edges are added according to a T-spline rule as discussed
earlier. After applying set 2 or 3, it is also possible that some

Fig. 9 A local region around
one valence-5 extraordinary
node O. b, c show the nodes
around the extraordinary node
with non-zero basis function
values and their parametric
position for domains �0 and �1

(a) (b) (c)
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(a) (b) (c)

Fig. 10 1-ring and 2-ring neighborhoods around an extraordinary node
O in the T-mesh after applying the four template sets in Table 1. a Set
1; b sets 2 and 3; and c set 4

additional edges must be inserted according to this rule. (b)
shows a standard T-mesh using set 2, and the green edges
are inserted during the standardization step. If we remove all
the green edges, (b) becomes the result of a rational T-mesh
after applying set 2. (c) and (d) show the results after apply-
ing sets 3 and 4, respectively. It is obvious that (d) contains
many fewer nodes and zero-length edges, resulting in better
surface continuity.

3.2 Converting a hexahedral mesh to a solid T-spline

Hexahedral meshes contain three different types of nodes:
regular, partial extraordinary and extraordinary nodes. Here,
we first design general templates for partial extraordinary
and extraordinary nodes, and then apply them to each type of
element. In 3D, one hexahedral element has eight nodes and
each node has three possible types. In addition, one partial
extraordinary node has three possible orientations. Hence,
each node has a total of five possibilities and if we classify
the elements as we did for quadrilateral meshes, there will be
58 = 390,625 types of elements without considering symme-
try and complementary. Therefore, instead of listing all the
templates for each type of element as in Sect. 3.1 (Table 1),
here we use several examples to explain how to apply the
general templates to a certain element type.

Figure 12a–c show the general templates for a partial
extraordinary node in hexahedral meshes. The magenta edge
adjacent to the partial extraordinary node has a reflection
edge about this node. Figure 12a–c are generalized from
Fig. 5a–c, respectively. Similar to Fig. 5b, the template in

(a) (b) (c) (d)

Fig. 11 A comparison of using template sets 1–4. a The rational T-mesh after applying set 1; b the standard T-mesh after applying set 2 and
standardization; c the rational T-mesh after applying set 3; and d the rational T-mesh after applying set 4

(a) (b) (c) (d) (e)

Fig. 12 The general templates for partial extraordinary nodes (a–c) and extraordinary nodes (d–e) of hexahedral meshes. a–c are generalized from
templates in Fig. 5a–c, respectively; d is extended from the template in Fig. 5a; and e is a simplified version of d
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(a) (b)

Fig. 13 One element with two partial extraordinary nodes, A and B.
a The input hexahedral element in which edge AB has one reflection
edge about A and edge BC has one reflection edge about B; and b the
result after applying the template in Fig. 12c to nodes A and B

Fig. 12b also has two possible orientations. Again, we choose
the one which introduces fewer new nodes and edges. Obvi-
ously, among these three templates, Fig. 12c is the best
choice due to its minimum number of newly inserted nodes.
Basically, we apply the 2D templates in Fig. 5 to the face
perpendicular to the edge which has a reflection edge about
this partial extraordinary node. It is no doubt that each node
has one unique knot vector along the ζ direction. We have
proved the geometry is gap-free on the iso-parametric ξ, η-
plane in [15] and in Lemma 1. In other words, N ξ

i (ξ)Nη
i (η)

for any node in one domain has the same function val-
ues with its neighboring domain at the shared boundary.
Hence, N ξ

i (ξ)Nη
i (η)N ζ

i (ζ ) also has the same function value
at the shared boundary of two neighboring domains, and the
obtained geometry is gap-free after applying templates in
Fig. 12a–c.

Figure 13 shows an example of one element with two par-
tial extraordinary nodes. Nodes A and B are partial extraordi-
nary nodes, edge AB has a reflection edge about A and edge
BC has a reflection edge about B. For each partial extraor-
dinary node, we apply the template in Fig. 12c to the face
perpendicular to its adjacent edge which has one reflection
edge about it. The blue dash edge in (b) is added according
to the T-spline rule as discussed earlier.

Figure 12d–e give two general templates for an extraordi-
nary node in hexahedral meshes, which are generalized from
Fig. 5. The template in Fig. 12d has one single orientation
and it can guarantee the obtained T-mesh gap-free as proved
in the following lemma.

Lemma 2 For the local region of any extraordinary node in
the input unstructured hexahedral mesh, the T-mesh obtained
by applying the template in Fig. 12d is gap-free.

Proof To prove the T-mesh obtained is gap-free, we need to
find out whether or not the two patches defined by any two
neighboring domains around one extraordinary node share
the same face. Let us take the local T-mesh around an extraor-
dinary node O in Fig. 14 as an example, where node O is the
parametric origin. (b) shows the T-mesh after applying the
template in Fig. 12d. To prove the solid T-spline patch defined
by the local domain is gap-free, we need to check whether
or not the two patches defined by two neighboring domains,
say �0 and �1, share the same face at the shared boundary.
In other words, we need to check if we have S0(ξ, 0, ζ ) =
S1(ξ, 0, ζ ), where ξ ∈ [0, e2] and ζ ∈ [−e4, 0].

In �0 and �1, only the nodes on the shared face OG DC
have non-zero basis function values at the shared boundary

(a) (b)

Fig. 14 One local region with an extraordinary node O . a shows the input hexahedral mesh; and b is the exploded view of the T-mesh after
applying the template in Fig. 12d. Node O is the parametric origin
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(a) (b) (c) (d) (e)

Fig. 15 An example demonstrating how to apply the templates in Fig.
12d–e to one element with two extraordinary nodes, A and B. a The
hexahedral element with two extraordinary nodes; b the result after
applying the template in Fig. 12d for node B; and c the final result after

applying the template in Fig. 12d for node A. Similarly, d–e shows the
two results after applying the template in Fig. 12e first for node B and
then for node A

of these two domains. In addition, these nodes share the
same knot vector along the η direction except for O , which
is η�0,�1 = [−e3, 0, 0, 0, e1]. The knot vectors of O are
ηO,�0 = [−e3, 0, 0, 0, 0] and ηO,�1 = [0, 0, 0, 0, e1]. We
notice that N [−e3, 0, 0, 0, e1](0) = N [−e3, 0, 0, 0, 0](0) =
N [0, 0, 0, 0, e1](0) = 1. Additionally, all the nodes with
non-zero basis function value at the shared boundary of
�0 and �1 share the same knot vectors along the ξ and ζ

directions in these two domains. For instance, ξ O,�0,�1 =
[0, 0, 0, 0, e2] and ζ O,�0,�1 = [−e4, 0, 0, 0, 0]. In other
words, they have the same basis functions for these two para-
metric directions, N ξ

i,�0(ξ)N ζ

i,�0(ζ ) = N ξ

i,�1(ξ)N ζ

i,�1(ζ ).

Thus, we can conclude that N ξ

i,�0(ξ)N ζ

i,�0(ζ )Nη

i,�0(η) =
N ξ

i,�1(ξ)N ζ

i,�1(ζ )Nη

i,�1(η), which means that the two patches

defined by �0 and �1 share the same boundary face when
ξ ∈ [0, e2], η = 0 and ζ ∈ [−e4, 0], and the two patches are
continuous or gap-free across the shared boundary. Due to
symmetry, this is also true for the pairs �1–�2,�0–�2,�1–
�3,�2–�3 and for the local domains around the extraordi-
nary node O . ��

Compared to Fig. 12d, e is a simplified version and it was
extended from Fig. 5b. The 2D template in Fig. 5b has one
property: for one domain � surrounding one extraordinary
node O , nodes in other surrounding domains which share
only node O with � always have zero basis function value
in �. When extending it to 3D, we want to design templates
that inherit this property. Figure 12e is designed based on
this principle. Basically, for one extraordinary node in a cer-
tain element we insert one cube whose edges all have zero
knot intervals, extend the cube along one adjacent edge until
the element boundary and insert one plane parallel to one
adjacent plane. For example, for the extraordinary node A in
Fig. 12e, we insert one cube AV WU -I J T S, extend the cube
along one adjacent edge AD until the element boundary, and
insert one plane I K P R parallel to its adjacent face ABC D.
In contrast with Fig. 12d, there are six possible variations
for this template by choosing different adjacent edges for

extending the cube and different adjacent faces for inserting
the parallel plane. We always choose the orientation which
brings the fewest newly inserted nodes. For one extraordi-
nary node in a certain element, if one of its three adjacent
nodes is extraordinary or partial extraordinary, the edge con-
taining it will be chosen to extend the cube. Once we fix the
orientation to extend the cube, there will be two options left
for inserting the plane along the two faces sharing this edge.
After we insert the cube, we only need to insert two addi-
tional nodes in order to form one plane. Here, we still choose
the orientation which will insert fewer nodes. If none of its
three adjacent nodes is extraordinary or partial extraordinary,
we check the face-diagonal nodes. If one of its face-diagonal
nodes is extraordinary or partial extraordinary, we choose the
face containing that node to insert the plane.

Figure 15 gives one example demonstrating how to apply
the two templates in Fig. 12d–e to one element with two
extraordinary nodes, A and B. (b) shows the result after
applying the template in Fig. 12d for node B, and then using
the template again for node A to obtain the result shown in
(c). Since we have one unique orientation, this process is
quite straightforward. (d) shows the result after applying the
template in Fig. 12e for node B. It is obtained by first insert-
ing one cube around B, then extending the cube along its
adjacent edge AB. Since node A is extraordinary, we choose
edge AB to extend here. After that, we have two options to
choose from to get one adjacent face for inserting one paral-
lel plane, the front face or the bottom face. In this case, both
of these options will end up with inserting two additional
nodes, hence we can choose either one of them. Here the
bottom face is chosen and plane C DE F is inserted. Then
the result shown in (d) is obtained. Similarly, since node A
already has one plane and one extended cube, we only need
to insert one cube around it. Then the result in (e) is obtained.

Figure 16 gives another example demonstrating how to
apply the templates in Fig. 12c–e for one element with one
extraordinary node B and one partial extraordinary node C .
The magenta edge has one reflection edge about node C .
(b) is the result after applying the template in Fig. 12d for
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(a) (b) (c) (d) (e)

Fig. 16 An example demonstrating how to apply the templates in Fig.
12c–e to one element with one extraordinary node B and one partial
extraordinary node C . a The hexahedral element in which the magenta
edge has one reflection edge about node C ; b the result after applying

the template in Fig. 12d for node B; and c the final result after applying
the template in Fig. 12c for node C . Similarly, d–e show the two results
after applying the template in Fig. 12e first for node B and then the
template in Fig. 12c for node C

extraordinary node B. Then we apply the template in Fig. 12c
for node C to get (c). (d) is the result after applying the tem-
plate in Fig. 12e for node B. Here we choose the front face to
insert one plane because node C lies on this front face diago-
nal with node B. (e) shows the final result after applying the
template in Fig. 12c for node C .

Discussion In summary, we design three general templates
for a partial extraordinary node and two general templates
for an extraordinary node. Among the three templates for a
partial extraordinary node, Fig. 12c introduces many fewer
newly inserted nodes. For extraordinary nodes, we prove that
using the general template in Fig. 12d will produce a gap-
free solid T-spline. Figure 12e is simplified from Fig. 12d,
and due to its complexity we do not prove that it can always
guarantee a gap-free solid T-spline, although our experience
indicates it does.

In 3D, things are much more complicated and here we
only discuss the continuity of the neighboring domains adja-
cent to one partial extraordinary or extraordinary node. In
Fig. 12a–c, the patch defined by each domain is C2-contin-
uous with the patch defined by the non-zero domain sharing
the bottom face with it, and C0-continuous with the patches
defined by the domains sharing the front or the right face. In
Fig. 12d–e, the patch defined by each domain is C0-contin-
uous with the patches defined by all the non-zero domains
sharing one face with it.

4 Sharp feature preservation and surface fitting

4.1 Sharp feature preservation

For T-spline surfaces, how to preserve sharp feature was
described in [15]. The main idea is to use repeating knots
to decrease the local boundary surface continuity to C0, and
zero-length edges are inserted across sharp edges and around
sharp corners to preserve these sharp features. For each sharp

(a) (b)

Fig. 17 Sharp feature preservation for solid T-spline. a Sharp edge
preservation (the blue edge); and b sharp corner preservation (the
magenta point)

edge, we duplicate it for each face and all the transverse edges
have zero knot interval. Each sharp corner is treated as one
extraordinary node.

For solid T-splines, the input hexahedral meshes in this
paper were generated using an octree-based isocontouring
algorithm together with a pillowing technique [9]. Pillowing
is a sheet insertion method that refines the mesh boundary.
After pillowing each element has at most one face lying on
the boundary. For each boundary element we first insert one
face parallel to the boundary face and the edges connecting
them have zero knot intervals. In this way, only the boundary
nodes have non-zero basis function value on the solid T-spline
boundary. For example in Fig. 17, the pink faces are bound-
ary faces and the two faces G H K L and H I J K are newly
inserted faces. The edges shown in red between the boundary
faces and the inserted faces have zero knot intervals.

To preserve sharp edges in solid T-splines, we insert one
edge parallel to the sharp edge for each adjacent bound-
ary face. In contrast with sharp feature preservation for 2D
T-spline surfaces, we need to repeat inserting zero-length
edges for the newly inserted faces. For example, in Fig. 17a,
the blue edge is one sharp edge. We first insert two edges on
the boundary faces AB E F and BC DE . This step guaran-
tees there are two zero-length edges across the sharp edge. In
other words, there are three duplicated knots and the surface
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(a) (b) (c)

Fig. 18 Surface fitting for a solid T-spline model. a The input hexahedral mesh; b the constructed solid T-spline and T-mesh before surface fitting;
and c the constructed solid T-spline and T-mesh after surface fitting

continuity is C0 across the sharp edge. After that, two addi-
tional edges are inserted on the newly inserted faces G H K L
and H I J K . The purpose of this step is to make the boundary
face and the layer right below it have the same topology.

To preserve sharp corners in solid T-splines, the sharp
corner node is treated as one partial extraordinary node. Its
adjacent edge containing one interior node is treated in the
same way as when it has one reflection edge. The templates
in Fig. 12a–c can be used to handle the sharp corners. Again,
the operation done for the boundary face needs to be repeated
for the newly inserted faces. For example, in Fig. 17b the
magenta node represents one sharp corner and the template
in Fig. 12c is applied. Then we apply the same inserting oper-
ation to the pillowed faces G H K L and H I J K . In this way,
the sharp corner is preserved.

4.2 Surface fitting

In the surface fitting step, we aim to relocate T-mesh nodes so
that the output T-spline interpolates all the boundary nodes in
the input mesh. The surface fitting algorithm given here for
2D is the same as the method given in [15]. We take advantage
of the local property of T-splines and fit each Bézier element
to interpolate the four nodes of the corresponding quadri-
lateral element. For each nonzero domain of the T-spline,
we set the positions of the four nodes, which come from
the input mesh boundary and whose parametric coordinates
correspond to the four corners of the domain, as unknown
variables and fix all the other nodes. Then we use the interpo-
lation condition to calculate the new position of the unknown
variables. After that, all the nodes in the T-mesh which have
the same parametric position with the unknown variables are
updated. We loop over each non-zero domain and iterate until
the interpolation error falls below a given tolerance.

For solid T-splines, the boundary nodes are relocated in
the same way as for a T-spline surface. After each reposi-
tion of the boundary nodes, we also need to relocate the

neighboring interior nodes to avoid tangling the local con-
trol mesh and to improve the quality of the Bézier elements.
Here, we borrow some ideas from the subject of mesh quality
improvement. The interior nodes which come from the input
mesh are relocated using smoothing and optimization, and
the newly inserted interior nodes are relocated correspond-
ingly. In smoothing, each interior node is moved towards the
mass center using its neighboring elements. If the smoothing
operation cannot improve the quality, we use optimization
for this node. The optimization method loops over all the
adjacent hexahedral elements to compute their Jacobians,
and then the element with the worst Jacobian is found and
optimized, in which the objective function is the Jacobian at
that vertex [16]. The Jacobian is used as a metric to mea-
sure the mesh quality. Note that relocating control points to
improve the quality of Bézier elements is not straightforward.
Here we use a mesh metric to relocate the control points,
since intuitively a control mesh with better mesh quality will
yield a T-spline with better Bézier elements. Figure 18 shows
one surface fitting example for a solid T-spline, in which the
boundary surface of the solid T-spline after surface fitting in
Fig. 18c interpolates all the boundary nodes in the input mesh.

5 Bézier extraction and linear independence

To facilitate isogeometric analysis, Bézier elements are
extracted from the constructed T-spline surface or solid
T-spline [2,10]. For each nonzero parametric domain, we
determine the nodes with nonzero basis function values in
this domain and then calculate the transformation matrix Me

between the T-spline basis functions and the Bézier basis
functions. In other words, we have

Be
t = Me Be

b, (7)

where Be
t is the vector formed by the T-spline basis functions

with nonzero function values, and Be
b is the vector formed
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Fig. 19 One genus-3 model. a The input unstructured quadrilateral mesh; b the constructed T-spline surface and T-mesh; c the extracted Bézier
elements; and d the T-spline surface. e–h show details

by the Bézier basis functions. Me can be calculated using the
Oslo knot insertion algorithm [3]. For a T-spline surface,

Be
t =

[
N ξ

0 Nη
0 , N ξ

1 Nη
1 , · · · , N ξ

ne−2 Nη
ne−2, N ξ

ne−1 Nη
ne−1

]T
,

(8)

and

Be
b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

N [0, 0, 0, 0, 1](ξ)N [0, 0, 0, 0, 1](η)

N [0, 0, 0, 1, 1](ξ)N [0, 0, 0, 0, 1](η)

N [0, 0, 1, 1, 1](ξ)N [0, 0, 0, 0, 1](η)
...

N [0, 0, 1, 1, 1](ξ)N [0, 1, 1, 1, 1](η)

N [0, 1, 1, 1, 1](ξ)N [0, 1, 1, 1, 1](η)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where ne is the number of nodes with nonzero basis function
values in this domain. Similarly, for a solid T-spline

Be
t =

[
N ξ

0 Nη
0 N ζ

0 , N ξ
1 Nη

1 N ζ
1 , · · · , N ξ

ne−1 Nη
ne−1 N ζ

ne−1

]T
,

(10)

and

Be
b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

N [0, 0, 0, 0, 1](ξ)N [0, 0, 0, 0, 1](η)N [0, 0, 0, 0, 1](ζ )

N [0, 0, 0, 1, 1](ξ)N [0, 0, 0, 0, 1](η)N [0, 0, 0, 0, 1](ζ )

N [0, 0, 1, 1, 1](ξ)N [0, 0, 0, 0, 1](η)N [0, 0, 0, 0, 1](ζ )
...

N [0, 0, 1, 1, 1](ξ)N [0, 1, 1, 1, 1](η)N [0, 1, 1, 1, 1](ζ )

N [0, 1, 1, 1, 1](ξ)N [0, 1, 1, 1, 1](η)N [0, 1, 1, 1, 1](ζ )

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

The Bézier extraction technique can also be used to study
the linear independence of a given T-mesh. In [7], the linear
independence of a T-spline model is determined by comput-
ing the nullity of the T-spline-to-NURBS transform matrix.
However, this method is not suitable for a T-spline with
extraordinary nodes, since converting a T-spline with extraor-
dinary nodes to NURBS will end up with multiple NURBS
patches. The T-meshes in this paper have a large percentage
of extraordinary nodes. In addition, we need to check the
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(a) (b) (c)

Fig. 20 Human head. a The input unstructured quadrilateral mesh; b the constructed T-spline surface and T-mesh; and c the extracted Bézier
elements

linear independence for 3D solid T-splines. Here, in order to
study the linear independence of T-splines we assemble all
transformation matrices of the non-zero domains or Bézier
elements in a similar way as for matrix assembly in the finite
element method to get a global transformation matrix. In
other words, we calculate the global transformation matrix,
K , for the whole model from T-spline to Bézier elements.
Then we can obtain

Bt = K Bb, (12)

where

Bt =
[

N ξ
0 Nη

0 , N ξ
1 Nη

1 , · · · , N ξ
n−2 Nη

n−2, N ξ
n−1 Nη

n−1

]T
(13)

is the vector formed by all the T-spline basis functions2 of
the T-mesh, and

Bb = [
B0

b [0], B0
b [1], · · · , B0

b [15], B1
b [0], B1

b [1],
· · · , B1

b [15], · · · , Bm−1
b [0], Bm−1

b [1],
· · · , Bm−1

b [15]]T (14)

is formed by all the Bézier basis functions of the model. n
is the number of nodes in the T-mesh and m is the num-
ber of non-zero domains or Bézier elements for the whole
model. The matrix K is the global transformation matrix from

2 The term “basis function” implies linear independence and it is more
appropriate to use the terminology “blending function”. However, since
the majority of T-meshes are linearly independent, the term “basis func-
tion” is used here for simplicity.

T-spline to Bézier, with a size of n × 16m in 2D. In 3D,

Bt =
[

N ξ
0 Nη

0 N ζ
0 , N ξ

1 Nη
1 N ζ

1 , · · · , N ξ
n−1 Nη

n−1 N ζ
n−1

]T
, (15)

and

Bb = [
B0

b [0], B0
b [1], · · · , B0

b [63], B1
b [0], B1

b [1],
· · · , B1

b [63], · · · , Bm−1
b [0], Bm−1

b [1],
· · · , Bm−1

b [63]]T
. (16)

The matrix K is the global transformation matrix from solid
T-spline to solid Bézier and the size of K is n × 64m. Given
one T-mesh, all the T-spline basis functions form a linear
space. If all these functions are linearly independent, they
form a basis of the space with dimension n. The following
Lemma 3 provides a necessary and sufficient condition for
linear independence of a T-spline.

Lemma 3 (Necessary and sufficient condition for linear
independence) A necessary and sufficient condition for a T-
spline model to be linearly independent is that the global
transformation matrix from T-spline to Bézier has full rank.

Proof By definition, the T-spline basis functions are line-
arly independent if and only if there do not exist scalars,
α = [α0, · · · , αn]T , not all zero, such that

αT Bt = 0. (17)

In other words,

αT K Bb = 0. (18)
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(a) (b) (c)

Fig. 21 Human hand. a The input unstructured quadrilateral mesh; b the constructed T-spline surface and T-mesh; and c the extracted Bézier
elements

(a) (b) (c)

Fig. 22 Ribosome 30S. a The input unstructured quadrilateral mesh; b the constructed T-spline surface and T-mesh; and c the extracted Bézier
elements
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(a) (b) (c)

Fig. 23 Ribosome 50S. a The input unstructured quadrilateral mesh; b the constructed T-spline surface and T-mesh; and c the extracted Bézier
elements

(a) (b) (c)

Fig. 24 One statue model. a The input unstructured hexahedral mesh; b the constructed solid T-spline and T-mesh; and c the extracted solid Bézier
elements with some elements removed to show the interior mesh

Since the Bézier basis functions are linearly independent, the
necessary and sufficient condition for linear dependence of
the T-spline basis functions becomes

αT K = K T α = 0, (19)

for α �= 0. This will only happen when K does not have full
rank. ��

Discussion Lemma 3 utilizes the transformation matrix
from T-spline to Bézier elements to study the linear inde-
pendence of a given T-spline. This technique is more gen-
eral compared with the linear independence study using
the T-spline-to-NURBS transformation matrix. It works for

T-meshes with extraordinary nodes. However, generally the
size of matrix K is very large, and checking its rank can be
very time-consuming.

6 Results

We used template set 4 in Table 1 and applied the convert-
ing algorithm to several unstructured quadrilateral meshes
(Figs. 19, 20, 21, 22, 23). If the input mesh contains few
extraordinary nodes, for example Fig. 19, the output T-spline
surface will be very smooth. We also applied our converting
algorithm to hexahedral meshes of one statue model and
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Fig. 25 The bearing assembly. a The input unstructured hexahedral mesh; b the constructed solid T-spline and T-mesh; and c the extracted solid
Bézier elements with some elements removed to show the interior mesh. d–f show details

several CAD assembly models with sharp features (Figs. 24,
1, 25, 26). For these 3D hexahedral meshes, the templates
in Fig. 12c, d are utilized for partial extraordinary nodes and
extraordinary nodes, respectively. It is apparent that the con-
structed solid T-splines preserve all the sharp features in the
input model. In Figs. 1, 25 and 26, different colors rep-
resent different components of the assembly model. These
components have conformal boundaries in the output solid
T-spline. The converting algorithm is efficient and all the
results were computed on a PC equipped with an Intel Q6600
(4 cores, 2.4GHz) processor and 4GB main memory (DDR2,
800MHz).

Statistics for all the tested models are shown in Table 3.
From the table, we can notice that the number of Bézier ele-
ments is the same as the number of elements in the input
mesh. The reason for this is all the edges we inserted have
zero knot interval. There is a subtlety here that is difficult
to see. The input mesh consists of bilinear quadrilateral ele-
ments or trilinear hexahedral elements. The output T-spline
surface is bicubic and C2-continuous except in the vicinity

of extraordinary nodes and the solid T-spline is tricubic and
C2-continuous except in the vicinity of partial extraordinary
and extraordinary nodes. The Bézier elements are embed-
ded in the T-spline. For all the tested models, the output T-
spline surface or solid boundary interpolates all the nodes
in the input quadrilateral mesh or hexahedral mesh bound-
ary. The input hexahedral meshes of the three CAD models
were generated from NURBS boundary representations in
[9]. Although the output solid T-splines interpolate all the
nodes on the mesh boundary, there are differences compared
with the original NURBS model.

7 Conclusions

We have developed a novel algorithm for converting any
unstructured quadrilateral or hexahedral mesh to a T-spline
surface or solid T-spline, respectively. The T-spline defini-
tion is based on rational T-spline basis functions, with the
partition of unity property. The converting algorithm has two
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Fig. 26 The eddy plate assembly. a The input unstructured hexahedral mesh; b the constructed solid T-spline and T-mesh; and c the extracted solid
Bézier elements with some elements removed to show the interior mesh. d–f show details

Table 3 Statistics of all the tested models

Model Input mesh Number of
T-mesh nodes

Number of Bézier
elements

Time
(s)

(vertices, elements) (PENs, ENs)

Quad Genus-3 model (3,068, 3,072) (0, 4) 3,132 3,072 0.24

Head (2,909, 2,908) (0, 1,222) 12,677 2,908 3.5

Hand (6,070, 6,068) (0, 2,527) 26,270 6,068 8.1

Ribosome 30S (13,217, 13,215) (0, 7,217) 70,937 13,215 25.2

Ribosome 50S (16,537, 16,537) (0, 9,039) 88,849 16,537 27.7

Hex Statue (14,095, 12,313) (2,738, 1,663) 114,672 12,313 57.9

Bearing (12,184, 10,215) (2,535, 756) 71,339 10,215 39.8

Gear (23,642, 19,438) (6,149, 2,021) 171,827 19,438 83.1

Eddy plate (28,747, 24,269) (8,309, 2,906) 239,660 24,269 111.2

PEN partial extraordinary node, EN extraordinary node

main stages: the topology stage and the geometry stage. In
the topology stage, we design templates for each type of node
and element in order to get a gap-free T-spline. Sharp fea-
tures are preserved automatically in this stage. In the geom-

etry stage, an efficient surface fitting technique is developed
to improve the surface accuracy. Finally, a Bézier extrac-
tion technique is introduced and linear independence of the
constructed T-spline is studied to facilitate T-spline based
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isogeometric analysis. As part of future work, we plan to
study linear independence directly from the T-mesh configu-
ration and construct solid T-splines directly from the NURBS
boundary representation.
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